Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.306
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39356653

RESUMO

Wafer-scale aligned carbon nanotubes (A-CNTs) are promising candidate semiconductors for building high-performance complementary metal-oxide-semiconductor (CMOS) transistors for future integrated circuits (ICs). A-CNT-based p-type field-effect transistors (P-FETs) have demonstrated excellent performance and scalability down to sub-10 nm nodes. However, the development of A-CNT n-type FETs (N-FETs) lags far behind, in regard to their electronic performance and device scaling. In this work, we fabricated top-gated N-FETs based on A-CNTs with a scandium (Sc)-contacted source and drain. High-performance A-CNT N-FETs were demonstrated with record on-state current (Ion) exceeding 1 mA/µm and peak transconductance (gm) of 0.4 mS/µm. Interestingly, the A-CNT N-FETs exhibited abnormal scaling behavior owing to the lateral oxidation of low-work function source/drain contacts, leading to formidable challenges to scale both the gate length (Lg) and the contact length (Lc) at the same time. Understanding of the abnormal scaling behavior contributes to seeking solutions for high-performance A-CNT N-FETs, and it paves the way for future CNT CMOS digital IC technology.

2.
Nanotechnology ; 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39357528

RESUMO

Molybdenum disulfide (MoS2) is a representative two-dimensional layered transition-metal dichalcogenide semiconductor. Layer-number-dependent electronic properties are attractive in the development of nanomaterial-based electronics for a wide range of applications including sensors, switches, and amplifiers. MoS2field-effect transistors (FETs) have been studied as promising future nanoelectronic devices with desirable features of atomic-level thickness and high electrical properties. When a naturally n-doped MoS2is contacted with metals, a strong Fermi-level pinning effect adjusts a Schottky barrier and influences its electronic characteristics significantly. In this study, we investigate multilayer MoS2Schottky barrier FETs (SBFETs), emphasizing the metal-contact impact on device performance via computational device modeling. We find that p-type MoS2 SBFETs may be built with appropriate metals and gate voltage control. Furthermore, we propose ambipolar multilayer MoS2 SBFETs with asymmetric metal electrodes, which exhibit gate-voltage dependent ambipolar transport behavior through optimizing metal contacts in MoS2 device. Introducing a dual-split gate geometry, the MoS2SBFETs can further operate in four distinct configurations: p - p, n - n, p - n, and n - p. Electrical characteristics are calculated, and improved performance of a high rectification ratio can be feasible as an attractive feature for efficient electrical and photonic devices.

3.
ACS Nano ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39360785

RESUMO

Spiking neural networks (SNNs) are attracting increasing interests for their ability to emulate biological processes, offering energy-efficient computation and event-driven processing. Currently, no devices are known to combine both neuronal and synaptic functions. This study presents an experimental demonstration of an ambipolar WSe2 n-type/p-type ferroelectric field-effect transistor (n/p-FeFET) integrated with ferroelectric Hf0.5Zr0.5O2 (HZO) to achieve both volatile and nonvolatile properties in a single device. The nonvolatile n-FeFET, driven by the stable ferroelectric properties of HZO, exhibits highly linear synaptic behavior. In contrast, the volatile p-FeFET, influenced by electron self-compensation in the ambipolar WSe2, enables self-resetting leaky-integrate-and-fire neurons. Integrating neuronal and synaptic functions in the same device allows for compact neuromorphic computing applications. Additionally, simulations of SNNs using experimentally calibrated synaptic and neuronal models achieved a 93.8% accuracy in MNIST digit recognition. This innovative approach advances the development of SNNs with high biomimetic fidelity and reduced hardware costs.

4.
Artigo em Inglês | MEDLINE | ID: mdl-39226426

RESUMO

Historically, knowledge of the molecular packing within the crystal structures of organic semiconductors has been instrumental in understanding their solid-state electronic properties. Nowadays, crystal structures are thus becoming increasingly important for enabling engineering properties, understanding polymorphism in bulk and in thin films, exploring dynamics and elucidating phase-transition mechanisms. This review article introduces the most salient and recent results of the field.

5.
Nano Lett ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39269918

RESUMO

Solution-processable electrodes are promising for next-generation electronics due to their simplicity, cost-effectiveness, and potential for large-area fabrication. However, current solution-processable electrodes based on conductive polymers, carbon-based compounds, and metal nanowires face challenges related to stability, patterning, and production scalability. Here we introduce a novel approach using 3D tin halide perovskites (THPs) combined with a photolithography-free solution patterning technique to fabricate solution-processed electrodes. We demonstrate the preparation of highly conductive CsSnI3 films (234.9 S cm-1) and the fabrication of patterned 35 × 35 perovskite electrode arrays on a 4-in. silicon wafer. These electrodes, used as source/drain electrodes in organic transistors, resulted in devices showing high uniformity and stability. This electrode fabrication strategy is also applicable to other 3D THPs like FASnI3 and MASnI3, showcasing versatility for diverse applications. The results highlight the feasibility and advantages of using 3D THPs as solution-processable electrodes, providing a new material system for the advancement of solution-processed electronics.

6.
Nanomaterials (Basel) ; 14(17)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39269071

RESUMO

As the trajectory of transistor scaling defined by Moore's law encounters challenges, the paradigm of ever-evolving integrated circuit technology shifts to explore unconventional materials and architectures to sustain progress. Two-dimensional (2D) semiconductors, characterized by their atomic-scale thickness and exceptional electronic properties, have emerged as a beacon of promise in this quest for the continued advancement of field-effect transistor (FET) technology. The energy-efficient complementary circuit integration necessitates strategic engineering of both n-channel and p-channel 2D FETs to achieve symmetrical high performance. This intricate process mandates the realization of demanding device characteristics, including low contact resistance, precisely controlled doping schemes, high mobility, and seamless incorporation of high- κ dielectrics. Furthermore, the uniform growth of wafer-scale 2D film is imperative to mitigate defect density, minimize device-to-device variation, and establish pristine interfaces within the integrated circuits. This review examines the latest breakthroughs with a focus on the preparation of 2D channel materials and device engineering in advanced FET structures. It also extensively summarizes critical aspects such as the scalability and compatibility of 2D FET devices with existing manufacturing technologies, elucidating the synergistic relationships crucial for realizing efficient and high-performance 2D FETs. These findings extend to potential integrated circuit applications in diverse functionalities.

7.
Angew Chem Int Ed Engl ; : e202416288, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39291657

RESUMO

We present a series of newly developed donor-acceptor (D-A) polymers designed specifically for organic electrochemical transistors (OECTs) synthesized by a straightforward route. All polymers exhibited accumulation mode behavior in OECT devices, and tuning of the donor comonomer resulted in a three-order-of-magnitude increase in transconductance. The best polymer gFBT-g2T, exhibited normalized peak transconductance (gm,norm) of 298±10.4 S cm-1 with a corresponding product of charge-carrier mobility and volumetric capacitance, µC*, of 847 F V-1 cm-1 s-1 and a µ of 5.76 cm2 V-1 s-1, amongst the highest reported to date. Furthermore, gFBT-g2T exhibited exceptional temperature stability, maintaining the outstanding electrochemical performance even after undergoing a standard (autoclave) high pressure steam sterilization procedure. Steam treatment was also found to promote film porosity, with the formation of circular 200 - 400 nm voids. These results demonstrate the potential of gFBT-g2T in p-type accumulation mode OECTs, and pave the way for the use in implantable bioelectronics for medical applications.

8.
ACS Appl Mater Interfaces ; 16(38): 51221-51228, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39283973

RESUMO

The development of n-type organic semiconductors (OSCs) has been lagged behind that of p-type OSCs, mainly due to the limited availability of the electron deficient π-conjugated backbones and facile electron trapping by ambient oxidants. Improving the performance of n-type OSCs through n-doping is essential for realizing p-n junction diodes and complementary circuits. Conventional vacuum deposition doping is costly and time-consuming, while solution doping risks thermal damage through necessary annealing. Therefore, the development of a simpler, more affordable n-doping method is crucial. In this study, we have developed a solution-processed n-doping method using an organic cationic dye in a low boiling point solvent that can be dried at room temperature in 1 h, which eliminates the need for annealing. The effects of different organic cationic dyes and reducing agents on the n-type OSC were evaluated. After n-doping, electron mobility and photoresponsivity in the sample increased by 5.5 and 20 times, respectively, compared to undoped samples. Furthermore, there was no significant degradation in the electron mobility of the n-doped samples under ambient conditions after 15 days. Studying n-doping with various organic cationic dyes in different OSC materials, embracing further research into their applications and mechanisms, would advance the field of organic electronics.

9.
ACS Appl Mater Interfaces ; 16(38): 51229-51240, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39285684

RESUMO

The recent past has witnessed remarkable progress in organic electronics, driven by the quest for flexible, lightweight, and cost-effective electronic devices. Semiconducting polymers (SCPs) have emerged as key materials in this field, offering unique electronic and optoelectronic properties along with mechanical flexibility. This study focuses on designing, synthesizing, and utilizing novel donor-acceptor (D-A) copolymer-based SCPs introducing a difluorothiophene moiety in the polymeric backbone. The importance of fluorine substitution for backbone planarity was verified by density functional theory calculations, comparing it with a nonfluorine substituted counterpart. Through the Unidirectional Floating Film Transfer Method (UFTM), we fabricated highly oriented thin films, resulting in increased optical anisotropy with dichroic ratios reaching 19.3 in PC20-FT thin films, one of the highest optical anisotropy observed for solution processable SCP thin films. X-ray diffraction and atomic force microscopy results validated the increase in the crystallinity and domain size with the increasing alkyl chain length. Finally, we elucidate these findings in the context of electrical applications by fabricating organic field-effect transistors revealing anisotropic charge transport achieving a promising mobility of 1.24 cm2V-1s-1 and mobility anisotropy of 39.5. This study offers insights into the design principles and performance optimization of SCP-based devices, paving the way for advancements in plastic electronics.

10.
ACS Appl Mater Interfaces ; 16(39): 52753-52765, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39287510

RESUMO

The recent interest in developing low-cost, biocompatible, and lightweight bioelectronic devices has focused on organic electrochemical transistors (OECTs), which have the potential to fulfill these requirements. In this study, three types of poly(3-hexylthiophene) (P3HT)-based block copolymers (BCPs) incorporating different insulating blocks (poly(nbutyl acrylate) (PBA), polystyrene, and poly(ethylene oxide) (PEO)) were synthesized for application in OECTs. The morphological, crystallographic, and electrochemical properties of these BCPs are systematically investigated. Accordingly, P3HT-b-PBA demonstrates superior performance in the KCl-based aqueous electrolyte, with a higher product of mobility and capacitance (µC*) at 170 F s-1 cm-1 V-1 than that of the P3HT homopolymer at 58 F s-1 cm-1 V-1. P3HT-b-PBA exhibits better stability over 50 ON/OFF switching cycles than do other BCPs and P3HT homopolymers. With regard to the performance in the KPF6-based aqueous electrolyte, P3HT-b-PBA outperforms with a higher µC* of 9.2 F s-1 cm-1 V-1 than that of 8.6 F s-1 cm-1 V-1 observed from P3HT. Notably, both polymers exhibited almost no decay in device performance over 110 ON/OFF switching cycles. The strongly different performance of polymers in these two electrolytes is due to the side chain's hydrophobicity and interdigitated lamellar structures, thereby retarding the doping kinetics of the highly hydrated Cl- ions compared with the slightly hydrated PF6- ions. Concerning the improved performance of P3HT-b-PBA, this is attributed to its soft and hydrophobic backbone. Our morphological and crystallographic analyses reveal that P3HT-b-PBA experiences minimal structural disorder when swelled by the electrolyte, maintaining its original structure better than the P3HT homopolymer and the hydrophilic BCP of P3HT-b-PEO. The hydrophobic nature of P3HT-b-PBA contributes to the stability of its backbone structure, ensuring enhanced capacitance during the operation of the OECT operation. These findings provide reassurance about the stability and performance of P3HT-b-PBA in the field of OECT applications. In summary, this study represents the first exploration of P3HT-based BCPs for OECT applications and investigates their structure-performance relationships in mixed ionic-electronic conductors.

11.
Biosensors (Basel) ; 14(9)2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39329818

RESUMO

Current diagnostic and prognostic tests for prostate cancer require specialised laboratories and have low specificity for prostate cancer detection. As such, recent advancements in electrochemical devices for point of care (PoC) prostate cancer detection have seen significant interest. Liquid-biopsy detection of relevant circulating and exosomal nucleic acid markers presents the potential for minimally invasive testing. In combination, electrochemical devices and circulating DNA and RNA detection present an innovative approach for novel prostate cancer diagnostics, potentially directly within the clinic. Recent research in electrochemical impedance spectroscopy, voltammetry, chronoamperometry and potentiometric sensing using field-effect transistors will be discussed. Evaluation of the PoC relevance of these techniques and their fulfilment of the WHO's REASSURED criteria for medical diagnostics is described. Further areas for exploration within electrochemical PoC testing and progression to clinical implementation for prostate cancer are assessed.


Assuntos
Técnicas Eletroquímicas , Sistemas Automatizados de Assistência Junto ao Leito , Neoplasias da Próstata , Humanos , Neoplasias da Próstata/diagnóstico , Masculino , Biópsia Líquida , Prognóstico , Técnicas Biossensoriais , Biomarcadores Tumorais , Ácidos Nucleicos
12.
Nanomaterials (Basel) ; 14(18)2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39330635

RESUMO

The control of the performance of single-walled carbon nanotube (SWCNT) random network-based transistors is of critical importance for their applications in electronic devices, such as complementary metal oxide semiconducting (CMOS)-based logics. In ambient conditions, SWCNTs are heavily p-doped by the H2O/O2 redox couple, and most doping processes have to counteract this effect, which usually leads to broadened hysteresis and poor stability. In this work, we coated an SWCNT network with various common polymers and compared their thin-film transistors' (TFTs') performance in a nitrogen-filled glove box. It was found that all polymer coatings will decrease the hysteresis of these transistors due to the partial removal of charge trapping sites and also provide the stable control of the doping level of the SWCNT network. Counter-intuitively, polymers with electron-withdrawing functional groups lead to a dramatically enhanced n-branch in their transfer curve. Specifically, SWCNT TFTs with poly (vinylidene fluoride) coating show an n-type mobility up to 61 cm2/Vs, with a decent on/off ratio and small hysteresis. The inverters constructed by connecting two ambipolar TFTs demonstrate high gain but with certain voltage loss. P-type or n-type doping from polymer coating layers could suppress unnecessary n- or p-branches, shift the threshold voltage and optimize the performance of these inverters to realize rail-to-rail switching. Similar devices also demonstrate interesting antiambipolar performance with tunable on and off voltage when tested in a different configuration.

13.
Nanomaterials (Basel) ; 14(18)2024 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-39330692

RESUMO

The slowdown of Moore's Law necessitates an exploration of novel computing methodologies, new materials, and advantages in chip design. Thus, carbon-based materials have promise for more energy-efficient computing systems in the future. Moreover, sustainability emerges as a new concern for the semiconductor industry. The production and recycling processes associated with current chips present huge environmental challenges. Electronic waste is a major problem, and sustainable solutions in computing must be found. In this review, we examine an alternative chip design based on nanocellulose, which also features semiconductor properties and transistors. Our review highlights that nanocellulose (NC) is a versatile material and a high-potential composite, as it can be fabricated to gain suitable electronic and semiconducting properties. NC provides ideal support for ink-printed transistors and electronics, including green paper electronics. Here, we summarise various processing procedures for nanocellulose and describe the structure of exclusively nanocellulose-based transistors. Furthermore, we survey the recent scientific efforts in organic chip design and show how fully automated production of such a full NC chip could be achieved, including a Process Design Kit (PDK), expected variation models, and a standard cell library at the logic-gate level, where multiple transistors are connected to perform basic logic operations-for instance, the NOT-AND (NAND) gate. Taking all these attractive nanocellulose features into account, we envision how chips based on nanocellulose can be fabricated using Electronic Design Automation (EDA) tool chains.

14.
Micromachines (Basel) ; 15(9)2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39337775

RESUMO

Polymer dielectric materials have recently attracted attention for their versatile applications in emerging electronic devices such as memory, field-effect transistors (FETs), and triboelectric nanogenerators (TENGs). This review highlights the advances in polymer dielectric materials and their integration into these devices, emphasizing their unique electrical, mechanical, and thermal properties that enable high performance and flexibility. By exploring their roles in self-sustaining technologies (e.g., artificial intelligence (AI) and Internet of Everything (IoE)), this review emphasizes the importance of polymer dielectric materials in enabling low-power, flexible, and sustainable electronic devices. The discussion covers design strategies to improve the dielectric constant, charge trapping, and overall device stability. Specific challenges, such as optimizing electrical properties, ensuring process scalability, and enhancing environmental stability, are also addressed. In addition, the review explores the synergistic integration of memory devices, FETs, and TENGs, focusing on their potential in flexible and wearable electronics, self-powered systems, and sustainable technologies. This review provides a comprehensive overview of the current state and prospects of polymer dielectric-based devices in advanced electronic applications by examining recent research breakthroughs and identifying future opportunities.

15.
Molecules ; 29(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39274836

RESUMO

Field-effect transistors (FETs) based on two-dimensional molybdenum disulfide (2D-MoS2) have great potential in electronic and optoelectronic applications, but the performances of these devices still face challenges such as scattering at the contact interface, which results in reduced mobility. In this work, we fabricated high-performance MoS2-FETs by inserting self-assembling monolayers (SAMs) between MoS2 and a SiO2 dielectric layer. The interface properties of MoS2/SiO2 were studied after the inductions of three different SAM structures including (perfluorophenyl)methyl phosphonic acid (PFPA), (4-aminobutyl) phosphonic acid (ABPA), and octadecylphosphonic acid (ODPA). The SiO2/ABPA/MoS2-FET exhibited significantly improved performances with the highest mobility of 528.7 cm2 V-1 s-1, which is 7.5 times that of SiO2/MoS2-FET, and an on/off ratio of ~106. Additionally, we investigated the effects of SAM molecular dipole vectors on device performances using density functional theory (DFT). Moreover, the first-principle calculations showed that ABPA SAMs reduced the frequencies of acoustic and optical phonons in the SiO2 dielectric layer, thereby suppressing the phonon scattering to the MoS2 channel and further improving the device's performance. This work provided a strategy for high-performance MoS2-FET fabrication by improving interface properties.

16.
Artigo em Inglês | MEDLINE | ID: mdl-39330975

RESUMO

Advances in artificial general intelligence (AGI) necessitate the integration of diverse functionalities to address complex tasks. Carbon nanotubes (CNTs), with their unique physical properties, have broad applications in emerging research fields, providing a foundation for next-generation devices that could overcome the limits of Moore's Law. This work demonstrates a novel intelligent device that integrates five functions─sensors, memory, neuromorphic computing, logic, and communication─using CNT field-effect transistors (CNFETs) compatible with CMOS processes. Through passivation and annealing techniques, we have significantly enhanced the optoelectronic performance of CNFETs, leading to the development of multifunctional optoelectronic synaptic transistors. These optimized CNFETs enable dual-mode weight-tunable synaptic functions, including long-term plasticity and multilevel storage. Additionally, a CNT-based neural network has achieved high recognition accuracy on the MNIST data set, showcasing the potential of in-memory computing. This research also innovates by integrating logic functions with optoelectronic communication capabilities, paving the way for next-generation intelligent computing and communication integrated systems.

17.
Chempluschem ; : e202400520, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39319362

RESUMO

The development of ultrasensitive electronic sensors for in vitro diagnostics is essential for the reliable monitoring of asymptomatic individuals before illness proliferation or progression. These platforms are increasingly valued for their potential to enable timely diagnosis and swift prognosis of infectious or progressive diseases. Typically, the responses from these analytical tools are recorded as digital signals, with electronic data offering simpler processing compared to spectral and optical data. However, preprocessing electronic data from potentiometric biosensor arrays is still in its infancy compared to more established optical technologies. This study utilized the Single-Molecule with a Large Transistor (SiMoT) array, which has achieved a Technology Readiness Level of 5, to explore the impact of data preprocessing on electronic biosensor outcomes. A dataset consisting of plasma and cyst fluid samples from 37 patients with pancreatic precursor cyst lesions was analyzed. The findings revealed that standard signal preprocessing can produce misleading conclusions due to artifacts introduced by mathematical transformations. The study offers strategies to mitigate these effects, ensuring that data interpretation remains accurate and reflective of the underlying biochemical information in the samples.

18.
ACS Appl Mater Interfaces ; 16(37): 49602-49611, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39226175

RESUMO

Monolayer transition metal dichalcogenides are intensely explored as active materials in 2D material-based devices due to their potential to overcome device size limitations, sub-nanometric thickness, and robust mechanical properties. Considering their large band gap sensitivity to mechanical strain, single-layered TMDs are well-suited for strain-engineered devices. While the impact of various types of mechanical strain on the properties of a variety of TMDs has been studied in the past, TMD-based devices have rarely been studied under mechanical deformations, with uniaxial strain being the most common one. Biaxial strain on the other hand, which is an important mode of deformation, remains scarcely studied as far as 2D material devices are concerned. Here, we study the strain transfer efficiency in MoS2- and WSe2-based flexible transistor structures under biaxial deformation. Utilizing Raman spectroscopy, we identify that strains as high as 0.55% can be efficiently and homogeneously transferred from the substrate to the material in the transistor channel. In particular, for the WSe2 transistors, we capture the strain dependence of the higher-order Raman modes and show that they are up to five times more sensitive compared to the first-order ones. Our work demonstrates Raman spectroscopy as a nondestructive probe for strain detection in 2D material-based flexible electronics and deepens our understanding of the strain transfer effects on 2D TMD devices.

19.
ACS Appl Bio Mater ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39279649

RESUMO

Neuromorphic vision systems, particularly those stimulated by ultraviolet (UV) light, hold great potential applications in portable electronics, wearable technology, biological analysis, military surveillance, etc. Organic artificial synaptic devices hold immense potential in this field due to their ease of processing, flexibility, and biocompatibility. In this work, we have fabricated a flexible organic field-effect transistor (OFET) that utilizes chitosan-silver nanoparticles (AgNPs) composite material as the active dielectric material. During UV light illumination, both silver nanoparticles and the pentacene layer generate a large number of charge carriers. The photogenerated carriers lead to a more significant hole accumulation at the pentacene interface, resulting in a current rise. In the absence of light, the trapped electron in the silver nanoparticles persists for a longer duration, preventing the instant recombination with holes. This extended retention of electrons leads to the observed synaptic performance of the transistor. The use of aluminum oxide (Al2O3) as one of the dielectric layers enables the device to operate effectively at low voltage (<1 V). The device mimics various crucial synaptic properties of the brain, including short-term potentiation and long-term potentiation (STP and LTP), paired-pulse facilitation (PPF), spike-duration dependent plasticity (SDDP), spike-number dependent plasticity (SNDP), and spike-rate dependent plasticity (SRDP), etc. This work introduces an approach to develop flexible organic synaptic transistors that operate efficiently at low voltages, paving the way toward high-performance, UV light-driven neuromorphic vision systems.

20.
Adv Mater ; : e2412379, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39252633

RESUMO

Organic thin film transistors (OTFTs) enable rapid and label-free high-sensitivity detection of target analytes due to their low cost, large-area processing, biocompatibility, and inherent signal amplification. At the same time, the freedom of synthesis, tailorability, and functionalization of organic semiconductor materials and their ability to be combined with flexible substrates make them one of the ideal platforms for biosensing. However, OTFTs-based biosensors still face significant challenges, such as unexpected surface adsorption, disordered conformation, inhomogeneous graft density, and flexibility of probe molecules that biological sensing probes would face during immobilization. In this review, efficient immobilization strategies based on OTFTs biological sensing probes developed in the last 5 years are highlighted. First, the biosensors are classified according to their sensing interface. Second, a comprehensive discussion of the types of biological sensing probes is presented. Third, three commonly used methods for immobilizing biological sensing probes and their challenges are briefly described. Finally, the applications of OTFTs-based biosensors for liquid phase detection are summarized. This review provides a comprehensive and timely review of optimization in sensing interface engineering so that efficient immobilization of biological sensing probes with sensing interfaces will contribute to the development of high-performance OTFTs-based biosensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA