Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 20379, 2024 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223208

RESUMO

The tannery industry produces one of the worst contaminants, and unsafe disposal in nearby waterbodies and landfills has become an imminent threat to public health, especially when the resulting multidrug-resistant bacteria and heavy metals enter community settings and animal food chains. In this study, we have collected 10 tannery wastewater (TWW) samples and 10 additional non-tannery wastewater (NTW) samples to compare the chemical oxygen demand (COD), pH, biological oxygen demand (BOD), dissolved oxygen (DO), total dissolved solids (TDS), chromium concentration, bacterial load, and antibiotic resistance profiles. While COD, pH, and chromium concentration data were previously published from our lab, this part of the study uncovers that TWW samples had a significantly higher bacterial load, compared to the non-tannery wastewater samples (5.89 × 104 and 9.38 × 103 cfu/mL, respectively), higher BOD and TDS values, and significantly lower DO values. The results showed that 53.4, 46.7, 40.0, and 40.0% of the TWW isolates were resistant to ceftriaxone, erythromycin, nalidixic acid, and azithromycin, respectively. On the other hand, 20.0, 30.0, 50.0, and 40.0% of the NTW isolates were resistant to the same antibiotics, respectively. These findings suggest that the TWW isolates were more resistant to antibiotics than the NTW isolates. Moreover, the TWW isolates exhibited higher multidrug resistance than the NTW isolates, 33.33, and 20.00%, respectively. Furthermore, spearman correlation analysis depicts that there is a negative correlation between BOD and bacterial load up to a certain level (r = - 0.7749, p = 0.0085). In addition, there is also a consistent negative correlation between COD and bacterial load (r = - 0.7112, p = 0.0252) and TDS and bacterial load (r = - 0.7621, p = 0.0104). These findings suggest that TWW could pose a significant risk to public health and the environment and highlight the importance of proper wastewater treatment in tannery industries.


Assuntos
Farmacorresistência Bacteriana Múltipla , Curtume , Águas Residuárias , Águas Residuárias/microbiologia , Bangladesh , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Resíduos Industriais/análise , Análise da Demanda Biológica de Oxigênio , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
2.
Cureus ; 16(6): e62272, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39015852

RESUMO

INTRODUCTION: Rajasthan is a semi-arid state in India where people still use groundwater for drinking purposes. However, the quality of groundwater as compared to standards have not been studied in any details. This ecological study was done to study the groundwater quality parameters in the stone-belt states, compare the quality of groundwater in Alwar with the rest of Rajasthan, and study the morbidity profile of surgical in-patients in the same district, with special emphasis on kidney stone disease (KSDs). METHODS: The morbidity profile of patients coming to the surgery department of a tertiary teaching hospital between January 2002 and June 2023 was obtained from the medical records department, and water quality data was obtained from the publicly available Water Resources Information System (WRIS) groundwater dataset for the year 2023. The dataset provided detailed information on the chemical parameters of water samples throughout the country that were evaluated to estimate the quality of groundwater. RESULTS: It was found that the groundwater in Alwar is non-potable due to the presence of iron, alkalinity, magnesium, and total dissolved solids (TDS). Iron was estimated to be much higher than the acceptable limit of the Bureau of Indian Standards (BIS) drinking-water quality guidelines (0.3 mg/L). Similarly, most of the chemical parameters in the groundwaters of Rajasthan significantly exceeded the national average. The median electrical conductivity, fluoride, magnesium, sodium, hardness, alkalinity, and turbidity were found to be 1680 µS/cm, 1.05 parts per million (PPM), 41 PPM, 233 PPM, 330 PPM, 310 PPM, 988 PPM, respectively, which are above the WHO recommendations for drinking water guidelines. CONCLUSIONS: The levels of iron and total alkalinity were significantly higher in the study district as compared to the rest of the state. Also, magnesium hardness and TDS levels were very high in the groundwater of the entire state of Rajasthan, making the population vulnerable to KSDs in the long run.

3.
Heliyon ; 10(11): e32396, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38933963

RESUMO

The impact of seawater intrusion from coast to inland terrain in the Cauvery River Basin (CRB) and Uppanar River Basin (URB) was evaluated based on major ion groundwater chemistry. TDS ranges from 229 to 2260 mg/l, and 408 to 3732 mg/l; Na+ range from 67 to 560 mg/l, and 74 to 1600 mg/l, and Cl- range from 120 to 906 mg/l, and 110 to 3260 mg/l for CRB and URB respectively. Piper Diagram, Hydrochemical Facies Evolution Diagram (HFE-D), rock-water interaction (Gibbs Plots), various bivariate plots viz., TDS vs. Cl-; Na+ vs. Cl-; Ca2+ vs. Cl-; Ca2+ vs. SO4 2-; TH vs. TDS and Principal Component Analysis (PCA) (Cluster and Factor analysis) were used to identify the seawater intrusion from coast to inland aquifers and to understand hydrogeochemical characterization and salinization processes. Piper diagram shows that most of the samples are Na+-Cl- type, HFE-D diagram also shows that most of the samples were saline intrusion type and mixing behavior, while TH vs. TDS plot shows hard fresh to hard brackish type from both the basins. PCA results clearly show the three factors, explaining 84.02 % and 76.67 % variance in URB and CRB. Factor-1 records 53.03 % alteration, with a strong confidence loading of TDS, Na+, Cl-, Ca2+, K+, SO4 2, Total Alkalinity (TA), and Total Hardness (TH) in URB indicating saline nature. A total variance of 46.23 % in CBR is more positively loaded with TH, Mg2+, Ca2+, and SO4 2- indicating rock-water interaction. Cluster analyses of these parameters illustrate the cluster distribution in CRB and URB. In URB, TDS, Na+, and Cl- ions make a cluster with a linkage distance of 5000 m, whereas in CRB, the TDS, Na+, Cl-, and TA ions make a cluster with a linkage distance of 2800 m. The factor and cluster analysis fetched out an effect of intensive use of fertilizers, aquaculture activities, and excessive groundwater exploitation. This technique gave the relationship between various chemical parameters in groundwater. Factor and cluster analysis have proven highly effective in groundwater quality studies. The study concluded that the study area has the threat of saline water intrusion in shallow aquifers with continuous influences of seawater mixing.

4.
Water Res ; 256: 121559, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579508

RESUMO

Over the last six decades, northwest China has undergone a significant climatic shift from "warm-dry" to "warm-wet", profoundly impacting the structures and functions of lake ecosystem across the region. However, the influences of this climatic transition on the diversity patterns, co-occurrence network, and assembly processes of eukaryotic microbial communities in lake ecosystem, along with the underlying mechanisms, remain largely unexplored. To bridge this knowledge gap, our study focused on Lake Bosten, the largest inland freshwater body in China, conducting a comprehensive analysis. Firstly, we examined the dynamics of key water quality parameters in the lake based on long-term monitoring data (1992-2022). Subsequently, we collected 93 water samples spanning two distinctive periods: low water level (WL) and high total dissolved solids (TDS) (PerWLTDS; 2010-2011; attributed to "warm-dry" climate), and high WL and low TDS (PerTDSWL; 2021-2022; associated with "warm-wet" climate). Eukaryotic microorganisms were further investigated using 18S rRNA gene sequencing and various statistical methods. Our findings revealed that climatic warming and wetting significantly increased eukaryotic microbial α-diversity (all Wilcox. test: P<0.05), while simultaneously reducing ß-diversity (all Wilcox. test: P<0.001) and network complexity. Through the two sampling periods, assembly mechanisms of eukaryotic microorganisms were predominantly influenced by dispersal limitation (DL) and drift (DR) within stochastic processes, alongside homogeneous selection (HoS) within deterministic processes. WL played a mediating role in eukaryotic microbial DL and HoS processes in the PerTDSWL, whereas water quality and α-diversity influenced the DL process in the PerWLTDS. Collectively, these results underscore the direct and indirect impacts of "warm-wet" conditions on the eukaryotic microorganisms within Lake Bosten. This study provides valuable insights into the evolutionary dynamics of lake ecosystems under such climatic conditions and aids in predicting the ecological ramifications of global climatic changes.


Assuntos
Lagos , Lagos/microbiologia , China , Biodiversidade , Mudança Climática , Ecossistema , Eucariotos/genética , RNA Ribossômico 18S/genética
5.
Water Environ Res ; 95(12): e10952, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38148734

RESUMO

BACKGROUND: Tannery wastewater effluents contain many toxic and carcinogenic heavy metals and physiochemical parameters that need to be removed before these effluents enter in the main water bodies or rivers. In this study, the effluents from the tannery industry are treated through aeration, coagulation, and Chlorella vulgaris pond treatment processes for the removal of physiochemical: parameters only. METHODS: The effect of removal efficiencies (%) was studied on the physicochemical parameters, including salinity, electrical conductivity (EC), total dissolved solids (TDS), turbidity, total suspended solids (TSS), biochemical oxygen demand (BOD), and chemical oxygen demand (COD). RESULTS: The key results showed that the removal of EC, TDS, turbidity, TSS, BOD, and COD was 80.2%, 67%, 81%, 80.8%, 68.6%, and 100%, respectively, in raw wastewater treatment having 25, 50, and 70 g of algae C. vulgaris doses. The removal efficiencies (%) of salinity, EC, TDS, turbidity, TSS, BOD, and COD were 83%, 87.1%, 77.1%, 80%, 40%, 97%, and 98%, respectively, during coagulated wastewater treatment with three doses of algae. The observed improvement in treated wastewater indicated that the removal efficiencies (%) of salinity, EC, TDS, turbidity, TSS, BOD, and COD were 85.7%, 39.3%, 81.3%, 67.8%, 50.3%, 97%, and 98%, with C. vulgaris. CONCLUSION: This study confirmed that the treatment of tannery wastewater by these processes increased the pollutant removal efficiencies as all the physiochemical parameters were exceeding the permissible limits. RESULTS CONTRIBUTION IN FUTURE: This research will be helpful to treat the industrial wastewaters or effluents before it further mixes up in the main water streams. In this way, water quality will be better, aquatic life will be saved, and further researchers can analyze more ways for efficient treatments as they have a baseline data through this study findings. PRACTITIONER POINTS: One of the most pollutant sources in terms of both physical and chemical parameters is the produced wastewater from tannery industries. The effluents from tannery industry are treated through aeration, coagulation, and algae ponds treatment processes. These treatment made the tannery wastewater as environmental friendly.


Assuntos
Chlorella vulgaris , Poluentes Ambientais , Águas Residuárias , Lagoas , Análise da Demanda Biológica de Oxigênio
6.
Environ Sci Pollut Res Int ; 30(53): 114610-114624, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37863854

RESUMO

Microalgae have the potential as a source of biofuels due to their high biomass productivity and ability to grow in a wide range of conditions, including wastewater. This study investigated cultivating two microalgae species, Oocystis pusilla and Chlorococcus infusionum, in wastewater for biodiesel production. Compared to Kühl medium, KC medium resulted in a significant fold increase in cellular dry weight production for both O. pusilla and C. infusionum, with an increase of 1.66 and 1.39, respectively. A concentration of 100% wastewater resulted in the highest growth for O. pusilla, with an increase in biomass and lipid content compared to the KC medium. C. infusionum could not survive in these conditions. For further increase in biomass and lipid yield of O. pusilla, different total dissolved solids (TDS) levels were used. Maximum biomass and lipid productivities were achieved at 3000 ppm TDS, resulting in a 28% increase in biomass (2.50 g/L) and a 158% increase in lipid yield (536.88 mg/g) compared to KC medium. The fatty acid profile of O. pusilla cultivated on aerated wastewater at 3000 ppm TDS showed a high proportion of desirable saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) for biodiesel production. Cultivating microalgae in wastewater for biodiesel production can be cost-effective, especially for microalgae adapted to harsh conditions. It could be concluded that O. pusilla is a promising candidate for biodiesel production using wastewater as a growth medium, as it has high biomass productivity and lipid yield, and its fatty acid profile meets the standard values of American and European biodiesel standards. This approach offers a sustainable and environmentally friendly solution for producing biofuels while reducing the environmental impact of wastewater disposal.


Assuntos
Microalgas , Águas Residuárias , Biocombustíveis , Ácidos Graxos , Estresse Salino , Biomassa
7.
Environ Monit Assess ; 195(7): 880, 2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37354329

RESUMO

The continuous availability of spatial and temporal distributed data from satellite sensors provides more accurate and timely information regarding surface water quality parameters. Remote sensing data has the potential to serve as an alternative to traditional on-site measurements, which can be resource-intensive due to the time and labor involved. This present study aims in exploring the possibility and comparison of hyperspectral and multispectral imageries (PRISMA) for accurate prediction of surface water quality parameters. Muthupet estuary, situated on the south side of the Cauvery River delta on the Bay of Bengal, is selected as the study area. The remote sensing data is acquired from the PRISMA hyperspectral satellite and the Sentinel-2 multispectral instrument (MSI) satellite. The in situ sampling from the study area is performed, and the testing procedures are carried out for analyzing different water quality parameters. The correlations between the water sample results and the reflectance values of satellites are analyzed to generate appropriate algorithmic models. The study utilized data from both the PRISMA and Sentinel satellites to develop models for assessing water quality parameters such as total dissolved solids, chlorophyll, pH, and chlorides. The developed models demonstrated strong correlations with R2 values above 0.80 in the validation phase. PRISMA-based models for pH and chlorophyll displayed higher accuracy levels than Sentinel-based models with R2 > 0.90.


Assuntos
Estuários , Qualidade da Água , Monitoramento Ambiental/métodos , Clorofila/análise , Rios
8.
Sensors (Basel) ; 23(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36850468

RESUMO

The monitoring of the coastal environment is a crucial factor in ensuring its proper management. Nevertheless, existing monitoring technologies are limited due to their cost, temporal resolution, and maintenance needs. Therefore, limited data are available for coastal environments. In this paper, we present a low-cost multiparametric probe that can be deployed in coastal areas and integrated into a wireless sensor network to send data to a database. The multiparametric probe is composed of physical sensors capable of measuring water temperature, salinity, and total suspended solids (TSS). The node can store the data in an SD card or send them. A real-time clock is used to tag the data and to ensure data gathering every hour, putting the node in deep sleep mode in the meantime. The physical sensors for salinity and TSS are created for this probe and calibrated. The calibration results indicate that no effect of temperature is found for both sensors and no interference of salinity in the measuring of TSS or vice versa. The obtained calibration model for salinity is characterised by a correlation coefficient of 0.9 and a Mean Absolute Error (MAE) of 0.74 g/L. Meanwhile, different calibration models for TSS were obtained based on using different light wavelengths. The best case was using a simple regression model with blue light. The model is characterised by a correlation coefficient of 0.99 and an MAE of 12 mg/L. When both infrared and blue light are used to prevent the effect of different particle sizes, the determination coefficient of 0.98 and an MAE of 57 mg/L characterised the multiple regression model.

9.
Environ Sci Pollut Res Int ; 30(10): 25892-25902, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36352069

RESUMO

Premature drainage increases the amount of used saline water, increasing the transportation and purification costs of saline water. On the other hand, postmature drainage increases the salt concentration of the brine, which deteriorates the solar still performance and may cause salt perceptions. The present study aims to identify appropriate brine conditions for the drainage process and propose a layout for an automatic drainage process. Therefore, the effect of brine's salt concentration and temperature on a pyramid solar still's productivity is being investigated. Seven salt concentrations were investigated, and the brine and metrological conditions were measured. The results show that the higher the salt concentration, the lower the solar still productivity. The daily yield of solar still ranges 5778-4061 g/m2d for feedwater salinity 0.15-134 ppt, respectively. Therefore, the novelty or recommendation of this study is that if the brine salinity reaches 127 ppt, the brine should be drained to avoid the precipitate, regardless of the stored thermal energy in the brine. Also, if the brine salinity reaches 118 ppt and the difference between its temperature and ambient temperature is about 1℃, the brine should be drained.


Assuntos
Sais , Cloreto de Sódio , Águas Salinas , Cloreto de Sódio na Dieta
10.
Sci Total Environ ; 860: 160427, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36435255

RESUMO

Wastewater (WW) insufficiently treated for the disinfection of microorganisms, including pathogenic ones, is a source of concern and a possible generator of public health problems. Traditional disinfection methods to reduce pathogens concentration (e.g., chlorination, ozonation, UV) are expensive, unsafe, and/or sometimes ineffective, highlighting the need for new disinfection technologies. The promising results of photodynamic inactivation (PDI) treatment to eradicate microorganisms suggest the efficacy of this treatment to improve WW quality. This work aimed to assess if PDI can be successfully extended to real contexts for the microbial inactivation in WW. For the first time, PDI experiments with 9 different water matrices compositions were performed to inquire about the influence of some of their physicochemical parameters on the effectiveness of microbial inactivation. Bacterial photoinactivation was tested in freshwater, aquaculture water, and seawater samples, as well as in influents and effluents samples from domestic, industrial, and a mixture of industrial and domestic WW receiving wastewater treatment plants (WWTPs). Additionally, PDI assays were performed in phosphate-buffered saline isotonic solution (PBS), used as an aqueous comparative matrix. To relate the PDI disinfection efficiency with the physicochemical compositions of the different used water matrices, a series of statistical analysis were performed, in order to support our main conclusions. Overall, the results showed that PDI is an effective and promising alternative to traditionally used WW disinfection methods, with a bacterial reduction of >3.0 log CFU/mL in all the water matrices within the first hour of PDI treatment, but also that the physicochemical composition of the aqueous matrices to be PDI-disinfected must be taken into account since they seem to influence the PDI efficacy, namely the pH, with acidic pH conditions seeming to be associated to a better PDI performance in general.


Assuntos
Purificação da Água , Água , Desinfecção/métodos , Águas Residuárias , Purificação da Água/métodos , Bactérias , Resultado do Tratamento
11.
Water (Basel) ; 15(2): 1-26, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38269364

RESUMO

Wastewaters and leachates from various inland resource extraction activities contain high ionic concentrations and differ in ionic composition, which complicates the understanding and effective management of their relative risks to stream ecosystems. To this end, we conducted a stream mesocosm dose-response experiment using two dosing recipes prepared from industrial salts. One recipe was designed to generally reflect the major ion composition of deep well brines (DWB) produced from gas wells (primarily Na+, Ca2+, and Cl-) and the other, the major ion composition of mountaintop mining (MTM) leachates from coal extraction operations (using salts dissociating to Ca2+, Mg2+, Na+, SO42- and HCO3-)-both sources being extensive in the Central Appalachians of the USA. The recipes were dosed at environmentally relevant nominal concentrations of total dissolved solids (TDS) spanning 100 to 2000 mg/L for 43 d under continuous flow-through conditions. The colonizing native algal periphyton and benthic invertebrates comprising the mesocosm ecology were assessed with response sensitivity distributions (RSDs) and hazard concentrations (HCs) at the taxa, community (as assemblages), and system (as primary and secondary production) levels. Single-species toxicity tests were run with the same recipes. Dosing the MTM recipe resulted in a significant loss of secondary production and invertebrate taxa assemblages that diverged from the control at all concentrations tested. Comparatively, intermediate doses of the DWB recipe had little consequence or increased secondary production (for emergence only) and had assemblages less different from the control. Only the highest dose of the DWB recipe had a negative impact on certain ecologies. The MTM recipe appeared more toxic, but overall, for both types of resource extraction wastewaters, the mesocosm responses suggested significant changes in stream ecology would not be expected for specific conductivity below 300 µS/cm, a published aquatic life benchmark suggested for the region.

12.
J Environ Manage ; 319: 115764, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35982565

RESUMO

Arid and semiarid regions account for âˆ¼ 40% of the world's land area. Rivers and lakes in these regions provide sparse, but valuable, water resources for the fragile environments, and play a vital role in the development and sustainability of local societies. During the late 1980s, the climate of arid and semiarid northwest China dramatically changed from "warm-dry" to "warm-wet". Understanding how these environmental changes and anthropogenic activities affect water quantity and quality is critically important for protecting aquatic ecosystems and determining the best use of freshwater resources. Lake Bosten is the largest inland freshwater lake in NW China and has experienced inter-conversion between freshwater and brackish status. Herein, we explored the long-term water level and salinity trends in Lake Bosten from 1958 to 2019. During the past 62 years, the water level and salinity of Lake Bosten exhibited inverse "W-shaped" and "M-shaped" patterns, respectively. Partial least squares path modeling (PLS-PM) suggested that the decreasing water level and salinization during 1958-1986 were mainly caused by anthropogenic activities, while the variations in water level and salinity during 1987-2019 were mainly affected by climate change. The transformation of anthropogenic activities and climate change is beneficial for sustainable freshwater management in the Lake Bosten Catchment. Our findings highlight the benefit of monitoring aquatic environmental changes in arid and semi-arid regions over the long-term for the purpose of fostering a balance between socioeconomic development and ecological protection of the lake environment.


Assuntos
Mudança Climática , Ecossistema , Efeitos Antropogênicos , China , Monitoramento Ambiental , Lagos , Água
13.
Environ Toxicol Chem ; 41(11): 2782-2796, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35975448

RESUMO

The increasing salinization of freshwater streams from anthropogenic land uses and activities is a growing global environmental problem. Increases in individual ions (such as sodium or chloride) and combined measures such as total dissolved solids (TDS) threaten drinking water supplies, agricultural and economic interests, and the ecological health of freshwater streams. Because the toxicity of high ionic strength waters depends on the specific ion composition, few water quality standards exist to protect freshwater streams from salinization. In the present study, we used a novel approach to develop site-specific and ecologically relevant TDS thresholds for the protection of aquatic life. The first step of the approach was to characterize the ion composition of the waterbody or region of interest and prepare artificial samples to match that composition. Using a combination of standardized toxicity test species and more ecologically relevant field-collected species, toxicity tests were then conducted on these artificial samples prepared at a range of TDS concentrations. The advantage of this approach is that water quality criteria can be developed for easy-to-measure generalized parameters such as TDS while ensuring that the criteria are protective of instream aquatic life and account for the complex interactions of the various ions contributing to salinization. We tested this approach in Sand Branch, Loudoun County, Virginia, USA, where salinization from hard rock mining and urban runoff has impaired aquatic life. Acute and chronic TDS thresholds of 938 and 463 mg/L, respectively, were developed in this stream and used for total maximum daily load development in the watershed. The approach provides a potential model for establishing protective thresholds for other waterbodies impacted by salinization. Environ Toxicol Chem 2022;41:2782-2796. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Água Potável , Poluentes Químicos da Água , Cloretos/toxicidade , Epicloroidrina , Areia , Sódio , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade
14.
Environ Monit Assess ; 194(4): 257, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35257235

RESUMO

The upper Kodaganar basin, located in Dindigul district of Tamil Nadu, India, is composed of hard rock terrain. Groundwater is the major source of domestic and irrigation needs and it is being contaminated by tannery wastewater that is discharged into the nearby Sengulam Lake. The main aim of this work was to develop a contaminant transport model using the total dissolved solids (TDS) concentration of groundwater measured in the basin. The model was developed to predict the fate of contaminant in the aquifer. The TDS concentrations in the wells ranged from 249 to 20,120 mg/L, wherein extremely high values were observed in some of the severely contaminated wells. Three scenarios were proposed to predict the fate of the contaminant and to mitigate the effect of contaminant on groundwater receptors for the year 2020: scenario I: developed with the existing discharge conditions; scenario II: developed with discharge as per the standards; scenario III: developed with zero discharge. The results of this study showed that scenario III reduced the contaminated area from 12 km2 to 6 km2. The reduction in area for different concentration contours, namely 2000 mg/L, 5000 mg/L, 10,000 mg/L, and 15,000 mg/L, was 2 km2, 0.5 km2, 0.2 km2, and 0.1 km2, respectively, and the groundwater remediation was expected to take 2050 years. Hence, there is an urgent need for the application of clean and resource efficient technologies in process industries, and the implementation of suitable wastewater treatment technologies to prevent ground water pollution in the region.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Índia , Poluentes Químicos da Água/análise , Poços de Água
15.
Bioresour Technol ; 348: 126751, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35066131

RESUMO

Sulfur autotrophic denitrification (SAD) filters are considered a promising technology due to their stable and excellent performance in nitrogen removal, affordable costs, and operational advantages. In this work, a novel operational strategy that employed sodium bicarbonate as an alkalinity source in the autotrophic denitrification filter (S-SAD) was established. With the sufficient supply of alkalinity, the S-SAD reached an excellent denitrification performance (98.01%±0.43%) with a nitrate concentration of 10 mg/L in influent and hydraulic retention time of 3 hrs. The total dissolved solids increment and sulfate concentration in effluent were significantly reduced by one-third, compared with that of the traditional SAD process under the same conditions. The analysis of microbial community indicated that Thiobacilhus, typical species with the functions of simultaneous sulfur oxidation and denitrification, was evidently enriched in the S-SAD. Thus, this present work demonstrated a feasible, relatively cost-effective and environmentally friendly approach to operate SAD towards further application.


Assuntos
Desnitrificação , Sulfatos , Processos Autotróficos , Reatores Biológicos , Nitratos , Nitrogênio , Enxofre
16.
Environ Sci Pollut Res Int ; 29(21): 31278-31292, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35006568

RESUMO

The regular practice of using sodium chloride to preserve raw animal skin triggers increasing salinity and total dissolved solids (TDS) in the surface and groundwater during rehydration soaking operations. The process disrupts the lives of animals, plants, and human beings. This paper is focused on the phyto-based short-term preservation of goatskin to reduce salinity in tannery soaking operations. The indigenous Persicaria hydropiper leaf was investigated to assess the preservation of animal skin to diminish salinity and TDS of tannery soaking wastewater. Methanol-extracted leaf was characterized by GC-MS and FTIR for chemical composition analysis and affiliated functional groups. Fresh goatskins were preserved at the preliminary, laboratory, and pilot-scale scenarios to establish the best possible mixture and monitor the moisture and nitrogen content, shrinkage temperature, microorganism analysis, and pollution load at each level. The processed leathers derived from the preserved skins with an optimal mixture of 10% leaf paste with 8% salt and conventional 50% salt were tested for their physical strength. Finally, the modification in fiber structure due to the varieties of preserving chemicals was evaluated through a scanning electron microscope (SEM) and detected insignificant variation of leather fibers. The findings reported in this study can be applied to the industrial level and remove certain amounts of salinity and TDS from tannery soaking wastewater.


Assuntos
Curtume , Águas Residuárias , Animais , Salinidade , Pele/química , Cloreto de Sódio/análise , Águas Residuárias/análise
17.
Environ Sci Pollut Res Int ; 29(3): 3763-3772, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34392486

RESUMO

Sodium chloride (NaCl) is commonly used as a curing/preservative agent for raw hides and skins in tanneries and is removed through a soaking process with total dissolved solids (TDS) and other organic pollutants in effluent, causing significant pollution load to the environment. Hence, the present study evaluated to apply dried neem leaf powder (DNL) as an additive to reduce the usage of salt in skin processing and preservation. To make certain of DNL antimicrobial properties, solvent extracts were performed against proteolytic bacteria isolated from raw skins. Initial characterization of DNL revealed the presence of bioactive compounds nimbolide and dehydro salannol and acetone extract with 16.9-mm, 10-mm and 8-mm zone of inhibition against Salmonella sp., E. coli sp. and Bacillus sp. identified using phenotypic conventional biochemical screening method. Further, skin curing experiments were carried out using four different treatments of DNL (10% 15%, 20% and 25% w/w) along with 15% w/w of conventional salt to obtain an optimum concentration for pilot-scale studies. Thus, the application of optimal DNL (15%) and salt (15%) resulted in no physical changes such as smell and hair slip and was taken for further studies for hydroxyproline activity, pollution load and organoleptic properties along compared with control 40% salt. DNL-aided salt less preservation of freshly flayed goat skins at ambient condition showed no hair slip or putrefaction during the preservation period with significant reduction of TDS (86%) and chloride (71%) in soak liquors compared to conventional salt preservation and enhanced organic load requiring additional treatment. However, the application of the organoleptic, physical and hydrothermal properties of resulting leathers produced from the DNL applied skins was on par with results of leather obtained from conventional salt. Thus, our results demonstrate DNL-aided salt less preservation method is able to reduce the amount of salt for preservation of goat skins significantly, leading to reduced salinity issues during leather processing.


Assuntos
Cloreto de Sódio , Curtume , Animais , Escherichia coli , Folhas de Planta , Pós , Pele
18.
Front Microbiol ; 12: 767132, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938280

RESUMO

The present study focuses on determining the phyto-treatment efficiency for treatment of moderately saline wastewater using organic raw materials, such as rice husk, coconut husk, rice straw, and charcoal. The moderately saline wastewater with total dissolved solids (TDS) concentration up to 6143.33 ± 5.77 mg/L was applied to the lysimeters at the rate of 200 m3 ha-1 day-1 in five different lysimeter treatments planted with Eucalyptus camaldulensis (T1, T2, T3, T4, and T5). T1 was a control without any filter bedding material, whereas rice straw, rice husk, coconut husk, and charcoal were used as filter bedding materials in the T2, T3, T4, and T5 treatment systems, respectively. Each treatment showed significant treatment efficiency wherein T3 had the highest removal efficiency of 76.21% followed by T4 (67.57%), T5 (65.18%), T2 (46.46%), and T1 (45.5%). T3 and T4 also showed higher salt accumulation, such as sodium (Na) and potassium (K). Further, the pollution load in terms of TDS and chemical and biological oxygen demand significantly reduced from leachate in the T3 and T4 treatments in comparison with other treatments. Parameters of the soil, such as electrical conductivity, exchangeable sodium percentage, and cation exchange capacity did not show values corresponding to high salinity or sodic soils, and therefore, no adverse impact on soil was observed in the present study. Also, Eucalyptus camaldulensis plant species showed good response to wastewater treatment in terms of growth parameters, such as root/shoot weight and nitrogen, phosphorus, and potassium (NPK) uptake, plant height, biomass, and chlorophyll content. Root and shoot dry weight were in the order T3 (51.2 and 44.6 g)>T4 (49.3 and 43.5 g) > T5 (47.6 and 40.5 g) > T2 (46.9 and 38.2 g) > T1 (45.6 and 37.1 g). Likewise, the total chlorophyll content was highest in T3 (12.6 µg/g) followed by T4 (12.3 µg/g), T5 (11.9 µg/g), T2 (11.5 µg/g), and the control, that is, T1 (11.0 µg/g). However, the most promising results were obtained for T3 and T4 treatments in comparison with the control (T1), which implies that, among all organic raw materials, coconut and rice husks showed the highest potential for salt accumulation and thereby wastewater treatment. Conclusively, the findings of the study suggest that organic raw material-based amendments are useful in managing the high salts levels in both plants and leachates.

19.
Saudi J Biol Sci ; 28(8): 4605-4612, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34354446

RESUMO

This study was conducted to evaluate the quality of water in selected dams in Albaha region, Kingdom of Saudi Arabia. Water samples from eight dams were subjected to physical, chemical, and bacteriological assessment using standardized procedures of conductivity, total dissolved solids, ions, acidity & alkalinity, and EC blue 100® coliform detection. About three fourth (75%) of dams' water samples exceeded the permissible levels of pH, total dissolved solids, turbidity, Mn and NO3 set by Saudi standards. Average levels of total dissolved solids, Fe, Mn, SO4, NO3, and NO2 were 3065.00, 0.10, 0.89, 68.25, 17.91 and 0.016 mg/L, respectively. However, the average pH of water samples was 7.95 ±â€¯0.66 which still within the accepted range set by national and global standards. Moreover, total dissolved solids also exceeded regular standards of Food and Agriculture Organization for irrigation water quality. Coliform bacteria were detected in 37.5% of dams without any significant spatial differences between dams and sites as groups. Correlations were found between pH & NO3, SO4 & NO3, coliform bacteria & turbidity, coliform bacteria & NO2 levels. Increased concentrations of assessed parameters in dams may be attributed to agricultural activities as well as animal and human wastes deposited into dams via rainfalls and flash floods. Proper treatment of dams needs to be taken into account before consumption and irrigation.

20.
Huan Jing Ke Xue ; 42(5): 2251-2259, 2021 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-33884794

RESUMO

To reveal the Beijing-Hangzhou Grand Canal natural water chemistry characteristics and the influence of human activities, river samples from Xuzhou to Jiaxing were collected in 2019-2020. Simultaneously, the water chemistry data of the canal from 1959 to 1962 and 1975 to 1977 in the Suzhou, Wuxi, and Changzhou sections and the recent social and economic data of the major cities along the canal were collected and analyzed. The results showed that the type of hydrochemistry in the study area was mainly influenced by the weathering of carbonate rocks in the basin, but K++Na+ accounted for 40.39% of the cation equivalent concentration, which was higher than that in ordinary surface water, thereby indicating that the natural hydrochemistry of the canal had been significantly affected by human factors. Spatially, the major ion mass concentrations, total hardness, and total alkalinity of the Grand Canal from Xuzhou station to the downstream area tended to decrease overall, but the parameters at Wuxi and Suzhou stations increased significantly. It was found that Na+ and SO42- were increased by approximately 16 and 12 times and total dissolved solids was increased by nearly 3 times by analyzing the 60 years of water chemistry of the Suzhou, Wuxi, and Changzhou sections. The current (Ca2++Mg2+)/HCO3- ratio in the Suzhou, Wuxi, and Changzhou sections is generally greater than 1, which is significantly higher than that from 1959 to 1962, thereby reflecting the results of human activities. According to the analysis of the social and economic development of the Grand Canal, this change was the result of the accelerated weathering of carbonate rocks in the basin caused by the sulfur oxides discharged by human activities. Further statistical analysis showed that urban domestic sewage and industrial wastewater discharge were the main driving factors causing chemical salinization of natural water in the Grand Canal. This study can provide a scientific basis for coordinating urban development and protecting the water ecological environment of the Grand Canal Basin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA