Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomimetics (Basel) ; 9(7)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39056886

RESUMO

This paper presents a three-dimensional fluid-structure-coupled simulation of a flexible caudal fin with different trailing-edge shapes. The influences of caudal-fin shape on hydrodynamic performance are investigated by comparing the results of a simplified model of a square caudal fin with forked and deeply forked caudal fins under a wider range of non-dimensional flapping frequency, 0.6 < f* < 1.5, where f* is the ratio of flapping frequency to the natural frequency of each caudal fin, i.e., f* = f/fn. The leading edge of each caudal fin is forced to oscillate vertically in a water tank with zero free-stream conditions. The numerical results show that the amount of forking in the geometry of the caudal fin has significant effects on its hydrodynamic performance. A comparison of thrust coefficients shows that the square caudal fin has a greater thrust coefficient in the non-dimensional frequency range of 0.6 < f* < 1.2, while the deeply forked caudal fin generates higher thrust when 1.2 < f* < 1.5. In terms of propulsive efficiency, the square caudal fin is more efficient when 0.6 < f* < 0.9, while the propulsive efficiency of a deeply forked caudal fin is significantly enhanced when 0.9 < f* < 1.5. Based on our results, the deeply forked caudal fin has greater thrust coefficients and a higher propulsive efficiency in a higher frequency range than the natural frequency of each caudal fin. The thrust characteristics and flow fields around each caudal fin are investigated in detail.

2.
Biomimetics (Basel) ; 9(6)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38921192

RESUMO

Variable camber wing technology stands out as the most promising morphing technology currently available in green aviation. Despite the ongoing advancements in smart materials and compliant structures, they still fall short in terms of driving force, power, and speed, rendering mechanical structures based on kinematics the preferred choice for large long-range civilian aircraft. In line with this principle, this paper introduces a linkage-based variable camber trailing edge design approach. Covering coordinated design, internal skeleton design, flexible skin design, and drive structure design, the method leverages a two-dimensional supercritical airfoil to craft a seamless, continuous two-dimensional wing full-size variable camber trailing edge structure, boasting a 2.7 m span and 4.3 m chord. Given the significant changes in aerodynamic load direction, ground tests under cruise load utilize a tracking-loading system based on tape and lever. Results indicate that the designed single-degree-of-freedom Watt I mechanism and Stephenson III drive mechanism adeptly accommodate the slender trailing edge of the supercritical airfoil. Under a maximum cruise vertical aerodynamic load of 17,072 N, the structure meets strength requirements when deflected to 5°. The research in this paper can provide some insights into the engineering design of variable camber wings.

3.
Front Robot AI ; 11: 1362206, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774469

RESUMO

Recent exploration in insect-inspired robotics has generated considerable interest. Among insects navigating at low Reynolds numbers, mosquitoes exhibit distinct flight characteristics, including higher wingbeat frequencies, reduced stroke amplitudes, and slender wings. This leads to unique aerodynamic traits such as trailing edge vortices via wake capture, diminished reliance on leading vortices, and rotational drag. This paper shows the energetic analysis of a mosquito-inspired flapping-wing Pico aerial vehicle during hovering, contributing insights to its future design and fabrication. The investigation relies on kinematic and quasi-steady aerodynamic modeling of a symmetric flapping-wing model with a wingspan of approximately 26 mm, considering translational, rotational, and wake capture force components. The control strategy adapts existing bird flapping wing approaches to accommodate insect wing kinematics and aerodynamic features. Flight controller design is grounded in understanding the impact of kinematics on wing forces. Additionally, a thorough analysis of the dynamic stability of the mosquito-inspired PAV model is conducted, revealing favorable controller response and maneuverability at a small scale. The modified model, incorporating rigid body dynamics and non-averaged aerodynamics, exhibits weak stability without a controller or sufficient power density. However, the controller effectively stabilizes the PAV model, addressing attitude and maneuverability. These preliminary findings offer valuable insights for the mechanical design, aerodynamics, and fabrication of RoboMos, an insect-inspired flapping wing pico aerial vehicle developed at UPM Malaysia.

4.
Biomimetics (Basel) ; 9(5)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38786503

RESUMO

According to the Magnus principle, a rotating cylinder experiences a lateral force perpendicular to the incoming flow direction. This phenomenon can be harnessed to boost the lift of an airfoil by positioning a rotating cylinder at the leading edge. In this study, we simulate flapping-wing motion using the sliding mesh technique in a heaving coordinate system to investigate the energy harvesting capabilities of Magnus effect flapping wings (MEFWs) featuring a leading-edge rotating cylinder. Through analysis of the flow field vortex structure and pressure distribution, we explore how control parameters such as gap width, rotational speed ratio, and phase difference of the leading-edge rotating cylinder impact the energy harvesting characteristics of the flapping wing. The results demonstrate that MEFWs effectively mitigate the formation of leading-edge vortices during wing motion. Consequently, this enhances both lift generation and energy harvesting capability. MEFWs with smaller gap widths are less prone to induce the detachment of leading-edge vortices during motion, ensuring a higher peak lift force and an increase in the energy harvesting efficiency. Moreover, higher rotational speed ratios and phase differences, synchronized with wing motion, can prevent leading-edge vortex generation during wing motion. All three control parameters contribute to enhancing the energy harvesting capability of MEFWs within a certain range. At the examined Reynolds number, the optimal parameter values are determined to be a∗ = 0.0005, R = 3, and ϕ0 = 0°.

5.
Mov Ecol ; 12(1): 28, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627871

RESUMO

PURPOSE: Trailing-edge populations at the low-latitude, receding edge of a shifting range face high extinction risk from climate change unless they are able to track optimal environmental conditions through dispersal. METHODS: We fit dispersal models to the locations of 3165 individually-marked black-throated blue warblers (Setophaga caerulescens) in the southern Appalachian Mountains in North Carolina, USA from 2002 to 2023. Black-throated blue warbler breeding abundance in this population has remained relatively stable at colder and wetter areas at higher elevations but has declined at warmer and drier areas at lower elevations. RESULTS: Median dispersal distance of young warblers was 917 m (range 23-3200 m), and dispersal tended to be directed away from warm and dry locations. In contrast, adults exhibited strong site fidelity between breeding seasons and rarely dispersed more than 100 m (range 10-1300 m). Consequently, adult dispersal kernels were much more compact and symmetric than natal dispersal kernels, suggesting adult dispersal is unlikely a driving force of declines in this population. CONCLUSION: Our findings suggest that directional natal dispersal may mitigate fitness costs for trailing-edge populations by allowing individuals to track changing climate and avoid warming conditions at warm-edge range boundaries.

6.
Glob Chang Biol ; 30(4): e17271, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613240

RESUMO

Ecological and evolutionary theories have proposed that species traits should be important in mediating species responses to contemporary climate change; yet, empirical evidence has so far provided mixed evidence for the role of behavioral, life history, or ecological characteristics in facilitating or hindering species range shifts. As such, the utility of trait-based approaches to predict species redistribution under climate change has been called into question. We develop the perspective, supported by evidence, that trait variation, if used carefully can have high potential utility, but that past analyses have in many cases failed to identify an explanatory value for traits by not fully embracing the complexity of species range shifts. First, we discuss the relevant theory linking species traits to range shift processes at the leading (expansion) and trailing (contraction) edges of species distributions and highlight the need to clarify the mechanistic basis of trait-based approaches. Second, we provide a brief overview of range shift-trait studies and identify new opportunities for trait integration that consider range-specific processes and intraspecific variability. Third, we explore the circumstances under which environmental and biotic context dependencies are likely to affect our ability to identify the contribution of species traits to range shift processes. Finally, we propose that revealing the role of traits in shaping species redistribution may likely require accounting for methodological variation arising from the range shift estimation process as well as addressing existing functional, geographical, and phylogenetic biases. We provide a series of considerations for more effectively integrating traits as well as extrinsic and methodological factors into species redistribution research. Together, these analytical approaches promise stronger mechanistic and predictive understanding that can help society mitigate and adapt to the effects of climate change on biodiversity.


Assuntos
Biodiversidade , Mudança Climática , Filogenia , Geografia , Fenótipo
7.
Biomimetics (Basel) ; 9(2)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38392154

RESUMO

An integrated approach to active flow control is proposed by finding both the drooping leading edge and the morphing trailing edge for flow management. This strategy aims to manage flow separation control by utilizing the synergistic effects of both control mechanisms, which we call the combined morphing leading edge and trailing edge (CoMpLETE) technique. This design is inspired by a bionic porpoise nose and the flap movements of the cetacean species. The motion of this mechanism achieves a continuous, wave-like, variable airfoil camber. The dynamic motion of the airfoil's upper and lower surface coordinates in response to unsteady conditions is achieved by combining the thickness-to-chord (t/c) distribution with the time-dependent camber line equation. A parameterization model was constructed to mimic the motion around the morphing airfoil at various deflection amplitudes at the stall angle of attack and morphing actuation start times. The mean properties and qualitative trends of the flow phenomena are captured by the transition SST (shear stress transport) model. The effectiveness of the dynamically morphing airfoil as a flow control approach is evaluated by obtaining flow field data, such as velocity streamlines, vorticity contours, and aerodynamic forces. Different cases are investigated for the CoMpLETE morphing airfoil, which evaluates the airfoil's parameters, such as its morphing location, deflection amplitude, and morphing starting time. The morphing airfoil's performance is analyzed to provide further insights into the dynamic lift and drag force variations at pre-defined deflection frequencies of 0.5 Hz, 1 Hz, and 2 Hz. The findings demonstrate that adjusting the airfoil camber reduces streamwise adverse pressure gradients, thus preventing significant flow separation. Although the trailing-edge deflection and its location along the chord influence the generation and separation of the leading-edge vortex (LEV), these results show that the combined effect of the morphing leading edge and trailing edge has the potential to mitigate flow separation. The morphing airfoil successfully contributes to the flow reattachment and significantly increases the maximum lift coefficient (cl,max)). This work also broadens its focus to investigate the aerodynamic effects of a dynamically morphing leading and trailing edge, which seamlessly transitions along the side edges. The aerodynamic performance analysis is investigated across varying morphing frequencies, amplitudes, and actuation times.

8.
Ecology ; 105(3): e4242, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272470

RESUMO

As ongoing climate change drives suitable habitats to higher elevations, species ranges are predicted to follow. However, observed range shifts have been surprisingly variable, with most species differing in rates of upward shift and others failing to shift at all. Disturbances such as fires could play an important role in accelerating range shifts by facilitating recruitment in newly suitable habitats (leading edges) and removing adults from areas no longer suited for regeneration (trailing edges). To date, empirical evidence that fires interact with climate change to mediate elevational range shifts is scarce. Resurveying historical plots in areas that experienced climate change and fire disturbance between surveys provides an exciting opportunity to fill this gap. To investigate whether species have tended to shift upslope and if shifts depend on fires, we resurveyed historical vegetation plots in North Cascades National Park, Washington, USA, an area that has experienced warming, drying, and multiple fires since the original surveys in 1983. We quantified range shifts by synthesizing across two lines of evidence: (1) displacement at range edges and the median elevation of species occurrences, and (2) support for the inclusion of interactions among time, fire and elevation in models of species presence with elevation. Among species that experienced fire since the original survey, a plurality expanded into new habitats at their upper edge. In contrast, a plurality of species not experiencing fire showed no evidence of shifts, with the remainder exhibiting responses that were variable in magnitude and direction. Our results suggest that fires can facilitate recruitment at leading edges, while species in areas free of disturbance are more likely to experience stasis.


Assuntos
Ecossistema , Florestas , Árvores/fisiologia , Mudança Climática , Washington
9.
Ann Bot ; 133(1): 51-60, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-37946547

RESUMO

BACKGROUND AND AIMS: Marine heatwaves (MHWs) are widely recognized as pervasive drivers of ecosystem change, yet our understanding of how different MHW properties mediate ecological responses remains largely unexplored. Understanding MHW impacts on foundation species is particularly important, given their structural role in communities and ecosystems. METHODS: We simulated a series of realistic MHWs with different levels of intensity (Control: 14 °C, Moderate: 18 °C, Extreme: 22 °C) and duration (14 or 28 d) and examined responses of two habitat-forming kelp species in the southwest UK. Here, Laminaria digitata reaches its trailing edge and is undergoing a range contraction, whereas Laminaria ochroleuca reaches its leading edge and is undergoing a range expansion. KEY RESULTS: For both species, sub-lethal stress responses induced by moderate-intensity MHWs were exacerbated by longer duration. Extreme-intensity MHWs caused dramatic declines in growth and photosynthetic performance, and elevated bleaching, which were again exacerbated by longer MHW duration. Stress responses were most pronounced in L. ochroleuca, where almost complete tissue necrosis was observed by the end of the long-duration MHW. This was unexpected given the greater thermal safety margins assumed with leading edge populations. It is likely that prolonged exposure to sub-lethal thermal stress exceeded a physiological tipping point for L. ochroleuca, presumably due to depletion of internal reserves. CONCLUSIONS: Overall, our study showed that exposure to MHW profiles projected to occur in the region in the coming decades can have significant deleterious effects on foundation kelp species, regardless of their thermal affinities and location within respective latitudinal ranges, which would probably have consequences for entire communities and ecosystems.


Assuntos
Algas Comestíveis , Kelp , Laminaria , Ecossistema
10.
Environ Sci Pollut Res Int ; 31(27): 39077-39097, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38102425

RESUMO

The concept of "smart rotor" is an evolving advancement in wind turbine which enables an intelligent active flow control in rotor. The deformable trailing edge flap (DTEF) is a part of smart rotor concept which implements a customized active load control. The trailing edge flap actuator effectively replaces the tedious blade pitch actuation and conserves the actuation energy required for pitching the entire blade. The DTEFs require a fast computing, anticipatory controller for optimally tuning the flap angle with minimal power compromise. This work analyzes the performance of advanced control strategies like model predictive control (MPC), adaptive MRAC control, and DQ controllers. The MRAC controller is found to reduce the fatigue stress by 40% and the MPC controller damps up to 70% more efficiently than the typical feedback controller. The control strategies are aided by the LiDAR-based preview wind data for the active manipulation of trailing edge flap angle ( θ flap ) control. The validation of proposed controller is done using power analysis curve and the component fatigue lifetime analysis using MLIFE software. The above analyses are done in NREL Onshore 5-MW FAST wind turbine model which could be interfaced with MATLAB with modified AeroDyn code for active flap deflection.


Assuntos
Vento , Modelos Teóricos
11.
Bioinspir Biomim ; 19(1)2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37939389

RESUMO

As one of the unique owl-wing morphologies, trailing-edge (TE) fringes are believed to play a critical role in the silent flight of owls and have been widely investigated using idealized single/tandem airfoils. However, the effect of TE fringes and associated mechanisms on the aeroacoustics of owl wings, which feature curved leading edges, wavy TEs, and several feather slots at the wingtips, have not yet been addressed. In this study, we constructed two 3D owl wing models, one with and one without TE fringes, based on the geometric characteristics of a real owl wing. Large-eddy simulations and the Ffowcs Williams‒Hawkings analogy were combined to resolve the aeroacoustic characteristics of the wing models. Comparisons of the computed aerodynamic forces and far-field acoustic pressure levels demonstrate that the fringes on owl wings can robustly suppress aerodynamic noise while sustaining aerodynamic performance comparable to that of a clean wing. By visualizing the near-field flow dynamics in terms of flow and vortex structures as well as flow fluctuations, the mechanisms of TE fringes in owl wing models are revealed. First, the TE fringes on owl wings are reconfirmed to robustly suppress flow fluctuations near the TE by breaking up large TE vortices. Second, the fringes are observed to effectively suppress the shedding of wingtip vortices by mitigating the flow interaction between feathers (feather-slot interaction). These complementary mechanisms synergize to enhance the robustness and effectiveness of the TE fringe effects in owl wing models, in terms of aerodynamic force production and noise suppression. This study thus deepens our understanding of the role of TE fringes in real owl flight gliding and points to the validity and feasibility of employing owl-inspired TE fringes in practical applications of low-noise fluid machinery.


Assuntos
Estrigiformes , Animais , Modelos Biológicos , Voo Animal , Asas de Animais , Plumas , Fenômenos Biomecânicos
12.
Ecol Monogr ; 93(1): e1559, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37035418

RESUMO

Understanding the demographic drivers of range contractions is important for predicting species' responses to climate change; however, few studies have examined the effects of climate change on survival and recruitment across species' ranges. We show that climate change can drive trailing edge range contractions through the effects on apparent survival, and potentially recruitment, in a migratory songbird. We assessed the demographic drivers of trailing edge range contractions using a long-term demography dataset for the black-throated blue warbler (Setophaga caerulescens) collected across elevational climate gradients at the trailing edge and core of the breeding range. We used a Bayesian hierarchical model to estimate the effect of climate change on apparent survival and recruitment and to forecast population viability at study plots through 2040. The trailing edge population at the low-elevation plot became locally extinct by 2017. The local population at the mid-elevation plot at the trailing edge gradually declined and is predicted to become extirpated by 2040. Population declines were associated with warming temperatures at the mid-elevation plot, although results were more equivocal at the low-elevation plot where we had fewer years of data. Population density was stable or increasing at the range core, although warming temperatures are predicted to cause population declines by 2040 at the low-elevation plot. This result suggests that even populations within the geographic core of the range are vulnerable to climate change. The demographic drivers of local population declines varied between study plots, but warming temperatures were frequently associated with declining rates of population growth and apparent survival. Declining apparent survival in our study system is likely to be associated with increased adult emigration away from poor-quality habitats. Our results suggest that demographic responses to warming temperatures are complex and dependent on local conditions and geographic range position, but spatial variation in population declines is consistent with the climate-mediated range shift hypothesis. Local populations of black-throated blue warblers near the warm-edge range boundary at low latitudes and low elevations are likely to be the most vulnerable to climate change, potentially leading to local extirpation and range contractions.

13.
Ecol Lett ; 26(5): 805-815, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36946283

RESUMO

Species' distributions are moving polewards in response to climate change, and although range expansions of relatively warm-adapted species are widely reported, reports of range retractions in cool-adapted species are less common. Here, we analysed species' distribution shifts for 76 cool-adapted moths in Great Britain using citizen science occurrence records from the National Moth Recording Scheme over a 40-year period. Although we find evidence for trailing edge shifts to higher latitudes, shifts in species' range centroids are oriented towards the north-west, and are more closely correlated with directional changes in total precipitation than average temperature. We also found that species' local extinction risk is higher in areas where temperature is high and precipitation is low, but this risk diminishes as precipitation increases. Adaptation efforts should therefore focus on maintaining or increasing water availability as the climate continues to change.


Assuntos
Mariposas , Animais , Temperatura , Aclimatação , Adaptação Fisiológica , Mudança Climática , Ecossistema
14.
Glob Chang Biol ; 28(22): 6524-6540, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36054792

RESUMO

Cetaceans are important consumers in marine ecosystems, but few studies have quantified their climate responses. The rapid, directional warming occurring in the Northeast United States (NEUS) provides a unique opportunity to assess climate impacts on cetaceans. We used stranding data to examine changes to the distribution and relative abundance of odontocetes from 1996 to 2020 in both the NEUS and the Southeast United States (SEUS), which is not warming. We conducted simulations to determine the number of stranding events needed to detect a distributional shift for each species given the speed of the shift and the spatial variability in strandings. We compared observed shifts to climate velocity. Smaller sample sizes were needed to detect more rapid poleward shifts, particularly for species with low spatial variability. Poleward shifts were observed in all species with sufficient sample sizes, and shifts were faster than predicted by climate velocity. For species whose trailing edge of distribution occurred in the NEUS, the center of distribution approached the northern limit of the NEUS and relative abundance declined through time, suggesting shifts north out of US waters. The relative abundance of warm water species in the stranding record increased significantly in the NEUS while that of cool water species declined significantly as their distributions shifted north out of the NEUS. Changes in the odontocete community were less apparent in the SEUS, highlighting the importance of regional warming. Observed poleward shifts and changes in species composition suggest a reorganization of the odontocete community in the NEUS in response to rapid warming. We suggest that strandings provide a key dataset for understanding climate impacts on cetaceans given limitations of survey effort and modeling approaches for predicting distributions under rapidly changing conditions. Our findings portend marked changes to the distribution of highly mobile consumer species across international boundaries under continued warming.


Assuntos
Mudança Climática , Ecossistema , Clima , Oceanos e Mares , Água
15.
J Anim Ecol ; 91(5): 1010-1023, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35297500

RESUMO

Parasitism is a key factor in the population dynamics of many herbivorous insects, although its impact on host populations varies widely, for instance, along latitudinal and altitudinal gradients. Understanding the sources of geographical variation in host-parasitoid interactions is crucial for reliably predicting the future success of the interacting species under a context of global change. Here, we examine larval parasitism in the butterfly Aglais urticae in south-west Europe, where it is a mountain specialist. Larval nests were sampled over 2 years along altitudinal gradients in three Iberian mountain ranges, including the Sierra Nevada, home to its southernmost European population. Additional data on nettle condition and adult butterflies were obtained in the study areas. These data sources were used to investigate whether or not differences in parasitism rates are related to the geographical position and phenology of the host, and to the availability of the host plants. Phenological differences in the host populations between regions were related to the severity of summer drought and the corresponding differences in host plant availability. At the trailing-edge of its distribution, the butterfly's breeding season was restricted to the end of winter and spring, while in its northern Iberian range the season was prolonged until mid-summer. Although parasitism was an important source of mortality in all regions, parasitism rates and parasitoid richness were highest in the north and lowest in the south. Moreover, within a region, there was a notable increase in parasitism rates over time, which probably led to selection against an additional late summer host generation in northern regions. Conversely, the shorter breeding season in Sierra Nevada resulted in a loss of synchrony between the host and one important late season parasitoid, Sturmia bella, which may partly explain the high density of this butterfly species at the trailing-edge of its range. Our results support the key role of host phenology in accounting for differences in parasitism rates between populations. They also provide insights into how climate through host plant availability affects host phenology and, ultimately, the impact of parasitism on host populations.


Assuntos
Borboletas , Herbivoria , Animais , Larva , Melhoramento Vegetal , Plantas
16.
Genes Genomics ; 44(4): 405-413, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35066808

RESUMO

BACKGROUND: Cell migration is a basic cellular behavior involved in multiple phenomena in the human body such as embryonic development, wound healing, immune reactions, and cancer metastasis. For proper cell migration, integrin and the ECM binding complex must be disassembled for the retraction of trailing edges. OBJECTIVE: Integrin must be differentially regulated at leading edges or trailing edges during cell migration. Previously, we showed that ITGBL1 was a secreted protein and inhibits integrin activity. Therefore, we examined the function of ITGBL1 on the retraction of trailing edges during cell migration. METHODS: To examined the function of ITGBL1 on cell migration, we knocked-down or overexpressed ITGBL1 by using ITGBL1 siRNA or ITGBL1 plasmid DNA in human chondrocytes or ATDC5 cells. We then characterized cellular migration and directionality by performing wound healing assays. Also, to analyze leading-edge formation and trailing-edge retraction, we labeled cell membranes with membrane-GFP and performed live imaging of migrating cells and. Finally, we specifically detected active forms of integrin, FAK and Vinculin using specific antibodies upon ITGBL1 depletion or overexpression. RESULT: In this study, ITGBL1 preferentially inhibited integrin activity at the trailing edges to promote cell migration. ITGBL1-depleted cells showed increased focal adhesions at the membranous traces of trailing edges to prevent the retraction of trailing edges. In contrast, overexpression of ITGBL1 upregulated directional cell migration by promoting focal adhesion disassembly at the trailing edges. CONCLUSION: ITGBL1 facilitates directional cell migration by promoting disassembly of the trailing edge focal adhesion complex.


Assuntos
Matriz Extracelular , Adesões Focais , Integrina beta1 , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/genética , Adesões Focais/genética , Adesões Focais/metabolismo , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo
17.
Glob Chang Biol ; 28(4): 1477-1492, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34879441

RESUMO

The direction and magnitude of species distribution shifts tend to differ among species and functional types (FTs). Quantifying functional trait variation and species interactions will improve our understanding of the complex mechanisms that govern ecosystem dynamics and their responses to climate change. Here, we analyzed differences in the juvenile and adult temperature ranges of Japanese tree species at the mean, colder edge, and warmer edge of their distributions to reveal how functional traits affect interactions between different FT groups (e.g., deciduous and evergreen broad-leaved trees), using linear models and permutation tests. Overall, juveniles preferred cooler sites, but with high variation. The variation among species was partly explained by the difference in seed mass where species with lighter seeds tend to colonize colder sites. On the other hand, the distribution range of FTs showed complex behavior at the ecotones of different FTs. Specifically, in three of eight ecotones, nonparallel range shifts between FTs were detected, which includes cold shifting in deciduous broad-leaved FT where a warm shift by subalpine FT happened, and cold shifting in subtropical FT where warm shifts by either the deciduous broad-leaved or the evergreen broad-leaved FTs happened. Our results suggest that past warming has caused a general cold shift at species level, whereas different mechanisms, such as light seeds disperse farther in distribution's colder edge and heavy seeds (e.g., evergreen broad-leaved) compete better in warmer edge, create nonparallel responses of FT distribution ranges leading to the observed homogenization at several ecotones among FTs. These complex range shifts at FT level have crucial implications for climate change mitigation and adaptation.


Assuntos
Ecossistema , Florestas , Mudança Climática , Temperatura , Árvores/fisiologia
18.
Micromachines (Basel) ; 12(11)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34832710

RESUMO

Active rotor with trailing-edge flaps is a promising method to alleviate vibrations and noise level of helicopters. Hysteresis of the piezoelectric actuators used to drive the flaps can degrade the performance of an active rotor. In this study, bench-top tests are conducted to measure the nonlinear hysteresis of a double-acting piezoelectric actuator. Based on the experimental data, a rate-dependent hysteresis model is established by combining a Bouc-Wen model and a transfer function of a second order system. Good agreement is exhibited between the model outputs and the measured results for different frequencies. A compound control regime composed of a feedforward compensator and PID (Proportional-Integral-Derivative) feedback control is developed to suppress the hysteresis of this actuator. Bench-top test results demonstrate that this compound control regime is capable to suppress hysteresis at different frequencies from 10 Hz to 60 Hz, and errors between the desired actuator outputs and the measured outputs are reduced dramatically at different frequencies, revealing that this compound control regime has the potential to be implemented in an active helicopter rotor to suppress actuator hysteresis.

19.
Bioinspir Biomim ; 16(5)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34020442

RESUMO

The trailing-edge serration that imitates the silent owl wing is used as a flow control method to suppress the aerodynamic noise generated from the rotating wind turbine blade. Recent studies have found that the addition of serrations could degrade the overall aerodynamic performance of the airfoil. To this end, an optimal design method for airfoils with the trailing-edge serration is developed. Combined with the modeling methods of aerodynamics for serrations, the fundamental parameters of serrations are integrated into the optimal design of wind turbine airfoils. Specifically, based on the existing multidisciplinary optimization method for airfoils, the aerodynamic prediction and evaluation module for the serrated airfoil was introduced to develop an aerodynamic-structural optimal design platform. In this way, a novel serrated airfoil equipped with high aerodynamic performance can be designed. Compared with the reference airfoil, the maximum lift-to-drag ratio and lift coefficient of the optimal serrated airfoil at the design point have been increased by 1.9% and 32.5%, while the aerodynamic noise could also be reduced. Finally, experiments were conducted in an anechoic chamber to verify the noise-reduction level of the optimal serrated airfoil, which sufficiently demonstrate the capability to improve the comprehensive performance of the airfoil using such a developed optimal scheme.


Assuntos
Voo Animal , Modelos Biológicos , Animais , Ruído , Asas de Animais
20.
Philos Trans A Math Phys Eng Sci ; 377(2159): 20190070, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31607251

RESUMO

The extended introduction in this paper reviews the theoretical modelling of leading- and trailing-edge noise, various bioinspired aerofoil adaptations to both the leading and trailing edges of blades, and how these adaptations aid in the reduction of aerofoil-turbulence interaction noise. Attention is given to the agreement between current theoretical predictions and experimental measurements, in particular, for turbulent interactions at the trailing edge of an aerofoil. Where there is a poor agreement between theoretical models and experimental data the features neglected from the theoretical models are discussed. Notably, it is known that theoretical predictions for porous trailing-edge adaptations do not agree well with experimental measurements. Previous works propose the reason for this: theoretical models do not account for surface roughness due to the porous material and thus omit a key noise source. The remainder of this paper, therefore, presents an analytical model, based upon the acoustic analogy, to predict the far-field noise due to a rough surface at the trailing edge of an aerofoil. Unlike previous roughness noise models which focus on roughness over an infinite wall, the model presented here includes diffraction by a sharp edge. The new results are seen to be in better agreement with experimental data than previous models which neglect diffraction by an edge. This new model could then be used to improve theoretical predictions for far-field noise generated by turbulent interactions with a (rough) porous trailing edge. This article is part of the theme issue 'Frontiers of aeroacoustics research: theory, computation and experiment'.


Assuntos
Biomimética/métodos , Modelos Teóricos , Ruído , Porosidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA