Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 457
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(36): e2322726121, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39159386

RESUMO

Constricting pythons, known for their ability to consume infrequent, massive meals, exhibit rapid and reversible cardiac hypertrophy following feeding. Our primary goal was to investigate how python hearts achieve this adaptive response after feeding. Isolated myofibrils increased force after feeding without changes in sarcomere ultrastructure and without increasing energy cost. Ca2+ transients were prolonged after feeding with no changes in myofibril Ca2+ sensitivity. Feeding reduced titin-based tension, resulting in decreased cardiac tissue stiffness. Feeding also reduced the activity of sirtuins, a metabolically linked class of histone deacetylases, and increased chromatin accessibility. Transcription factor enrichment analysis on transposase-accessible chromatin with sequencing revealed the prominent role of transcription factors Yin Yang1 and NRF1 in postfeeding cardiac adaptation. Gene expression also changed with the enrichment of translation and metabolism. Finally, metabolomics analysis and adenosine triphosphate production demonstrated that cardiac adaptation after feeding not only increased energy demand but also energy production. These findings have broad implications for our understanding of cardiac adaptation across species and hold promise for the development of innovative approaches to address cardiovascular diseases.


Assuntos
Boidae , Cardiomegalia , Epigênese Genética , Animais , Cardiomegalia/metabolismo , Cardiomegalia/genética , Cardiomegalia/fisiopatologia , Boidae/fisiologia , Boidae/genética , Período Pós-Prandial/fisiologia , Metabolismo Energético , Miofibrilas/metabolismo , Cálcio/metabolismo , Adaptação Fisiológica , Miocárdio/metabolismo , Reprogramação Metabólica
2.
Cureus ; 16(7): e64476, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39135814

RESUMO

Cardiomyopathy is defined as structural and functional myocardial abnormality not attributed to ischemic, valvular, hypertensive, or congenital cardiac causes. The main phenotypes of cardiomyopathy include hypertrophic, dilated, non-dilated left ventricular, restrictive, arrhythmogenic right ventricular, Takotsubo, and left ventricular noncompaction cardiomyopathies. A significant proportion of dilated cardiomyopathy (DCM) cases represents patients with genetic mutations, most commonly titin gene truncating variants (TTNtv). It has been shown that TTNtv mutation contributes to the development of certain types of DCM such as alcohol, chemotherapy, and peripartum. We present a case of DCM where genetic workup revealed TTNtv without other contributing factors. The course was complicated by multiple ventricular tachycardias (VTs) refractory to medical management, despite treatment with amiodarone, sotalol, dofetilide, mexiletine, and propranolol. Interestingly, endocardial mapping failed to delineate the substrate of tachycardia. This report underscores the importance of genetic testing in DCM and highlights the potential association of titin cardiomyopathy with refractory VTs, possibly of epicardial origin.

3.
Physiol Rep ; 12(16): e70012, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39169429

RESUMO

Aging is associated with cardiac contractile abnormalities, but the etiology of these contractile deficits is unclear. We hypothesized that cardiac contractile and regulatory protein expression is altered during aging. To investigate this possibility, left ventricular (LV) lysates were prepared from young (6 months) and old (24 months) Fischer344 rats. There are no age-related changes in SERCA2 expression or phospholamban phosphorylation. Additionally, neither titin isoform expression nor phosphorylation differed. However, there is a significant increase in ß-isoform of the myosin heavy chain (MyHC) expression and phosphorylation of TnI and MyBP-C during aging. In permeabilized strips of papillary muscle, force and Ca2+ sensitivity are reduced during aging, consistent with the increase in ß-MyHC expression and TnI phosphorylation. However, the increase in MyBP-C phosphorylation during aging may represent a mechanism to compensate for age-related contractile deficits. In isolated cardiomyocytes loaded with Fura-2, the peak of the Ca2+ transient is reduced, but the kinetics of the Ca2+ transient are not altered. Furthermore, the extent of shortening and the rates of both sarcomere shortening and re-lengthening are reduced. These results demonstrate that aging is associated with changes in contractile and regulatory protein expression and phosphorylation, which affect the mechanical properties of cardiac muscle.


Assuntos
Envelhecimento , Contração Miocárdica , Miócitos Cardíacos , Ratos Endogâmicos F344 , Animais , Masculino , Contração Miocárdica/fisiologia , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Ratos , Fosforilação , Miócitos Cardíacos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Conectina/metabolismo , Troponina I/metabolismo , Cálcio/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Proteínas de Transporte
4.
Exp Physiol ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39163874

RESUMO

Previous studies demonstrated that acute fatiguing exercise transiently reduces whole-muscle stiffness, which might contribute to increased risk of injury and impaired contractile performance. We sought to elucidate potential intracellular mechanisms underlying these reductions. To that end, the cellular passive Young's modulus was measured in muscle fibres from healthy, young males and females. Eight volunteers (four male and four female) completed unilateral, repeated maximal voluntary knee extensions until task failure, immediately followed by bilateral percutaneous needle muscle biopsy of the post-fatigued followed by the non-fatigued control vastus lateralis. Muscle samples were processed for mechanical assessment and separately for imaging and phosphoproteomics. Fibres were passively (pCa 8.0) stretched incrementally to 156% of initial sarcomere length to assess Young's modulus, calculated as the slope of the resulting stress-strain curve at short (sarcomere length = 2.4-3.0 µm) and long (sarcomere length = 3.2-3.8 µm) lengths. Titin phosphorylation was assessed by liquid chromatography followed by high-resolution mass spectrometry. The passive modulus was significantly reduced in post-fatigued versus control fibres from male, but not female, participants. Post-fatigued samples showed altered phosphorylation of five serine residues (four located within the elastic region of titin) but did not exhibit altered active tension or sarcomere ultrastructure. Collectively, these results suggest that acute fatigue is sufficient to alter phosphorylation of skeletal titin in multiple locations. We also found reductions in the passive modulus, consistent with prior reports in the literature investigating striated muscle stiffness. These results provide mechanistic insight contributing to the understanding of dynamic regulation of whole-muscle tissue mechanics in vivo. HIGHLIGHTS: What is the central question of this study? Previous studies have shown that skeletal muscle stiffness is reduced following a single bout of fatiguing exercise in whole muscle, but it is not known whether these changes manifest at the cellular level, and their potential mechanisms remain unexplored. What is the main finding and its importance? Fatiguing exercise reduces cellular stiffness in skeletal muscle from males but not females, suggesting that fatigue alters tissue compliance in a sex-dependent manner. The phosphorylation status of titin, a potential mediator of skeletal muscle cellular stiffness, is modified by fatiguing exercise. Previous studies have shown that passive skeletal muscle stiffness is reduced following a single bout of fatiguing exercise. Lower muscle passive stiffness following fatiguing exercise might increase risk for soft-tissue injury; however, the underlying mechanisms of this change are unclear. Our findings show that fatiguing exercise reduces the passive Young's modulus in skeletal muscle cells from males but not females, suggesting that intracellular proteins contribute to reduced muscle stiffness following repeated loading to task failure in a sex-dependent manner. The phosphorylation status of the intracellular protein titin is modified by fatiguing exercise in a way that might contribute to altered muscle stiffness after fatiguing exercise. These results provide important mechanistic insight that might help to explain why biological sex impacts the risk for soft-tissue injury with repeated or high-intensity mechanical loading in athletes and the risk of falls in older adults.

5.
Eur J Heart Fail ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078390

RESUMO

AIMS: Evidence on the relative impact of diverse genetic backgrounds associated with non-ischaemic dilated cardiomyopathy (DCM) remains contradictory. This study sought to synthesize the available data regarding long-term outcomes of different gene groups in DCM. METHODS AND RESULTS: Electronic databases were systematically screened to identify studies reporting prognostic data on pre-specified gene groups. Those included pathogenic/likely pathogenic (P/LP) variants, truncating titin variants (TTNtv), lamin A/C variants (LMNA), and desmosomal proteins. Outcomes were divided into composite adverse events (CAEs), malignant ventricular arrhythmic events (MVAEs) and heart failure events (HFEs). A total of 26 studies (n = 7255) were included in the meta-analysis and 6791 patients with genotyped DCM were analysed. Patients with P/LP variants had a higher risk for CAEs (odds ratio [OR] 2.10, 95% confidence interval [CI] 1.67-2.65), MVAEs (OR 1.86, 95% CI 1.52-2.26), and HFEs (OR 2.01, 95% CI 1.08-3.73) than genotype-negative patients. The presence of TTNtv was linked to a higher risk for CAEs (OR 1.78, 95% CI 1.20-2.63), but not MVAEs or HFEs. LMNA and desmosomal groups suffered a higher risk for CAEs, MVAEs, and HFEs compared to non-LMNA and non-desmosomal groups, respectively. When genes were indirectly compared, the presence of LMNA resulted in a more detrimental effect that TTNtv, with respect to all composite outcomes but no significant difference was found between LMNA and desmosomal genes. Desmosomal genes harboured a higher risk for MVAEs compared to TTNtv. CONCLUSIONS: Different genetic substrates associated with DCM result in divergent natural histories. Routine utilization of genetic testing should be employed to refine risk stratification and inform therapeutic strategies in DCM.

6.
Int J Mol Sci ; 25(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39063061

RESUMO

(1) Heart transplantation (HTX) improves the overall survival and functional status of end-stage heart failure patients with cardiomyopathies (CMPs). The majority of CMPs have genetic causes, and the overlap between CMPs and inherited myopathies is well documented. However, the long-term outcome in skeletal muscle function and possibility of an undiagnosed underlying genetic cause of both a cardiac and skeletal pathology remain unknown. (2) Thirty-nine patients were assessed using open and standardized interviews on muscle function, a quality-of-life (EuroQol EQ-5D-3L) questionnaire, and a physical examination (Medical Research Council Muscle scale). Whole-exome sequencing was completed in three stages for those with skeletal muscle weakness. (3) Seven patients (17.9%) reported new-onset muscle weakness and motor limitations. Objective muscle weakness in the upper and lower extremities was seen in four patients. In three of them, exome sequencing revealed pathogenic/likely pathogenic variants in the genes encoding nexilin, myosin heavy chain, titin, and SPG7. (4) Our findings support a positive long-term outcome of skeletal muscle function in HTX patients. However, 10% of patients showed clinical signs of myopathy due to a possible genetic cause. The integration of genetic testing and standardized neurological assessment of motor function during the peri-HTX period should be considered.


Assuntos
Transplante de Coração , Doenças Neuromusculares , Humanos , Transplante de Coração/efeitos adversos , Masculino , Feminino , Pessoa de Meia-Idade , Doenças Neuromusculares/genética , Adulto , Qualidade de Vida , Sequenciamento do Exoma , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Idoso , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/cirurgia , Insuficiência Cardíaca/etiologia , Cardiomiopatias/genética , Cardiomiopatias/etiologia , Debilidade Muscular/etiologia , Debilidade Muscular/genética , Conectina/genética
7.
Nano Lett ; 24(27): 8327-8334, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38942742

RESUMO

Titanium-based composites hold great promise in versatile functional application fields, including supercapacitors. However, conventional subtractive methods for preparing complex-shaped titanium-based composites generally suffer from several significant shortcomings, including low efficiency, strictly simple geometry, low specific surface area, and poor electrochemical performance of the products. Herein, three-dimensional composites of Ti/TiN nanotube arrays with hierarchically porous structures were prepared using the additive manufacturing method of selective laser melting combined with anodic oxidation and nitridation. The resultant Ti/TiN nanotube array composites exhibit good electrical conductivity, ultrahigh specific surface areas, and outstanding supercapacitor performances featuring the unique combination of a large specific capacitance of 134.4 mF/cm2 and a high power density of 4.1 mW/cm2, which was remarkably superior to that of their counterparts. This work is anticipated to provide new insights into the facile and efficient preparation of high-performance structural and functional devices with arbitrarily complex geometries and good overall performances.

8.
Int J Mol Sci ; 25(12)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38928324

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is characterized by biomechanically dysfunctional cardiomyocytes. Underlying cellular changes include perturbed myocardial titin expression and titin hypophosphorylation leading to titin filament stiffening. Beside these well-studied alterations at the cardiomyocyte level, exercise intolerance is another hallmark of HFpEF caused by molecular alterations in skeletal muscle (SKM). Currently, there is a lack of data regarding titin modulation in the SKM of HFpEF. Therefore, the aim of the present study was to analyze molecular alterations in limb SKM (tibialis anterior (TA)) and in the diaphragm (Dia), as a more central SKM, with a focus on titin, titin phosphorylation, and contraction-regulating proteins. This study was performed with muscle tissue, obtained from 32-week old female ZSF-1 rats, an established a HFpEF rat model. Our results showed a hyperphosphorylation of titin in limb SKM, based on enhanced phosphorylation at the PEVK region, which is known to lead to titin filament stiffening. This hyperphosphorylation could be reversed by high-intensity interval training (HIIT). Additionally, a negative correlation occurring between the phosphorylation state of titin and the muscle force in the limb SKM was evident. For the Dia, no alterations in the phosphorylation state of titin could be detected. Supported by data of previous studies, this suggests an exercise effect of the Dia in HFpEF. Regarding the expression of contraction regulating proteins, significant differences between Dia and limb SKM could be detected, supporting muscle atrophy and dysfunction in limb SKM, but not in the Dia. Altogether, these data suggest a correlation between titin stiffening and the appearance of exercise intolerance in HFpEF, as well as a differential regulation between different SKM groups.


Assuntos
Conectina , Diafragma , Modelos Animais de Doenças , Insuficiência Cardíaca , Músculo Esquelético , Animais , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/patologia , Ratos , Diafragma/metabolismo , Diafragma/fisiopatologia , Diafragma/patologia , Conectina/metabolismo , Fosforilação , Feminino , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Músculo Esquelético/patologia , Volume Sistólico , Contração Muscular , Condicionamento Físico Animal , Proteínas Musculares/metabolismo
9.
Clin Case Rep ; 12(6): e9069, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38868113

RESUMO

Key Clinical Message: An interesting case that shows the importance of identifying a pathogenic TTN gene mutation through genetic assessment in unexplained cardiomyopathy, especially with family history. This case highlights the need for genetic counseling and testing for at-risk relatives, and advocates for personalized management considering both genetic and lifestyle factors. Abstract: This case report examines a 33-year-old Hispanic male with bipolar disorder, schizophrenia, and a history of substance use, presenting with acute respiratory failure and cardiac arrest. The patient's nonischemic dilated cardiomyopathy (DCM) highlights the critical role of genetic factors, particularly titin gene (TTN) mutations, in cardiomyopathy pathogenesis. Through genetic analysis, we explore the intersection of lifestyle factors and genetic predisposition in DCM, underscoring the importance of comprehensive genetic testing for accurate diagnosis and targeted therapy. This case contributes to the evolving understanding of DCM etiology, emphasizing the necessity of considering both environmental and genetic factors in clinical assessment and management.

10.
Adv Exp Med Biol ; 1441: 417-433, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884723

RESUMO

This chapter will describe basic structural and functional features of the contractile apparatus of muscle cells of the heart, namely, cardiomyocytes and smooth muscle cells. Cardiomyocytes form the contractile myocardium of the heart, while smooth muscle cells form the contractile coronary vessels. Both muscle types have distinct properties and will be considered with respect to their cellular appearance (brick-like cross-striated versus spindle-like smooth), arrangement of contractile proteins (sarcomeric versus non-sarcomeric organization), calcium activation mechanisms (thin-filament versus thick-filament regulation), contractile features (fast and phasic versus slow and tonic), energy metabolism (high oxygen versus low oxygen demand), molecular motors (type II myosin isoenzymes with high adenosine diphosphate [ADP]-release rate versus myosin isoenzymes with low ADP-release rates), chemomechanical energy conversion (high adenosine triphosphate [ATP] consumption and short duty ratio versus low ATP consumption and high duty ratio of myosin II cross-bridges [XBs]), and excitation-contraction coupling (calcium-induced calcium release versus pharmacomechanical coupling). Part of the work has been published (Neuroscience - From Molecules to Behavior", Chap. 22, Galizia and Lledo eds 2013, Springer-Verlag; with kind permission from Springer Science + Business Media).


Assuntos
Contração Miocárdica , Miócitos Cardíacos , Humanos , Contração Miocárdica/fisiologia , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Cálcio/metabolismo , Metabolismo Energético , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/fisiologia , Acoplamento Excitação-Contração/fisiologia
11.
Circ Heart Fail ; 17(5): e011435, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38695186

RESUMO

Hypertrophic cardiomyopathy is the most common genetic cardiac disease and is characterized by left ventricular hypertrophy. Although this hypertrophy often associates with sarcomeric gene mutations, nongenetic factors also contribute to the disease, leading to diastolic dysfunction. Notably, this dysfunction manifests before hypertrophy and is linked to hypercontractility, as well as nonuniform contraction and relaxation (myofibril asynchrony) of the myocardium. Although the distribution of hypertrophy in hypertrophic cardiomyopathy can vary both between and within individuals, in most cases, it is primarily confined to the interventricular septum. The reasons for septal thickening remain largely unknown. In this article, we propose that alterations in muscle fiber geometry, present from birth, dictate the septal shape. When combined with hypercontractility and exacerbated by left ventricular outflow tract obstruction, these factors predispose the septum to an isometric type of contraction during systole, consequently constraining its mobility. This contraction, or more accurately, this focal increase in biomechanical stress, prompts the septum to adapt and undergo remodeling. Drawing a parallel, this is reminiscent of how earthquake-resistant buildings are retrofitted with vibration dampers to absorb the majority of the shock motion and load. Similarly, the heart adapts by synthesizing viscoelastic elements such as microtubules, titin, desmin, collagen, and intercalated disc components. This pronounced remodeling in the cytoskeletal structure leads to noticeable septal hypertrophy. This structural adaptation acts as a protective measure against damage by attenuating myofibril shortening while reducing cavity tension according to Laplace Law. By examining these events, we provide a coherent explanation for the septum's predisposition toward hypertrophy.


Assuntos
Cardiomiopatia Hipertrófica , Humanos , Cardiomiopatia Hipertrófica/fisiopatologia , Contração Miocárdica/fisiologia , Animais , Remodelação Ventricular/fisiologia , Septos Cardíacos/fisiopatologia , Septos Cardíacos/diagnóstico por imagem , Septos Cardíacos/patologia , Septo Interventricular/fisiopatologia , Septo Interventricular/diagnóstico por imagem
12.
Front Physiol ; 15: 1385821, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660537

RESUMO

The giant protein titin is an essential component of muscle sarcomeres. A single titin molecule spans half a sarcomere and mediates diverse functions along its length by virtue of its unique domains. The A-band of titin functions as a molecular blueprint that defines the length of the thick filaments, the I-band constitutes a molecular spring that determines cell-based passive stiffness, and various domains, including the Z-disk, I-band, and M-line, serve as scaffolds for stretch-sensing signaling pathways that mediate mechanotransduction. This review aims to discuss recent insights into titin's functional roles and their relationship to cardiac function. The role of titin in heart diseases, such as dilated cardiomyopathy and heart failure with preserved ejection fraction, as well as its potential as a therapeutic target, is also discussed.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38683293

RESUMO

The muscular dystrophy with myositis (mdm) mouse model results in a severe muscular dystrophy due to an 83-amino-acid deletion in the N2A region of titin, an expanded sarcomeric protein that functions as a molecular spring which senses and modulates the response to mechanical forces in cardiac and skeletal muscles. ANKRD1 is one of the muscle ankyrin repeat domain proteins (MARPs) a family of titin-associated, stress-response molecules and putative transducers of stretch-induced signaling in skeletal muscle. The aberrant over-activation of Nuclear factor Kappa B (NF-κB) and the Ankyrin-repeat domain containing protein 1 (ANKRD1) occurs in several models of progressive muscle disease including Duchenne muscular dystrophy. We hypothesized that mechanical regulation of ANKRD1 is mediated by NF-κB activation in skeletal muscles and that this mechanism is perturbed by small deletion of the stretch-sensing titin N2A region in the mdm mouse. We applied static mechanical stretch of the mdm mouse diaphragm and cyclic mechanical stretch of C2C12 myotubes to examine the interaction between NF-κΒ and ANKRD1 expression utilizing Western blot and qRTPCR. As seen in skeletal muscles of other severe muscular dystrophies, an aberrant increased basal expression of NF-κB and ANKRD1 were observed in the diaphragm muscles of the mdm mice. Our data show that in the mdm diaphragm, basal levels of NF-κB are increased, and pharmacological inhibition of NF-κB does not alter basal levels of ANKRD1. Alternatively, NF-κB inhibition did alter stretch-induced ANKRD1 upregulation. These data show that NF-κB activity is at least partially responsible for the stretch-induced expression of ANKRD1.

14.
Physiol Rep ; 12(8): e16013, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38644486

RESUMO

Investigating ventricular diastolic properties is crucial for understanding the physiological cardiac functions in organisms and unraveling the pathological mechanisms of cardiovascular disorders. Ventricular stiffness, a fundamental parameter that defines ventricular diastolic functions in chordates, is typically analyzed using the end-diastolic pressure-volume relationship (EDPVR). However, comparing ventricular stiffness accurately across chambers of varying maximum volume capacities has been a long-standing challenge. As one of the solutions to this problem, we propose calculating a relative ventricular stiffness index by applying an exponential approximation formula to the EDPVR plot data of the relationship between ventricular pressure and values of normalized ventricular volume by the ventricular weight. This article reviews the potential, utility, and limitations of using normalized EDPVR analysis in recent studies. Herein, we measured and ranked ventricular stiffness in differently sized and shaped chambers using ex vivo ventricular pressure-volume analysis data from four animals: Wistar rats, red-eared slider turtles, masu salmon, and cherry salmon. Furthermore, we have discussed the mechanical effects of intracellular and extracellular viscoelastic components, Titin (Connectin) filaments, collagens, physiological sarcomere length, and other factors that govern ventricular stiffness. Our review provides insights into the comparison of ventricular stiffness in different-sized ventricles between heterologous and homologous species, including non-model organisms.


Assuntos
Ventrículos do Coração , Animais , Ratos , Diástole/fisiologia , Ventrículos do Coração/fisiopatologia , Especificidade da Espécie , Função Ventricular/fisiologia , Tartarugas , Salmão
15.
J Nanobiotechnology ; 22(1): 191, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637832

RESUMO

BACKGROUND: Exosomes assume a pivotal role as essential mediators of intercellular communication within tumor microenvironments. Within this context, long noncoding RNAs (LncRNAs) have been observed to be preferentially sorted into exosomes, thus exerting regulatory control over the initiation and progression of cancer through diverse mechanisms. RESULTS: Exosomes were successfully isolated from cholangiocarcinoma (CCA) CTCs organoid and healthy human serum. Notably, the LncRNA titin-antisense RNA1 (TTN-AS1) exhibited a conspicuous up-regulation within CCA CTCs organoid derived exosomes. Furthermore, a significant elevation of TTN-AS1 expression was observed in tumor tissues, as well as in blood and serum exosomes from patients afflicted with CCA. Importantly, this hightened TTN-AS1 expression in serum exosomes of CCA patients manifested a strong correlation with both lymph node metastasis and TNM staging. Remarkably, both CCA CTCs organoid-derived exosomes and CCA cells-derived exosomes featuring pronounced TTN-AS1 expression demonstrated the capability to the proliferation and migratory potential of CCA cells. Validation of these outcomes was conducted in vivo experiments. CONCLUSIONS: In conclusion, our study elucidating that CCA CTCs-derived exosomes possess the capacity to bolster the metastasis tendencies of CCA cells by transporting TTN-AS1. These observations underscore the potential of TTN-AS1 within CTCs-derived exosomes to serve as a promising biomarker for the diagnosis and therapeutic management of CCA.


Assuntos
Colangiocarcinoma , Exossomos , MicroRNAs , Células Neoplásicas Circulantes , RNA Bacteriano , RNA Longo não Codificante , Humanos , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Exossomos/metabolismo , Conectina/genética , Conectina/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Proliferação de Células , Movimento Celular , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral
16.
J Mol Cell Cardiol ; 191: 40-49, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604403

RESUMO

The heart has the ability to detect and respond to changes in mechanical load through a process called mechanotransduction. In this study, we focused on investigating the role of the cardiac-specific N2B element within the spring region of titin, which has been proposed to function as a mechanosensor. To assess its significance, we conducted experiments using N2B knockout (KO) mice and wildtype (WT) mice, subjecting them to three different conditions: 1) cardiac pressure overload induced by transverse aortic constriction (TAC), 2) volume overload caused by aortocaval fistula (ACF), and 3) exercise-induced hypertrophy through swimming. Under conditions of pressure overload (TAC), both genotypes exhibited similar hypertrophic responses. In contrast, WT mice displayed robust left ventricular hypertrophy after one week of volume overload (ACF), while the KO mice failed to undergo hypertrophy and experienced a high mortality rate. Similarly, swim exercise-induced hypertrophy was significantly reduced in the KO mice. RNA-Seq analysis revealed an abnormal ß-adrenergic response to volume overload in the KO mice, as well as a diminished response to isoproterenol-induced hypertrophy. Because it is known that the N2B element interacts with the four-and-a-half LIM domains 1 and 2 (FHL1 and FHL2) proteins, both of which have been associated with mechanotransduction, we evaluated these proteins. Interestingly, while volume-overload resulted in FHL1 protein expression levels that were comparable between KO and WT mice, FHL2 protein levels were reduced by over 90% in the KO mice compared to WT. This suggests that in response to volume overload, FHL2 might act as a signaling mediator between the N2B element and downstream signaling pathways. Overall, our study highlights the importance of the N2B element in mechanosensing during volume overload, both in physiological and pathological settings.


Assuntos
Conectina , Mecanotransdução Celular , Camundongos Knockout , Animais , Camundongos , Conectina/metabolismo , Conectina/genética , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Hipertrofia Ventricular Esquerda/genética , Miocárdio/metabolismo , Miocárdio/patologia , Masculino , Condicionamento Físico Animal , Proteínas com Homeodomínio LIM/metabolismo , Proteínas com Homeodomínio LIM/genética , Modelos Animais de Doenças , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/genética , Proteínas Quinases , Peptídeos e Proteínas de Sinalização Intracelular
17.
Neuromuscul Disord ; 37: 1-5, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430701

RESUMO

This report describes a novel TTN -related phenotype in two brothers, both affected by a childhood onset, very slowly progressive myopathy with cores, associated with dilated cardiomyopathy only in their late disease stages. Clinical exome sequencing documented in both siblings the heterozygous c.2089A>T and c.19426+2T>A variants in TTN. The c.2089A>T, classified in ClinVar as possibly pathogenic, introduces a premature stop codon in exon 14, whereas the c.19426+2T>A affects TTN alternative splicing. The unfeasibility of segregation studies prevented us from establishing the inheritance mode of the muscle disease in this family, although the lack of any reported muscle or heart symptoms in both parents might support an autosomal recessive transmission. In this view, the occurrence of cardiomyopathy in both probands might be related to the c.2089A>T truncating variant in exon 14, and the childhood onset, slowly progressive myopathy to the c.19426+2T>A splicing variant, possibly allowing translation of an almost full length TTN protein.


Assuntos
Cardiomiopatia Dilatada , Doenças Musculares , Masculino , Humanos , Criança , Conectina/genética , Doenças Musculares/genética , Fenótipo , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Códon sem Sentido , Mutação
18.
J Mol Cell Cardiol ; 190: 13-23, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38462126

RESUMO

Mutations in cardiac myosin-binding protein C (cMyBP-C) or titin may respectively lead to hypertrophic (HCM) or dilated (DCM) cardiomyopathies. The mechanisms leading to these phenotypes remain unclear because of the challenge of translating cellular abnormalities to whole-heart and system function. We developed and validated a novel computer model of calcium-contraction coupling incorporating the role of cMyBP-C and titin based on the key assumptions: 1) tension in the thick filament promotes cross-bridge attachment mechanochemically, 2) with increasing titin tension, more myosin heads are unlocked for attachment, and 3) cMyBP-C suppresses cross-bridge attachment. Simulated stationary calcium-tension curves, isotonic and isometric contractions, and quick release agreed with experimental data. The model predicted that a loss of cMyBP-C function decreases the steepness of the calcium-tension curve, and that more compliant titin decreases the level of passive and active tension and its dependency on sarcomere length. Integrating this cellular model in the CircAdapt model of the human heart and circulation showed that a loss of cMyBP-C function resulted in HCM-like hemodynamics with higher left ventricular end-diastolic pressures and smaller volumes. More compliant titin led to higher diastolic pressures and ventricular dilation, suggesting DCM-like hemodynamics. The novel model of calcium-contraction coupling incorporates the role of cMyBP-C and titin. Its coupling to whole-heart mechanics translates changes in cellular calcium-contraction coupling to changes in cardiac pump and circulatory function and identifies potential mechanisms by which cMyBP-C and titin abnormalities may develop into HCM and DCM phenotypes. This modeling platform may help identify distinct mechanisms underlying clinical phenotypes in cardiac diseases.


Assuntos
Cálcio , Proteínas de Transporte , Conectina , Contração Miocárdica , Humanos , Conectina/metabolismo , Conectina/genética , Proteínas de Transporte/metabolismo , Cálcio/metabolismo , Sarcômeros/metabolismo , Modelos Cardiovasculares , Simulação por Computador , Animais , Coração/fisiopatologia , Coração/fisiologia
19.
J Thorac Dis ; 16(2): 973-978, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38505076

RESUMO

Background: Anti-titin antibodies have been previously associated with thymoma-associated myasthenia gravis (MG) and a more clinically severe form of MG. While currently only serving as a disease biomarker, its possible utility as an indicator of underlying thymus malignancy may be of value in clinical practice. Methods: Data was retrospectively collected and analyzed from 2013 to 2022 using an institutional record of MG patients. Anti-titin antibodies were assessed using Line Blot immunoassay. Results: From 130 MG cases, 32 (24.6%) were anti-titin positive. Anti-titin positive cases were associated with older age of disease onset [median (IQR): 63.0 (44.3-70.8) vs. 35.5 (24.8-60.8) years] (P<0.01). Thymectomy was performed in 46 (35.4%) MG patients, 12 of which anti-titin positive (26.1%). Thymectomy samples from anti-titin positive patients comprised 10 (83.3%) cases of thymoma and 2 (16.7%) cases of thymus hyperplasia. There was a tendency towards anti-titin positive patients having more thymoma while anti-titin negative displayed more hyperplasia (P<0.01). Anti-titin positivity correlated with thymoma in patients with age of onset bellow 50 years (P=0.028). Anti-titin positivity was significantly associated with generalized MG in the late-onset group (P=0.005). Conclusions: The presence of anti-titin antibodies appears to correlate with underlying thymoma in early-onset MG cases and with generalized MG in late-onset cases. Prospective studies are needed to further study this association.

20.
Sci Rep ; 14(1): 5313, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438525

RESUMO

The giant protein titin (TTN) is a sarcomeric protein that forms the myofibrillar backbone for the components of the contractile machinery which plays a crucial role in muscle disorders and cardiomyopathies. Diagnosing TTN pathogenic variants has important implications for patient management and genetic counseling. Genetic testing for TTN variants can help identify individuals at risk for developing cardiomyopathies, allowing for early intervention and personalized treatment strategies. Furthermore, identifying TTN variants can inform prognosis and guide therapeutic decisions. Deciphering the intricate genotype-phenotype correlations between TTN variants and their pathologic traits in cardiomyopathies is imperative for gene-based diagnosis, risk assessment, and personalized clinical management. With the increasing use of next-generation sequencing (NGS), a high number of variants in the TTN gene have been detected in patients with cardiomyopathies. However, not all TTN variants detected in cardiomyopathy cohorts can be assumed to be disease-causing. The interpretation of TTN variants remains challenging due to high background population variation. This narrative review aimed to comprehensively summarize current evidence on TTN variants identified in published cardiomyopathy studies and determine which specific variants are likely pathogenic contributors to cardiomyopathy development.


Assuntos
Cardiomiopatias , Humanos , Conectina/genética , Cardiomiopatias/genética , Intervenção Educacional Precoce , Aconselhamento Genético , Testes Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA