Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 531
Filtrar
1.
Health Care Sci ; 3(4): 215-231, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39220427

RESUMO

The nanoparticles (NPs) of metals and metal oxides constitute significant components of technology in terms of monometallic NPs (MNPs). Over the last decade, the most fascinating and in-depth uses of NPs have been found in the biomedical field, which has demonstrated the therapeutic potential of these particles. Significant strides have been made in the application of nanotechnology across various industries, including biomedical sciences. In biomedicine, two of the most important applications of NPs are in the diagnosis and treatment of disease. Given their ability to deliver specific drugs, these next-generation NPs provide safe and effective pharmacotherapies for a wide range of disorders. Selenium nanoparticles (SeNPs) and titanium dioxide (TiO2) NPs offer potential treatments for various applications, including hair care and cancer treatment. SeNPs help with abiotic stress, plant disease, and growth, while TiO2 NPs enhance bio-imaging and drug delivery. This comprehensive review focuses on MNPs like Se (metal-based) and TiO2 (metal-oxide based). It covers their synthesis methods, nanoscale physicochemical properties, and the definition of specific industrial applications in various fields of applied nanotechnology, including biomedicine.

2.
Toxicol In Vitro ; 101: 105918, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39142447

RESUMO

This study aims to adapt an experimental model based on Franz diffusion cells and porcine skin explants to characterize the diffusion of TiO2 NPs and to compare the efficacy of different cleansing products, soapy water and a calixarene cleansing nanoemulsion compared with pure water, as a function of the time of treatment. While TiO2 NPs tend to form agglomerates in aqueous solutions, a diffusion through healthy skin was confirmed as particles were detected in the receptor fluid of Franz cells using sp-ICP-MS. In the absence of treatment, SIMS images showed the accumulation of TiO2 agglomerates in the stratum corneum, the epidermis, the dermis, and around hair follicles. Decontamination assays showed that the two products tested were comparably effective in limiting Ti penetration, whatever the treatment time. However, only calixarene nanoemulsion was statistically more efficient than water in retaining TiO2 in the donor compartment (>89%), limiting retention inside the skin (<1%) and preventing NP diffusion through the skin (<0.13%) when treatments were initiated 30 min after skin exposure. When decontamination was delayed from 30 min to 6 h, the amount of Ti diffusing and retained in the skin increased. This study demonstrates that TiO2 NPs may diffuse through healthy skin after exposure. Thus, effective decontamination using cleansing products should be carried out as soon as possible.

3.
Nanotoxicology ; 18(5): 437-463, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39101876

RESUMO

Nano-sized titanium dioxide particles (TiO2 NPs) are a high-production volume nanomaterial widely used in the paints, cosmetics, food and photovoltaics industry. However, the potential carcinogenic effects of TiO2 NPs in the lung are still unclear despite the vast number of in vitro and in vivo studies investigating TiO2 NPs. Here, we systematically reviewed the existing in vitro and in vivo mechanistic evidence of TiO2 NP lung carcinogenicity using the ten key characteristics of carcinogens for identifying and classifying carcinogens. A total of 346 studies qualified for the quality and reliability assessment, of which 206 were considered good quality. Using a weight-of-evidence approach, these studies provided mainly moderate to high confidence for the biological endpoints regarding genotoxicity, oxidative stress and chronic inflammation. A limited number of studies investigated other endpoints important to carcinogenesis, relating to proliferation and transformation, epigenetic alterations and receptor-mediated effects. In summary, TiO2 NPs might possess the ability to induce chronic inflammation and oxidative stress, but it was challenging to compare the findings in the studies due to the wide variety of TiO2 NPs differing in their physicochemical characteristics, formulation, exposure scenarios/test systems, and experimental protocols. Given the limited number of high-quality and high-reliability studies identified within this review, there is a lack of good enough mechanistic evidence for TiO2 NP lung carcinogenicity. Future toxicology/carcinogenicity research must consider including positive controls, endotoxin testing (where necessary), statistical power analysis, and relevant biological endpoints, to improve the study quality and provide reliable data for evaluating TiO2 NP-induced lung carcinogenicity.


Assuntos
Neoplasias Pulmonares , Titânio , Titânio/toxicidade , Titânio/química , Animais , Humanos , Neoplasias Pulmonares/induzido quimicamente , Estresse Oxidativo/efeitos dos fármacos , Carcinógenos/toxicidade , Nanopartículas/toxicidade , Nanopartículas/química , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Pulmão/efeitos dos fármacos
4.
Cell Biol Toxicol ; 40(1): 67, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110362

RESUMO

BACKGROUND: Titanium dioxide nanoparticles (TiO2NPs) are widely used in medical application. However, the relevant health risk has not been completely assessed, the potential of inducing arterial thrombosis (AT) in particular. METHODS: Alterations in platelet function and susceptibility to arterial thrombosis induced by TiO2NPs were examined using peripheral blood samples from healthy adult males and an in vivo mouse model, respectively. RESULTS: Here, using human platelets (hPLTs) freshly isolated from health volunteers, we demonstrated TiO2NP treatment triggered the procoagulant activity of hPLTs through phosphatidylserine exposure and microvesicles generation. In addition, TiO2NP treatment increased the levels of glycoprotein IIb/IIIa and P-selectin leading to aggregation and activation of hPLTs, which were exacerbated by providing physiology-mimicking conditions, including introduction of thrombin, collagen, and high shear stress. Interestingly, intracellular calcium levels in hPLTs were increased upon TiO2NP treatment, which were crucial in TiO2NP-induced hPLT procoagulant activity, activation and aggregation. Moreover, using mice in vivo models, we further confirmed that TiO2NP treatment a reduction in mouse platelet (mPLT) counts, disrupted blood flow, and exacerbated carotid arterial thrombosis with enhanced deposition of mPLT. CONCLUSIONS: Together, our study provides evidence for an ignored health risk caused by TiO2NPs, specifically TiO2NP treatment augments procoagulant activity, activation and aggregation of PLTs via calcium-dependent mechanism and thus increases the risk of AT.


Assuntos
Plaquetas , Ativação Plaquetária , Agregação Plaquetária , Trombose , Titânio , Titânio/toxicidade , Animais , Humanos , Agregação Plaquetária/efeitos dos fármacos , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Masculino , Trombose/induzido quimicamente , Camundongos , Ativação Plaquetária/efeitos dos fármacos , Adulto , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Coagulação Sanguínea/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Selectina-P/metabolismo , Cálcio/metabolismo , Cálcio/sangue , Nanopartículas/toxicidade , Nanopartículas Metálicas/toxicidade
5.
Polymers (Basel) ; 16(16)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39204587

RESUMO

Mercury (Hg) is a toxic element which impacts on biological systems and ecosystems. Because the toxicity of Hg species is highly dependent on their concentration levels and chemical forms, the sensitive identification of the chemical forms of Hg-i.e., Hg speciation-is of major significance in providing meaningful information about the sources of Hg exposure. In this study, a microfluidic-based device made of high-clarity poly(methyl methacrylate) (PMMA) was fabricated. Then, titanium dioxide nanoparticles (nano-TiO2s) were attached to the treated channel's interior with the aid of poly(diallyldimethylammonium chloride) (PDADMAC). After coupling the nano-TiO2-coated microfluidic-based photocatalyst-assisted reduction device (the nano-TiO2-coated microfluidic-based PCARD) with high-performance liquid chromatography (HPLC) and inductively coupled plasma mass spectrometry (ICP-MS), a selective and sensitive, hyphenated system for Hg speciation was established. Validation procedures demonstrated that the method could be satisfactorily applied to the determination of mercury ions (Hg2+) and methylmercury ions (CH3Hg+) in both human urine and water samples. Remarkably, the zeta potential measured clearly indicated that the PDADMAC-capped nano-TiO2s with a predominance of positive charges indeed provided a steady force for firm attachment to the negatively charged device channel. The cause of the durability of the nano-TiO2-coated microfluidic-based PCARD was clarified thus.

6.
J Nanobiotechnology ; 22(1): 522, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39215337

RESUMO

Titanium alloys represent the prevailing material employed in orthopedic implants, which are present in millions of patients worldwide. The prolonged presence of these implants in the human body has raised concerns about possible health effects. This study presents a comprehensive analysis of titanium implants and surrounding tissue samples obtained from patients who underwent revision surgery for therapeutic reasons. The surface of the implants exhibited nano-scale corrosion defects, and nanoparticles were deposited in adjacent samples. In addition, muscle in close proximity to the implant showed clear evidence of fibrotic proliferation, with titanium content in the muscle tissue increasing the closer it was to the implant. Transcriptomics analysis revealed SNAI2 upregulation and activation of PI3K/AKT signaling. In vivo rodent and zebrafish models validated that titanium implant or nanoparticles exposure provoked collagen deposition and disorganized muscle structure. Snai2 knockdown significantly reduced implant-associated fibrosis in both rodent and zebrafish models. Cellular experiments demonstrated that titanium dioxide nanoparticles (TiO2 NPs) induced fibrotic gene expression at sub-cytotoxic doses, whereas Snai2 knockdown significantly reduced TiO2 NPs-induced fibrotic gene expression. The in vivo and in vitro experiments collectively demonstrated that Snai2 plays a pivotal role in mediating titanium-induced fibrosis. Overall, these findings indicate a significant release of titanium nanoparticles from the implants into the surrounding tissues, resulting in muscular fibrosis, partially through Snai2-dependent signaling.


Assuntos
Fibrose , Fatores de Transcrição da Família Snail , Titânio , Peixe-Zebra , Titânio/química , Animais , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição da Família Snail/genética , Humanos , Próteses e Implantes , Masculino , Transdução de Sinais/efeitos dos fármacos , Nanopartículas Metálicas/química , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Ratos , Camundongos
7.
ACS Appl Bio Mater ; 7(7): 4580-4592, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38958462

RESUMO

Nanomaterial-mediated antibacterial photodynamic therapy (aPDT) emerges as a promising treatment against antibiotic-resistant bacterial biofilms. Specifically, titanium dioxide nanoparticles (TiO2 NPs) are being investigated as photosensitizers in aPDT to address biofilm related diseases. To enhance their photocatalytic performance in the visible spectral range for biomedical applications, various strategies have been adopted, including reduction of TiO2 NPs. However, despite improvements in visible-light photoactivity, reduced TiO2 NPs have yet to reach their expected performance primarily due to the instability of oxygen vacancies and their tendency to reoxidize easily. To address this, we present a two-step approach to fabricate highly visible-light active and stable TiO2 NP photocatalysts, involving nitrogen doping followed by a magnesium-assisted reductive annealing process. X-ray photoelectron spectroscopy analysis of the synthesized reduced nitrogen-doped TiO2 NPs (H:Mg-N-TiO2 NPs) reveals that the presence of nitrogen stabilizes oxygen vacancies and reduced Ti species, leading to increased production of reactive oxygen species under visible-light excitation. The improved aPDT efficiency translates to a 3-fold enhancement in the antibiofilm activity of nitrogen-doped compared to undoped reduced TiO2 NPs against both Gram-positive (Streptococcus mutans) and Gram-negative (Porphyromonas gingivalis, Fusobacterium nucleatum) oral pathogens. These results underscore the potential of H:Mg-N-TiO2 NPs in aPDT for combating bacterial biofilms effectively.


Assuntos
Antibacterianos , Biofilmes , Teste de Materiais , Nitrogênio , Tamanho da Partícula , Titânio , Titânio/química , Titânio/farmacologia , Biofilmes/efeitos dos fármacos , Nitrogênio/química , Nitrogênio/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Catálise , Nanopartículas/química , Testes de Sensibilidade Microbiana , Luz , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Processos Fotoquímicos
8.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892068

RESUMO

Food-grade titanium dioxide (E171) and zinc oxide nanoparticles (ZnO NPs) are common food additives for human consumption. We examined multi-organ toxicity of both compounds on Wistar rats orally exposed for 90 days. Rats were divided into three groups: (1) control (saline solution), (2) E171-exposed, and (3) ZnO NPs-exposed. Histological examination was performed with hematoxylin-eosin (HE) staining and transmission electron microscopy (TEM). Ceramide (Cer), 3-nitrotyrosine (NT), and lysosome-associated membrane protein 2 (LAMP-2) were detected by immunofluorescence. Relevant histological changes were observed: disorganization, inflammatory cell infiltration, and mitochondrial damage. Increased levels of Cer, NT, and LAMP-2 were observed in the liver, kidney, and brain of E171- and ZnO NPs-exposed rats, and in rat hearts exposed to ZnO NPs. E171 up-regulated Cer and NT levels in the aorta and heart, while ZnO NPs up-regulated them in the aorta. Both NPs increased LAMP-2 expression in the intestine. In conclusion, chronic oral exposure to metallic NPs causes multi-organ injury, reflecting how these food additives pose a threat to human health. Our results suggest how complex interplay between ROS, Cer, LAMP-2, and NT may modulate organ function during NP damage.


Assuntos
Ceramidas , Nanopartículas Metálicas , Ratos Wistar , Titânio , Óxido de Zinco , Animais , Óxido de Zinco/toxicidade , Titânio/toxicidade , Titânio/efeitos adversos , Ratos , Ceramidas/metabolismo , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Masculino , Administração Oral , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia
9.
J Toxicol Environ Health A ; 87(17): 687-700, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38836411

RESUMO

The increasing use of UV filters, such as benzophenone-3 (BP-3) and titanium dioxide nanoparticles (TiO2 NPs), has raised concerns regarding their ecotoxicological effects on the aquatic environment. The aim of the present study was to examine the embryo-larval toxicity attributed to BP-3 or TiO2 NPs, either alone or in a mixture, utilizing zebrafish (Danio rerio) as a model after exposure to environmentally relevant concentrations of these compounds. Zebrafish embryos were exposed to BP-3 (10, 100, or 1000 ng/L) or TiO2 NPs (1000 ng/L) alone or in a mixture (BP-3 10, 100, or 1000 ng/L plus 1000 ng/L of TiO2 NPs) under static conditions for 144 hr. After exposure, BP-3 levels were determined by high-performance liquid chromatography (HPLC). BP-3 levels increased in the presence of TiO2 NPs, indicating that the BP-3 degradation decreased in the presence of the NPs. In addition, in the presence of zebrafish, BP-3 levels in water decreased, indicating that zebrafish embryos and larvae might absorb BP-3. Data demonstrated that, in general, environmentally relevant concentrations of BP-3 and TiO2 NPs, either alone or in a mixture, did not significantly induce changes in heart and spontaneous contractions frequencies, levels of reactive oxygen species (ROS), morphological and morphometric parameters as well as mortality rates during 144 hr exposure. However, the groups exposed to TiO2 NPs alone and in a mixture with BP-3 at 10 ng/L exhibited an earlier significant hatching rate than the controls. Altogether, the data indicates that a potential ecotoxicological impact on the aquatic environment exists.


Assuntos
Benzofenonas , Embrião não Mamífero , Protetores Solares , Titânio , Poluentes Químicos da Água , Peixe-Zebra , Animais , Titânio/toxicidade , Titânio/química , Benzofenonas/toxicidade , Protetores Solares/toxicidade , Protetores Solares/química , Embrião não Mamífero/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Nanopartículas/toxicidade , Nanopartículas Metálicas/toxicidade , Ecotoxicologia , Larva/efeitos dos fármacos
10.
J Hazard Mater ; 474: 134850, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38850947

RESUMO

Titanium dioxide nanoparticles (nTiO2) have been considered a possible carcinogen to humans, but most existing studies have overlooked the role of human enzymes in assessing the genotoxicity of nTiO2. Here, a toxicogenomics-based in vitro genotoxicity assay using a GFP-fused yeast reporter library was employed to elucidate the genotoxic potential and mechanisms of nTiO2. Moreover, two new GFP-fused yeast reporter libraries containing either human CYP1A1 or CYP1A2 genes were constructed by transformation to investigate the potential modulation of nTiO2 genotoxicity in the presence of human CYP enzymes. This study found a lack of appreciable nTiO2 genotoxicity as indicated by the yeast reporter library in the absence of CYP expression but a significantly elevated indication of genotoxicity in either CYP1A1- or CYP1A2-expressing yeast. The intracellular reactive oxygen species (ROS) measurement indicated significantly higher ROS in yeast expressing either enzyme. The detected mitochondrial DNA damage suggested mitochondria as one of the target sites for oxidative damage by nTiO2 in the presence of either one of the CYP enzymes. The results thus indicated that the genotoxicity of nTiO2 was enhanced by human CYP1A1 or CYP1A2 enzyme and was associated with elevated oxidative stress, which suggested that the similar mechanisms could occur in human cells.


Assuntos
Citocromo P-450 CYP1A1 , Dano ao DNA , Testes de Mutagenicidade , Espécies Reativas de Oxigênio , Saccharomyces cerevisiae , Titânio , Humanos , Titânio/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Mutagênicos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Genes Reporter , Nanopartículas/toxicidade , Nanopartículas Metálicas/toxicidade , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo
11.
J Hazard Mater ; 474: 134851, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38852253

RESUMO

Nanoparticle (NP) pollution has negative impacts and is a major global environmental problem. However, the molecular response of alfalfa (Medicago sativa L.) to titanium dioxide nanoparticles (TiO2 NPs) is limited. Herein, the dual effects of TiO2 NPs (0-1000 mg L-1) on carbon (C) and nitrogen (N) metabolisms in alfalfa were investigated. The results showed that 500 mg L-1 TiO2 NPs (Ti-500) had the highest phytotoxicity in the C/N metabolizing enzymes; and it significantly increased total soluble sugar, starch, sucrose, and sucrose-phosphate synthase. Furthermore, obvious photosynthesis responses were found in alfalfa exposed to Ti-500. By contrast, 100 mg L-1 TiO2 NPs (Ti-100) enhanced N metabolizing enzymes. RNA-seq analyses showed 4265 and 2121 differentially expressed genes (DEGs) in Ti-100 and Ti-500, respectively. A total of 904 and 844 differentially expressed proteins (DEPs) were identified in Ti-100 and Ti-500, respectively. Through the physiological, transcriptional, and proteomic analyses, the DEGs and DEPs related to C/N metabolism, photosynthesis, chlorophyll synthesis, starch and sucrose metabolism, and C fixation in photosynthetic organisms were observed. Overall, TiO2 NPs at low doses improve photosynthesis and C/N regulation, but high doses can cause toxicity. It is valuable for the safe application of NPs in agriculture.


Assuntos
Carbono , Medicago sativa , Nitrogênio , Fotossíntese , Titânio , Transcriptoma , Medicago sativa/efeitos dos fármacos , Medicago sativa/genética , Medicago sativa/metabolismo , Titânio/toxicidade , Nitrogênio/metabolismo , Carbono/metabolismo , Transcriptoma/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Proteômica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nanopartículas Metálicas/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Nanopartículas/toxicidade
12.
Chemosphere ; 361: 142549, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851501

RESUMO

Titanium dioxide nanoparticles (TiO2-NP) present in wastewater effluent are discharged into freshwater and saltwater (i.e., marine) systems. TiO2-NP can be solar-driven photoactivated by ultraviolet (UV)-light producing reactive oxygen species including hydroxyl radicals (·OH). ·OH are non-selective and react with a broad range of species in water. In other studies, photoactivation of TiO2-NP has been correlated with oxidative stress and ecotoxicological impacts on plant and animal biota. This study examined the photoactivation of TiO2-NP in freshwater and saltwater systems, and contrasted the oxidation potential in both systems using methylene blue (MB) as a reaction probe. Maximum MB loss (51.9%, n = 4; 95% confidence interval 49.4-54.5) was measured in salt-free, deionized water where ·OH scavenging was negligible; minimum MB loss (1%) was measured in saltwater due to significant ·OH scavenging, indicating the inverse correlation between MB loss and radical scavenging. A kinetic analysis of scavenging by seawater constituents indicated Cl- had the greatest impact due to high concentration and high reaction rate constant. Significant loss of MB occurred in the presence of Br- relative to other less aggressive scavengers present in seawater (i.e., HCO3-, HSO4-). This result is consistent with the formation of Bromate, a strong oxidant that subsequently reacts with MB. In freshwater samples collected from different water bodies in Oklahoma (n = 12), the average MB loss was 13.4%. Greater MB loss in freshwater systems relative to marine systems was due to lower ·OH scavenging by various water quality parameters. Overall, TiO2-NP photoactivation in freshwater systems has the potential to cause greater oxidative stress and ecotoxicological impacts than in marine systems where ·OH scavenging is a dominant reaction.


Assuntos
Sequestradores de Radicais Livres , Água Doce , Oxirredução , Água do Mar , Titânio , Poluentes Químicos da Água , Titânio/química , Titânio/toxicidade , Água Doce/química , Água do Mar/química , Sequestradores de Radicais Livres/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Radical Hidroxila/química , Nanopartículas/química , Nanopartículas/toxicidade , Raios Ultravioleta , Águas Residuárias/química , Azul de Metileno/química
13.
Future Sci OA ; 10(1): FSO979, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827789

RESUMO

Aim: To clarify the alternation of gene expression responsible for resistance of Adriamycin (ADR) in rats, in addition to investigation of a novel promising drug-delivery system using titanium dioxide nanoparticles loaded with ADR (TiO2-ADR). Method: Breast cancer was induced in female Sprague-Dawley rats, followed by treatment with ADR (5 mg/kg) or TiO2-ADR (2 mg/kg) for 1 month. Results: Significant improvements in both zinc and calcium levels were observed with TiO2-ADR treatment. Gene expression of ATP-binding cassette transporter membrane proteins (ABCA1 & ABCG1), P53 and Jak-2 showed a significant reduction and overexpression of the C-myc in breast cancer-induced rats. TiO2-ADR demonstrated a notable ability to upregulate these genes. Conclusion: TiO2-ADR could be a promising drug-delivery system for breast cancer therapy.


The current study aimed to investigate a novel and promising drug-delivery system to overcome the resistance problem by loading Adriamycin (ADR) into titanium dioxide nanoparticles (TiO2). The study also aimed to clarify the changes in gene expression responsible for the development of ADR resistance, in a rat model. First, animals were divided into four groups of ten each. Breast cancer was induced in female Sprague-Dawley rats by administering two doses of DMBA (50 and 25 mg/kg), followed by treatment with ADR at a dose of 5 mg/kg for 1 month, or TiO2-ADR at a dose of 2 mg/kg for 1 month. Biochemical and molecular analyses were conducted. Zinc and calcium levels were found to significantly decrease after cancer induction. Treatment with ADR alone or in combination with TiO2 showed a significant improvement in both mineral levels, with the TiO2-ADR group showing superior results. Gene expression of ATP-binding cassette transporter membrane proteins (ABCA1 & ABCG1), P53 and Jak-2 showed a significant decrease after DMBA-induced breast cancer. However, both the ADR- and TiO2-ADR-treated groups showed a notable increase in gene expression, with the TiO2-ADR group showing the highest increase. On the other hand, there was a significant overexpression of the C-myc gene after DMBA-induced breast cancer. However, both ADR and TiO2-ADR treatments resulted in a notable decrease in C-myc gene expression. Based on the data, TiO2-ADR could be a promising drug-delivery system for breast cancer therapy.

14.
Front Plant Sci ; 15: 1391751, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863538

RESUMO

Polystyrene nanoplastics and titanium dioxide nanoparticles are widely spread in all environments, often coexisting within identical frameworks. Both these contaminants can induce negative effects on cell and plant physiology, giving concerns on their possible interaction which could increase each other's harmful effects on plants. Despite the urgency of this issue, there is very little literature addressing it. To evaluate the potential risk of this co-contamination, lentil seeds were treated for five days with polystyrene nanoplastics and titanium dioxide nanoparticles (anatase crystalline form), alone and in co-presence. Cytological analyses, and histochemical and biochemical evaluation of oxidative stress were carried out on isolated shoots and roots. TEM analysis seemed to indicate the absence of physical/chemical interactions between the two nanomaterials. Seedlings under cotreatment showed the greatest cytotoxic and genotoxic effects and high levels of oxidative stress markers associated with growth inhibition. Even if biochemical data did not evidence significant differences between materials treated with polystyrene nanoplastics alone or in co-presence with titanium dioxide nanoparticles, histochemical analysis highlighted a different pattern of oxidative markers, suggesting a synergistic effect by the two nanomaterials. In accordance, the fluorescence signal linked to nanoplastics in root and shoot was higher under cotreatment, perhaps due to the well-known ability of titanium dioxide nanoparticles to induce root tissue damage, in this way facilitating the uptake and translocation of polystyrene nanoplastics into the plant body. In the antioxidant machinery, peroxidase activity showed a significant increase in treated roots, in particular under cotreatment, probably more associated with stress-induced lignin synthesis than with hydrogen peroxide detoxification. Present results clearly indicate the worsening by metal nanoparticles of the negative effects of nanoplastics on plants, underlining the importance of research considering the impact of cotreatments with different nanomaterials, which may better reflect the complex environmental conditions.

15.
Environ Toxicol Pharmacol ; 108: 104466, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759847

RESUMO

Titanium dioxide nanoparticles (TiO2 NPs) are widely used in consumer products, raising concerns about their impact on human health. This study investigates the effects of TiO2 NPs on male germ cells while focusing on cell proliferation inhibition and underlying mechanisms. This was done by utilizing mouse GC-1 spermatogonia cells, an immortalized spermatogonia cell line. TiO2 NPs induced a concentration-dependent proliferation inhibition with increased reactive oxygen species (ROS) generation. Notably, TiO2 NPs induced autophagy and decreased ERK phosphorylation. Treatment with the ROS inhibitor N-Acetyl-l-cysteine (NAC) alleviated TiO2 NPs-induced autophagy, restored ERK phosphorylation, and promoted cell proliferation. These findings call attention to the reproductive risks posed by TiO2 NPs while also highlighting NAC as a possible protective agent against reproductive toxins.


Assuntos
Acetilcisteína , Autofagia , Proliferação de Células , Nanopartículas Metálicas , Espécies Reativas de Oxigênio , Titânio , Titânio/toxicidade , Masculino , Autofagia/efeitos dos fármacos , Animais , Acetilcisteína/farmacologia , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Espermatogônias/efeitos dos fármacos , Nanopartículas/toxicidade
16.
Toxics ; 12(5)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38787146

RESUMO

The escalating utilization of titanium dioxide nanoparticles (TiO2 NPs) in everyday products has sparked concerns regarding their potential hazards to pregnant females and their offspring. To address these concerns and shed light on their undetermined adverse effects and mechanisms, we established a pregnant rat model to investigate the impacts of TiO2 NPs on both maternal and offspring health and to explore the underlying mechanisms of those impacts. Pregnant rats were orally administered TiO2 NPs at a dose of 5 mg/kg body weight per day from GD5 to GD18 during pregnancy. Maternal body weight, organ weight, and birth outcomes were monitored and recorded. Maternal pathological changes were examined by HE staining and TEM observation. Maternal blood pressure was assessed using a non-invasive blood analyzer, and the urinary protein level was determined using spot urine samples. Our findings revealed that TiO2 NPs triggered various pathological alterations in maternal liver, kidney, and spleen, and induced maternal preeclampsia-like syndrome, as well as leading to growth restriction in the offspring. Further examination unveiled that TiO2 NPs hindered trophoblastic cell invasion into the endometrium via the promotion of autophagy. Consistent hypertension and proteinuria resulted from the destroyed the kidney GBM. In total, an exposure to TiO2 NPs during pregnancy might increase the risk of human preeclampsia through increased maternal arterial pressure and urinary albumin levels, as well as causing fetal growth restriction in the offspring.

17.
Sci Rep ; 14(1): 7715, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565575

RESUMO

Titanium dioxide nanoparticles (TiO2-NPs) have found wide applications in medical and industrial fields. However, the toxic effect of various tissues is still under study. In this study, we evaluated the toxic effect of TiO2-NP on stomach, liver, and kidney tissues and the amelioration effect of clove oil nanoemulsion (CLV-NE) against DNA damage, oxidative stress, pathological changes, and the apoptotic effect of TiO2-NPs. Four groups of male mice were subjected to oral treatment for five consecutive days including, the control group, the group treated with TiO2-NPs (50 mg/kg), the group treated with (CLV-NE) (5% of the MTD), and the group treated with TiO2-NPs plus CLV-NE. The results revealed that the treatment with TiO2-NPs significantly caused DNA damage in the liver, stomach, and kidney tissues due to increased ROS as indicated by the reduction of the antioxidant activity of SOD and Gpx and increased MDA level. Further, abnormal histological signs and apoptotic effect confirmed by the significant elevation of p53 expression were reported after TiO2-NPs administration. The present data reported a significant improvement in the previous parameters after treatment with CLV-NE. These results showed the collaborative effect of the oils and the extra role of nanoemulsion in enhancing antioxidant effectiveness that enhances its disperse-ability and further promotes its controlled release. One could conclude that CLV-NE is safe and can be used as a powerful antioxidative agent to assess the toxic effects of the acute use of TiO2-NPs.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Camundongos , Masculino , Animais , Óleo de Cravo/toxicidade , Nanopartículas/toxicidade , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo , Titânio/toxicidade , Dano ao DNA
18.
Environ Sci Pollut Res Int ; 31(21): 31467-31478, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38635093

RESUMO

Titanium dioxide nanoparticle (TiO2-NP) exposure has raised significant concern due to their potential toxicity and adverse ecological impacts. Despite their ubiquitous presence in various environmental compartments, the long-term consequences of TiO2-NPs remain poorly understood. In this study, we combined data of in vivo toxicity and modeling to investigate the potential negative impacts of TiO2-NP exposure. We employed the nematode Caenorhabditis elegans, an environmental organism, to conduct a full life cycle TiO2-NP toxicity assays. Moreover, to assess the potential impact of TiO2-NP toxicity on population dynamics, we applied a stage-constructed matrix population model (MPM). Results showed that TiO2-NPs caused significant reductions in reproduction, survival, and growth of parental C. elegans (P0) at the examined concentrations. Moreover, these toxic effects were even more pronounced in the subsequent generation (F1) when exposed to TiO2-NPs. Furthermore, parental TiO2-NP exposure resulted in significant toxicity in non-exposed C. elegans progeny (TiO2-NPs free), adversely affecting their reproduction, survival, and growth. MPM analysis revealed decreased transition probabilities of surviving (Pi), growth (Gi), and fertility (Fi) in scenarios with TiO2-NP exposure. Additionally, the population growth rate (λmax) was found to be less than 1 in both P0 and F1, indicating a declining population trend after successive generations. Sensitivity analysis pinpointed L1 larvae as the most vulnerable stage, significantly contributing to the observed population decline in both P0 and F1 generations under TiO2-NP exposure. Our findings provide insight into the potential risk of an environmental organism like nematode by life cycle exposure to TiO2-NPs.


Assuntos
Caenorhabditis elegans , Titânio , Animais , Titânio/toxicidade , Caenorhabditis elegans/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Nanopartículas/toxicidade , Estágios do Ciclo de Vida/efeitos dos fármacos
19.
Sci Rep ; 14(1): 8045, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580674

RESUMO

Silver and titanium-silver nanoparticles have unique properties that make the textile industry progress through the high quality of textiles. Preparation of AgNPs and TiO2-Ag core-shell nanoparticles in different concentrations (0.01% and 0.1% OWF) and applying it to cotton fabrics (Giza 88 and Giza 94) by using succinic acid 5%/SHP as a cross-linking agent. Ultra-violet visible spectroscopy (UV-Vis), X-ray diffraction (XRD), dynamic light scattering (DLS), zeta potential, transmission electron microscopy (TEM), scanning electron microscopy/energy-dispersive X-ray (SEM-EDX) are tools for AgNPs and TiO2-AgNPs characterization and the treated cotton. The resulting AgNPs and TiO2-AgNPs were added to cotton fabrics at different concentrations. The antimicrobial activities, UV protection, self-cleaning, and the treated fabrics' mechanical characteristics were investigated. Silver nanoparticles and titanium dioxide-silver nanoparticles core-shell were prepared to be used in the treatment of cotton fabrics to improve their UV protection properties, self-cleaning, elongation and strength, as well as the antimicrobial activities to use the produced textiles for medical and laboratory uses and to increase protection for medical workers taking into account the spread of infection. The results demonstrated that a suitable distribution of prepared AgNPs supported the spherical form. Additionally, AgNPs and TiO2-AgNPs have both achieved stability, with values of (- 20.8 mV and - 30 mV, respectively). The synthesized nanoparticles spread and penetrated textiles' surfaces with efficiency. The findings demonstrated the superior UV protection value (UPF 50+) and self-cleaning capabilities of AgNPs and TiO2-AgNPs. In the treatment with 0.01% AgNPs and TiO2-AgNPs, the tensile strength dropped, but the mechanical characteristics were enhanced by raising the concentration to 0.1%. The results of this investigation demonstrated that the cotton fabric treated with TiO2-AgNPs exhibited superior general characteristics when compared to the sample treated only with AgNPs.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Humanos , Prata/química , Fibra de Algodão , Ácido Succínico , Nanopartículas Metálicas/química , Têxteis , Antibacterianos/farmacologia , Antibacterianos/química
20.
Front Pediatr ; 12: 1337865, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487474

RESUMO

Nanoparticles (NPs) possess unique properties that make their use valuable in all industries. Titanium dioxide (TiO2) NPs are extensively used as a white pigment in food (labeled under the European number E171) and personal care products, which creates a significant potential for chronic consumer exposure. Concerns about the potential toxic effects of TiO2 NPs have arisen, particularly in vulnerable populations, including pregnant women and infants. Recently, human materno-fetal transfer of E171 was demonstrated, and simultaneously, we reported that chronic prenatal exposure to reference P25 TiO2 NPs was found to alter the developing respiratory neural networks. In this study, using whole body plethysmography from postnatal day (P) 0 to P7, we assessed the respiratory function of newborn mice born to mothers fed with E171 during pregnancy. We also evaluated the potential alterations to respiratory centers by using brainstem-spinal cord electrophysiological recordings from P0 to P6. Our study reveals that E171-prenatally exposed animals displayed an abnormally elevated breathing rate from P3 onwards. From P5 to P6, the respiratory-related burst frequency generated by the isolated brainstem-spinal cord preparations was significantly higher in E171-exposed animals than in non-exposed animals. These findings demonstrate prenatal toxicity of E171 to the developing respiratory function and may contribute to policy-making regarding the use of TiO2 NPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA