Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Mol Biosci ; 11: 1415909, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39081929

RESUMO

Extracellular vesicles (EVs) serve as messengers for intercellular communication, yet the precise mechanisms by which recipient cells interpret EV messages remain incompletely understood. In this study, we explored how the origin of EVs, their protein cargo, and the recipient cell type influence the cellular response to EVs within an embryo implantation model. We treated two types of EVs to 6 different recipient cell types and expression of zinc finger protein 81 (ZNF81) gene expression in the recipient cells were quantified using quantitative polymerase chain reaction (qPCR). The proteomic contents of the EV cargos were also analyzed. The results showed that downregulation of the ZNF81 gene was a specific cellular response of receptive endometrial epithelial cells to trophoblast derived EVs. Protein cargo analysis revealed that the proteomic profile of EVs depends on their cell of origin and therefore may affect the recipient cell response to EVs. Furthermore, trophoblastic EVs were found to be specifically enriched with transcription factors such as CTNNB1 (catenin beta-1), HDAC2 (histone deacetylase 2), and NOTCH1 (neurogenic locus notch homolog protein 1), which are known regulators of ZNF81 gene expression. The current study provided compelling evidence supporting the existence of EV specificity, where the characteristics of both the EVs and the recipient cell type collectively contribute to regulating EV target specificity. Additionally, EV protein cargo analysis suggested a potential association between transcription factors and the specific functionality of trophoblastic EVs. This in vitro embryo implantation model and ZNF81 read-out provides a unique platform to study EV specific functionality in natural cell-cell communication.

2.
G3 (Bethesda) ; 14(8)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38839053

RESUMO

Many proteins undergo a post-translational lipid attachment, which increases their hydrophobicity, thus strengthening their membrane association properties or aiding in protein interactions. Geranylgeranyltransferase-I (GGTase-I) is an enzyme involved in a 3-step post-translational modification (PTM) pathway that attaches a 20-carbon lipid group called geranylgeranyl at the carboxy-terminal cysteine of proteins ending in a canonical CaaL motif (C-cysteine, a-aliphatic, L-often leucine, but can be phenylalanine, isoleucine, methionine, or valine). Genetic approaches involving 2 distinct reporters were employed in this study to assess Saccharomyces cerevisiae GGTase-I specificity, for which limited data exist, toward all 8,000 CXXX combinations. Orthogonal biochemical analyses and structure-based alignments were also performed to better understand the features required for optimal target interaction. These approaches indicate that yeast GGTase-I best modifies the Cxa[L/F/I/M/V] sequence that resembles but is not an exact match for the canonical CaaL motif. We also observed that minor modification of noncanonical sequences is possible. A consistent feature associated with well-modified sequences was the presence of a nonpolar a2 residue and a hydrophobic terminal residue, which are features recognized by mammalian GGTase-I. These results thus support that mammalian and yeast GGTase-I exhibit considerable shared specificity.


Assuntos
Alquil e Aril Transferases , Motivos de Aminoácidos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Alquil e Aril Transferases/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Modelos Moleculares
3.
Acta Pharmacol Sin ; 45(8): 1727-1739, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38605180

RESUMO

Antibody drug conjugate (ADC) therapy has become one of the most promising approaches in cancer immunotherapy. Bispecific targeting could enhance the efficacy and safety of ADC by improving its specificity, affinity and internalization. In this study we constructed a HER2/HER3-targeting bispecific ADC (BsADC) and characterized its physiochemical properties, target specificity and internalization in vitro, and assessed its anti-tumor activities in breast cancer cell lines and in animal models. The HER2/HER3-targeting BsADC had a drug to antibody ratio (DAR) of 2.89, displayed a high selectivity against the target JIMT-1 breast cancer cells in vitro, as well as a slightly higher level of internalization than HER2- or HER3-monospecific ADCs. More importantly, the bispecific ADC potently inhibited the viability of MCF7, JIMT-1, BT474, BxPC-3 and SKOV-3 cancer cells in vitro. In JIMT-1 breast cancer xenograft mice, a single injection of bispecific ADC (3 mg/kg, i.v.) significantly inhibited the tumor growth with an efficacy comparable to that caused by combined injection of HER2 and HER3-monospecific ADCs (3 mg/kg for each). Our study demonstrates that the bispecific ADC concept can be applied to development of more potent new cancer therapeutics than the monospecific ADCs.


Assuntos
Anticorpos Biespecíficos , Neoplasias da Mama , Imunoconjugados , Receptor ErbB-2 , Receptor ErbB-3 , Humanos , Animais , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Feminino , Receptor ErbB-3/antagonistas & inibidores , Receptor ErbB-3/metabolismo , Imunoconjugados/uso terapêutico , Imunoconjugados/farmacologia , Imunoconjugados/química , Neoplasias da Mama/tratamento farmacológico , Receptor ErbB-2/antagonistas & inibidores , Linhagem Celular Tumoral , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
4.
bioRxiv ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38496651

RESUMO

Many proteins undergo a post-translational lipid attachment, which increases their hydrophobicity, thus strengthening their membrane association properties or aiding in protein interactions. Geranylgeranyltransferase-I (GGTase-I) is an enzyme involved in a three-step post-translational modification (PTM) pathway that attaches a 20-carbon lipid group called geranylgeranyl at the carboxy-terminal cysteine of proteins ending in a canonical CaaL motif (C - cysteine, a - aliphatic, L - often leucine, but can be phenylalanine, isoleucine, methionine, or valine). Genetic approaches involving two distinct reporters were employed in this study to assess S. cerevisiae GGTase-I specificity, for which limited data exists, towards all 8000 CXXX combinations. Orthogonal biochemical analyses and structure-based alignments were also performed to better understand the features required for optimal target interaction. These approaches indicate that yeast GGTase-I best modifies the Cxa[L/F/I/M/V] sequence that resembles but is not an exact match for the canonical CaaL motif. We also observed that minor modification of non-canonical sequences is possible. A consistent feature associated with well-modified sequences was the presence of a non-polar a2 residue and a hydrophobic terminal residue, which are features recognized by mammalian GGTase-I. These results thus support that mammalian and yeast GGTase-I exhibit considerable shared specificity.

5.
Mol Plant Pathol ; 25(1): e13410, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38105442

RESUMO

Phytoplasmas infect a wide variety of plants and can cause distinctive symptoms including the conversion of floral organs into leaf-like organs, known as phyllody. Phyllody is induced by an effector protein family called phyllogens, which interact with floral MADS-box transcription factors (MTFs) responsible for determining the identity of floral organs. The MTF/phyllogen complex then interacts with the proteasomal shuttle protein RADIATION SENSITIVE23 (RAD23), which facilitates delivery of the MTF/phyllogen complex to the host proteasome for MTF degradation. Previous studies have indicated that the MTF degradation specificity of phyllogens is determined by their ability to bind to MTFs. However, in the present study, we discovered a novel mechanism determining the degradation specificity through detailed functional analyses of a phyllogen homologue of rice yellow dwarf phytoplasma (PHYLRYD ). PHYLRYD degraded a narrower range of floral MTFs than other phyllody-inducing phyllogens, resulting in compromised phyllody phenotypes in plants. Interestingly, PHYLRYD was able to bind to some floral MTFs that PHYLRYD was unable to efficiently degrade. However, the complex of PHYLRYD and the non-degradable MTF could not interact with RAD23. These results indicate that the MTF degradation specificity of PHYLRYD is correlated with the ability to form the MTF/PHYLRYD /RAD23 ternary complex, rather than the ability to bind to MTF. This study elucidated that phyllogen target specificity is regulated by both the MTF-binding ability and RAD23 recruitment ability of the MTF/phyllogen complex.


Assuntos
Phytoplasma , Complexo de Endopeptidases do Proteassoma , Complexo de Endopeptidases do Proteassoma/metabolismo , Phytoplasma/genética , Proteínas de Bactérias/metabolismo , Fatores de Transcrição/metabolismo , Plantas/metabolismo
6.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-761908

RESUMO

BACKGROUND: Exosomes are membrane-enclosed extracellular vesicles implicated in cell-cell communication. Exosomes contain proteins, mRNAs, non-coding RNAs (miRNAs and lncRNAs) and lipids that are derived from producing cells. These nano-sized vesicles are present in biofluids including blood, urine, saliva, amniotic fluid, semen and conditioned media of cultured cells. METHODS: This review summarizes current progress on the strategies of development of diagnostic biomarkers and drug loading onto exosomes for overcoming cancer progression. RESULTS: A number of studies indicate that the exosome appears to be a key player in tissue repair and regeneration of in a number of animal disease models. In addition, alterations of the molecular profiles in exosomes are known to be correlated with the disease progression including cancer, suggesting their usefulness in disease diagnosis and prognosis. Studies utilizing engineered exosomes either by chemical or biological methods have demonstrated promising results in a number of animal models with cancer. CONCLUSION: Understanding the molecular and cellular properties of exosomes offer benefits for cancer diagnosis by liquid biopsy and for their application in therapeutic drug delivery systems. Studies have shown that genetic or molecular engineering of exosomes augmented their target specificity and anticancer activity with less toxicity. Thus, deeper understanding of exosome biology will facilitate their therapeutic potential as an innovative drug delivery system for cancer.


Assuntos
Feminino , Líquido Amniótico , Biologia , Biomarcadores , Biópsia , Células Cultivadas , Meios de Cultivo Condicionados , Diagnóstico , Modelos Animais de Doenças , Progressão da Doença , Sistemas de Liberação de Medicamentos , Exossomos , Vesículas Extracelulares , Modelos Animais , Prognóstico , Regeneração , RNA Mensageiro , RNA não Traduzido , Saliva , Sêmen , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA