Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 399
Filtrar
1.
ACS Nano ; 18(32): 21399-21410, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39094105

RESUMO

To address the escalating power consumption of processors in data centers and the growing emphasis on environmental sustainability, the prospective shift from traditional air-cooling to immersion liquid cooling necessitates multiple functional integrations in polymer-based thermal conductive materials. Here, drawing inspiration from mussels, we showed a copolymer, poly(dimethylsiloxane-co-dopamine methacrylate) (PDMS-DMA), with a variety of reversible molecular interactions and simply combined with liquid metal (EGaIn) can yield a flexible, waterproof, and electrically insulating thermal conductive composite. The obtained PDMS-DMA/EGaIn composites demonstrate a harmonious blend of attributes, including a low modulus (75.8 kPa), high thermal conductivity of 6.9 W m-1 K-1, and rapid room-temperature self-healing capabilities, capable of complete repair within 20 min, even under water. Based on its electrically insulating and water resistance properties, PDMS-DMA/EGaIn emerges as a promising candidate for efficient and stable heat transfer in both air and underwater thermal management. Consequently, this water-resistant polymer-based composite holds significance for application in thermal protective layers for future immersion liquid cooling systems.

2.
Nanomaterials (Basel) ; 14(15)2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39120413

RESUMO

As an environmentally friendly material, biochar is increasingly being utilized in the field of heat transfer and thermal conduction. In this study, nano-biochar was prepared from high-pressure homogenization (HPH) using sesame stalks as the raw material. It was incorporated into ethylene glycol (EG) and its dispersion stability, viscosity, and thermal conductivity were investigated. The nano-biochar was stably dispersed in EG for 28 days. When the concentration of the nano-biochar added to EG was less than 1%, the impact on viscosity was negligible. The addition of 5 wt.% nano-biochar to EG improved the thermal conductivity by 6.72%, which could be attributed to the graphitized structure and Brownian motion of the nano-biochar. Overall, nano-biochar has the potential to be applied in automotive thermal management.

3.
Adv Mater ; : e2406915, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39096070

RESUMO

Phase change materials (PCMs) are crucial for sustainable thermal management in energy-efficient construction and cold chain logistics, as they can store and release renewable thermal energy. However, traditional PCMs suffer from leakage and a loss of formability above their phase change temperatures, limiting their shape stability and versatility. Inspired by the muscle structure, formable PCMs with a hierarchical structure and solvent-responsive supramolecular networks based on polyvinyl alcohol (PVA)/wood composites are developed. The material, in its hydrated state, demonstrates low stiffness and pliability due to the weak hydrogen bonding between aligned wood fibers and PVA molecules. Through treatment of poly(ethylene glycol) (PEG) into the PVA/wood PEG gel (PEG/PVA/W) with strengthened hydrogen bonds, the resulting wood-based PCMs in the hard and melting states elevate the tensile stress from 10.14 to 80.86 MPa and the stiffness from 420 MPa to 4.8 GPa, making it 530 times stiffer than the PEG/PVA counterpart. Capable of morphing in response to solvent changes, these formable PCMs enable intricate designs for thermal management. Furthermore, supported by a comprehensive life cycle assessment, these shape-adaptable, recyclable, and biodegradable PCMs with lower environmental footprint present a sustainable alternative to conventional plastics and thermal management materials.

4.
Adv Sci (Weinh) ; : e2402190, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39119846

RESUMO

Passive battery thermal management systems (BTMSs) are critical for mitigation of battery thermal runaway (TR). Phase change materials (PCMs) have shown promise for mitigating transient thermal challenges. Fluid leakage and low effective thermal conductivity limit PCM adoption. Furthermore, the thermal capacitance of PCMs diminishes as their latent load is exhausted, creating an unsustainable cooling effect that is transitory. Here, an expanded graphite/PCM/graphene composite that solves these challenges is proposed. The expanded graphite/PCM phase change composite eliminates leakage and increases effective thermal conductivity while the graphene coating enables radiative cooling for PCM regeneration. The composite demonstrates excellent thermal performance in a real BTMS and shows a 26% decrease in temperature when compared to conventional BTMS materials. The composite exhibits thermal control performance comparable with active cooling, resulting in reduced cost and increased simplicity. In addition to BTMSs, this material is anticipated to have application in a plethora of engineered systems requiring stringent thermal management.

5.
Environ Sci Pollut Res Int ; 31(34): 46840-46857, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38980481

RESUMO

The global transition towards sustainable automotive vehicles has driven the demand for energy-efficient internal combustion engines with advanced aftertreatment systems capable of reducing nitrogen oxides (NOx) and particulate matter (PM) emissions. This comprehensive review explores the latest advancements in aftertreatment technologies, focusing on the synergistic integration of in-cylinder combustion strategies, such as low-temperature combustion (LTC), with post-combustion purification systems. Selective catalytic reduction (SCR), lean NOx traps (LNT), and diesel particulate filters (DPF) are critically examined, highlighting novel catalyst formulations and system configurations that enhance low-temperature performance and durability. The review also investigates the potential of energy conversion and recovery techniques, including thermoelectric generators and organic Rankine cycles, to harness waste heat from the exhaust and improve overall system efficiency. By analyzing the complex interactions between engine operating parameters, combustion kinetics, and emission formation, this study provides valuable insights into the optimization of integrated LTC-aftertreatment systems. Furthermore, the review emphasizes the importance of considering real-world driving conditions and transient operation in the development and evaluation of these technologies. The findings presented in this article lay the foundation for future research efforts aimed at overcoming the limitations of current aftertreatment systems and achieving superior emission reduction performance in advanced combustion engines, ultimately contributing to the development of sustainable and efficient automotive technologies.


Assuntos
Óxidos de Nitrogênio , Material Particulado , Emissões de Veículos , Catálise , Poluentes Atmosféricos
6.
Int J Biol Macromol ; 275(Pt 1): 133630, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38969032

RESUMO

A flexible phase-change film with thermal management and microwave absorption capabilities was developed for use in wearable devices. The film was created using a solution casting method based on a porous carbon-loaded eicosane (LP33/EI) material. LP33 served as the porous encapsulation medium, while Eicosane (EI) acted as the phase change component. The flexible substrate was a blend of polyvinyl alcohol (PVA) and bacterial cellulose nanocellulose (BC). The ultrathin film had a thickness of 0.262 mm, and LP33/EI-4 exhibited exceptional mechanical strength of 188 MPa. Testing revealed that the phase transition process had melting and crystallization enthalpies of 134.71 J/g and 126.11 J/g, respectively. The encapsulation structure effectively prevented any leakage during the phase transition process. Under simulated solar irradiation of 200 mW/cm2, LP33/EI-4 achieved a photothermal conversion efficiency (η) of 89.46 %. Additionally, the porous LP33 structure and high dielectric loss contributed to remarkable microwave absorption capabilities of -42 dB in the X-band and - 52 dB in the Ku-band. Overall, LP33/EI films demonstrated exceptional performance in thermal management, energy storage, and microwave absorption, making them an ideal choice for a variety of applications in wearable devices.


Assuntos
Carbono , Lignina , Micro-Ondas , Dispositivos Eletrônicos Vestíveis , Porosidade , Carbono/química , Lignina/química , Transição de Fase , Temperatura , Celulose/química , Álcool de Polivinil/química
7.
Int J Biol Macromol ; 275(Pt 2): 133724, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38977054

RESUMO

Cellulose papers (CPs) possess a pore structure, rendering them ideal precursors for carbon scaffolds because of their renewability. However, achieving a tradeoff between high electromagnetic shielding effectiveness and low reflection coefficient poses a tremendous challenge for CP-based carbon scaffolds. To meet the challenge, leveraging the synergistic effect of gravity and evaporation dynamics, laminar CP-based carbon scaffolds with a bidirectional gradient distribution of Fe3O4 nanoparticles were fabricated via immersion, drying, and carbonization processes. The resulting carbon scaffold, owing to the bidirectional gradient structure of magnetic nanoparticles and unique laminar arrangement, exhibited excellent in-plane electrical conductivity (96.3 S/m), superior electromagnetic shielding efficiency (1805.9 dB/cm2 g), low reflection coefficients (0.23), and a high green index (gs, 3.38), suggesting its green shielding capabilities. Furthermore, the laminar structure conferred upon the resultant carbon scaffold a surprisingly anisotropic thermal conductivity, with an in-plane thermal conductivity of 1.73 W/m K compared to a through-plane value of only 0.07 W/m K, confirming the integration of thermal insulation and thermal management functionalities. These green electromagnetic interference shielding materials, coupled with thermal insulation and thermal management properties, hold promising prospects for applications in sensitive devices.


Assuntos
Carbono , Celulose , Carbono/química , Celulose/química , Condutividade Térmica , Condutividade Elétrica , Temperatura
8.
Int J Biol Macromol ; 274(Pt 2): 133550, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39030156

RESUMO

The escalating global population has led to a surge in waste textiles, posing a significant challenge in landfill management worldwide. In this work, ionic liquid 1-butyl-3-methylimidazole acetate ([Bmim]OAc) and DMF (N, n-dimethylformamide) were used as solvents to dissolve waste denim fabric, then vanadium dioxide (VO2) nanoparticles were introduced into the spinning solution, and cellulose fibers were regenerated by dry-wet spinning process, to promote the recycling of waste cotton fabric. Finally, regenerated cellulose fibers with high added value were prepared by dry-wet spinning. Through this innovative strategy, on the one hand, because VO2 can form a large number of hydrogen bonds between the regenerated cellulose molecules, and realize the cross-networking structure of the molecular chains inside the fiber, the mechanical properties of the regenerated cellulose fibers are enhanced. On the other hand, due to the thermal phase transformation characteristics of VO2, it also endows the regenerated cellulose fiber unique intelligent temperature control function. Compared with the pristine regenerated fiber, the tensile stress of the regenerated fiber after adding VO2 nanoparticles (F-VO2) increased by 25.6 %, reaching 158.68 MPa. In addition, the F-VO2 fibric provides excellent intelligent temperature control, reducing temperatures by up to 6.7 °C.


Assuntos
Celulose , Temperatura , Celulose/química , Resistência à Tração , Fenômenos Mecânicos , Nanopartículas/química
9.
ACS Nano ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073895

RESUMO

Magnetically responsive soft smart materials have garnered significant academic attention due to their flexibility, remote controllability, and reconfigurability. However, traditional soft materials used in the construction of these magnetically responsive systems typically exhibit low density and poor thermal and electrical conductivities. These limitations result in suboptimal performance in applications such as medical radiography, high-performance electronic devices, and thermal management. To address these challenges, magnetically responsive gallium-based liquid metals have emerged as promising alternatives. In this review, we summarize the methodologies for achieving magnetically responsive liquid metals, including the integration of magnetic agents into the liquid metal matrix and the utilization of induced Lorentz forces. We then provide a comprehensive discussion of the key physicochemical properties of these materials and the factors influencing them. Additionally, we explore the advanced and potential applications of magnetically responsive liquid metals. Finally, we discuss the current challenges in this field and present an outlook on future developments and research directions.

10.
Polymers (Basel) ; 16(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39000727

RESUMO

Advanced thermal interface materials with high thermal conductivity are crucial for addressing the heat dissipation issue in high-power, highly integrated electronic devices. One great potential way in this field is to take advantage of cooling copper foil (Cu) materials based on graphene (G). However, the current manufacturing of these cooling copper foil materials is accompanied by high cost, process complexity, and environmental problems, which limit their development and application. In this work, a simple, low-cost, environmentally friendly graphene-copper foil composite film (rGO/G-Cu) with high thermal conductivity was successfully prepared using graphene oxide directly as a dispersant and binder of graphene coating. The microstructure characterization, thermal conductivity and thermal management performance tests were carried out on the composite films. The results demonstrate that compared to pure copper foil (342.47 W·m-1·K-1) and 10% PVA/G-Cu (367.98 W·m-1·K-1) with polyvinyl alcohol as a binder, 10% rGO/G-Cu exhibits better thermal conductivity (414.56 W·m-1·K-1). The introduction of two-dimensional graphene oxide effectively enhances the adhesion between the coating and the copper foil while greatly improving its thermal conductivity. Furthermore, experimental results indicate that rGO/G-Cu exhibits excellent heat transfer performance and flexibility. This work is highly relevant to the development of economical and environmentally friendly materials with high thermal conductivity to meet the increasing demand for heat dissipation.

11.
Small ; : e2403334, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990887

RESUMO

Textiles with thermal/moisture managing functions are of high interest. However, making the textile sensitive to the surrounding environment is still challenging. Herein, a multimodal smart fabric is developed by stitching together the Ag coated thermal-humidity sensitive thermoplastic polyurethane (Ag-THSPU) and the hybrid of polyvinylidene fluoride and polyurethane (PU-PVDF). The porous PU-PVDF layer is used for solar reflection, infrared emissivity, and water resistance. The Ag-THSPU layer is designed for regulating thermal reflection, sweat evaporation as well as convection. In cold and dry state, the Ag domains are densely packed covering the crystalline polyurethane matrix, featuring low water transmission (102.74 g m-2·24 h-1), high thermal reflection and 2.4 °C warmer than with cotton fabric. In the hot and humid state, the THSPU layer is swollen by sweat and expands in area, resulting in the formation of micro-hook faces where the Ag domains spread apart to promote sweat evaporation (2084.88 g/m-2·24 h-1), thermal radiation and convection, offering 2.5 °C cooler than with cotton fabric. The strategy reported here opens a new door for the development of adaptive textiles in demanding situations.

12.
Angew Chem Int Ed Engl ; : e202408857, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38993074

RESUMO

Owing to the significant latent heat generated at constant temperatures, phase change fibers (PCFs) have recently received much attention in the field of wearable thermal management. However, the phase change materials involved in the existing PCFs still experience a solid-liquid transition process, severely restricting their practicality as wearable thermal management materials. Herein, we, for the first time, developed intrinsically flexible PCFs (polyethylene glycol/4,4'-methylenebis(cyclohexyl isocyanate) fibers, PMFs) through polycondensation and wet-spinning process, exhibiting an inherent solid-solid phase transition property, adjustable phase transition behaviors, and outstanding knittability. The PMFs also present superior mechanical strength (28 MPa), washability (> 100 cycles), thermal cycling stability (> 2000 cycles), facile dyeability, and heat-induced recoverability, all of which are highly significant for practical wearable applications. Additionally, the PMFs can be easily recycled by directly dissolving them in solvents for reprocessing, revealing promising applications as sustainable materials for thermal management. Most importantly, the applicability of the PMFs was demonstrated by knitting them into permeable fabrics, which exhibit considerably improved thermal management performance compared with the cotton fabric. The PMFs offer great potential for intelligent thermal regulation in smart textiles and wearable electronics.

13.
ACS Appl Mater Interfaces ; 16(28): 36973-36982, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38966874

RESUMO

Personal thermal management technology, which adjusts the heat exchange between the human body and the environment, can passively heat or cool the body to maintain a comfortable core temperature, thereby enhancing comfort and reducing energy consumption. However, most existing personal thermal management materials have static properties, such as fixed solar reflectance and infrared emissivity, which do not support real-time dynamic temperature regulation. Moreover, sweat accumulation on the skin surface, while contributing to temperature regulation, can significantly reduce comfort. This study constructs a unidirectional moisture-permeable intelligent thermal management fabric system to achieve superior thermal and moisture comfort in complex environments. The fabric incorporates thermochromic microcapsules into PAN nanofibers by using electrospinning technology for intelligent thermal management. Subsequent hydrophobic treatment of the fiber film surface imparts the fabric with unidirectional wetting properties. The nanofibrous structure provides intrinsic elasticity and breathability. In heating mode, the fabric's average sunlight reflectance is 42.1%, which increases to 82.2% in cooling mode, resulting in a reflectance difference of approximately 40%. The hydrophobic treatment endows the fabric with excellent moisture absorption and perspiration properties, demonstrated by a unidirectional moisture transport index of 696.63 and a perspiration evaporation rate of 5.88 mg/min. When the fabric temperature matches the ambient temperature, the photothermal conversion power difference of the Janus metafabric in two modes reaches 248.37 W m-2. Additionally, Janus metafabrics show the potential for temperature-responsive design and repeated writing applications. The outstanding wearability and dynamic spectral properties of these metafabrics open new pathways for sustainable energy, smart textiles, and thermal-moisture comfort applications.

14.
Sci Bull (Beijing) ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39060214

RESUMO

Direct synthesis of graphene on nonmetallic substrates via chemical vapor deposition (CVD) has become a frontier research realm targeting transfer-free applications of CVD graphene. However, the stable mass production of graphene with a favorable growth rate and quality remains a grand challenge. Herein, graphene glass fiber fabric (GGFF) was successfully developed through the controllable growth of graphene on non-catalytic glass fiber fabric, employing a synergistic binary-precursor CVD strategy to alleviate the dilemma between growth rate and quality. The binary precursors consisted of acetylene and acetone, where acetylene with high decomposition efficiency fed rapid graphene growth while oxygen-containing acetone was adopted for improving the layer uniformity and quality. Notably, the bifurcating introducing-confluent premixing (BI-CP) system was self-built for the controllable introduction of gas and liquid precursors, enabling the stable production of GGFF. GGFF features solar absorption and infrared emission properties, based on which the self-adaptive dual-mode thermal management film was developed. This film can automatically switch between heating and cooling modes by spontaneously perceiving the temperature, achieving excellent thermal management performances with heating and cooling power of ∼501.2 and ∼108.6 W m-2, respectively. These findings unlock a new strategy for the large-scale batch production of graphene materials and inspire advanced possibilities for further applications.

15.
Adv Colloid Interface Sci ; 332: 103252, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39053159

RESUMO

Fabrics are soft against the skin, flexible, easily accessible and able to wick away perspiration, to some extent for local private thermal management. In this review, we classify smart fabrics as passive thermal management fabrics and active thermal management fabrics based on the availability of outside energy consumption in the manipulation of heat generation and dissipation from the human body. The mechanism and research status of various thermal management fabrics are introduced in detail, and the article also analyses the advantages and disadvantages of various smart thermal management fabrics, achieving a better and more comprehensive comprehension of the current state of research on smart thermal management fabrics, which is quite an important reference guide for our future research. In addition, with the progress of science and technology, the social demand for fabrics has shifted from keeping warm to improving health and quality of life. E-textiles have potential value in areas such as remote health monitoring and life signal detection. New e-textiles are designed to mimic the skin, sense biological data and transmit information. At the same time, the ultra-moisturizing properties of the fabric's thermal management allow for applications beyond just the human body to energy. E-textiles hold great promise for energy harvesting and storage. The article also introduces the application of smart fabrics in life forms and energy harvesting. By combining electronic technology with textiles, e-textiles can be manufactured to promote human well-being and quality of life. Although smart textiles are equipped with more intelligent features, wearing comfort must be the first thing to be ensured in the multi-directional application of textiles. Eventually, we discuss the dares and prospects of smart thermal management fabric research.

16.
Adv Mater ; : e2403088, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39003616

RESUMO

3D printing polymer or metal can achieve complicated structures while lacking multifunctional performance. Combined printing of polymer and metal is desirable and challenging due to their insurmountable mismatch in melting-point temperatures. Here, a novel volume-metallization 3D-printed polymer composite (VMPC) with bicontinuous phases for enabling coupled structure and function, which are prepared by infilling low-melting-point metal (LM) to controllable porous configuration is reported. Based on vacuum-assisted low-pressure conditions, LM is guided by atmospheric pressure action and overcomes surface tension to spread along the printed polymer pore channel, enabling the complete filling saturation of porous structures for enhanced tensile strength (up to 35.41 MPa), thermal (up to 25.29 Wm-1K-1) and electrical (>106 S m-1) conductivities. The designed 3D-printed microstructure-oriented can achieve synergistic anisotropy in mechanics (1.67), thermal (27.2), and electrical (>1012) conductivities. VMPC multifunction is demonstrated, including customized 3D electronics with elevated strength, electromagnetic wave-guided transport and signal amplification, heat dissipation device for chip temperature control, and storage components for thermoelectric generator energy conversion with light-heat-electricity.

17.
Nanomaterials (Basel) ; 14(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38998682

RESUMO

Inorganic hydrated salt phase change materials (PCMs) hold promise for improving the energy conversion efficiency of thermal systems and facilitating the exploration of renewable thermal energy. Hydrated salts, however, often suffer from low thermal conductivity, supercooling, phase separation, leakage and poor solar absorptance. In recent years, compounding hydrated salts with functional carbon materials has emerged as a promising way to overcome these shortcomings and meet the application demands. This work reviews the recent progress in preparing carbon-enhanced hydrated salt phase change composites for thermal management applications. The intrinsic properties of hydrated salts and their shortcomings are firstly introduced. Then, the advantages of various carbon materials and general approaches for preparing carbon-enhanced hydrated salt PCM composites are briefly described. By introducing representative PCM composites loaded with carbon nanotubes, carbon fibers, graphene oxide, graphene, expanded graphite, biochar, activated carbon and multifunctional carbon, the ways that one-dimensional, two-dimensional, three-dimensional and hybrid carbon materials enhance the comprehensive thermophysical properties of hydrated salts and affect their phase change behavior is systematically discussed. Through analyzing the enhancement effects of different carbon fillers, the rationale for achieving the optimal performance of the PCM composites, including both thermal conductivity and phase change stability, is summarized. Regarding the applications of carbon-enhanced hydrate salt composites, their use for the thermal management of electronic devices, buildings and the human body is highlighted. Finally, research challenges for further improving the overall thermophysical properties of carbon-enhanced hydrated salt PCMs and pushing towards practical applications and potential research directions are discussed. It is expected that this timely review could provide valuable guidelines for the further development of carbon-enhanced hydrated salt composites and stimulate concerted research efforts from diverse communities to promote the widespread applications of high-performance PCM composites.

18.
Adv Sci (Weinh) ; : e2405077, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38959393

RESUMO

Energy and environmental issues have increasingly garnered significant attention for sustainable development. Flexible and shape-stable phase change materials display great potential in regulation of environmental temperature for energy saving and human comfort. Here, inspired by the water absorption behavior of salt-tolerant animals and plants in salinity environment and the Hofmeister theory, highly stable phase change salogels (PCSGs) are fabricated through in situ polymerization of hydrophilic monomers in molten salt hydrates, which can serve multiple functions including thermal management patches, smart windows, and ice blocking coatings. The gelation principles of the polymer in high ion concentration solution are explored through the density functional theory simulation and verified the feasibility of four types of salt hydrates. The high concentration chaotropic ions strongly interacted with polymer chains and promoted the gelation at low polymer concentrations which derive highly-stable and ultra-moisturizing PCSGs with high latent heat (> 200 J g-1). The synergistic adhesion and transparency switching abilities accompanied with phase transition enable their smart thermal management. The study resolves the melting leakage and thermal cycling stability of salt hydrates, and open an avenue to fabricate flexible PCM of low cost, high latent heat, and long-term durability for energy-saving, ice-blocking, and thermal management.

19.
Adv Mater ; 36(33): e2403223, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38896500

RESUMO

Incorporating passive radiative cooling and heating into personal thermal management has attracted tremendous attention. However, most current thermal management materials are usually monofunctional with a narrow temperature regulation range, and lack breathability, softness, and stretchability, resulting in a poor wearer experience and limited application scenarios. Herein, a breathable dual-mode leather-like nanotextile (LNT) with asymmetrical wrinkle photonic microstructures and Janus wettability for highly efficient personal thermal management is developed via a one-step electrospinning technique. The LNT is synthesized by self-bonding a hydrophilic cooling layer with welding fiber networks onto a hydrophobic photothermal layer, constructing bilayer wrinkle structures that offer remarkable optical properties, a wetting gradient, and unique textures. The resultant LNT exhibits efficient cooling capacity (22.0 °C) and heating capacity (22.1 °C) under sunlight, expanding the thermal management zone (28.3 °C wider than typical textiles). Additionally, it possesses favorable breathability, softness, stretchability, and sweat-wicking capability. Actual wearing tests demonstrate that the LNT can provide a comfortable microenvironment for the human body (1.6-8.0 °C cooler and 1.0-7.1 °C warmer than typical textiles) in changing weather conditions. Such a wearable dual-mode LNT presents great potential for personal thermal comfort and opens up new possibilities for all-weather smart clothing.

20.
Sci Rep ; 14(1): 13078, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38844570

RESUMO

The typical commercial size of a Gas Diffusion Layer (GDL) for Proton Exchange Membrane Fuel Cell (PEMFC) application is around 180 µm up to 290 µm. GDL facilitates the diffusion of reactants to the catalyst layers and liquid removal from the membrane to the flow field. In this regard, GDL should be a porous region with conductive materials as thin as possible to reduce the size and the costs. Lowering the thickness of the GDL also results in better performance of the stack since it increases the speed of reactants to reach the catalysts. However, the main obstacle is the formation of ultra-thin porous GDL, which can be also named as standalone microporous layer (MPL). The novelty of this study is the manufacturing process and production of ultra-thin porous GDL with carbon and Polytetrafluoroethylene (PTFE) as the main materials. The produced GDL has the thickness of 28.9 µm, which has been measured using microscope imaging. This novel GDL can be used as the conductive diffusive region inside the PEM fuel cells, Alkaline fuel cells, and the cathode of PEM and Alkaline electrolyzers. Additionally, the novel invention can be considered as a 2D membrane for carbon capture purposes after being functionalized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA