Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 12: 1407355, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873406

RESUMO

Aminomethanol is released into the atmosphere through various sources, including biomass burning. In this study, we have expounded the chemical kinetics of aminomethanol in the reaction pathways initiated by the hydroxyl radical ( O ˙ H) with the aid of ab initio//density functional theory (DFT) i.e., coupled-cluster theory (CCSD(T))//hybrid-DFT (M06-2X/6-311++G (3df, 3pd). We have explored various possible directions of the O ˙ H radical on aminomethanol, as well as the formation of distinct pre-reactive complexes. Our computational findings reveal that the H transfer necessitates activation energies ranging from 4.1 to 6.5 kcal/mol from the -CH2 group, 3.5-6.5 kcal/mol from the -NH2 group and 7-9.3 kcal/mol from the -OH group of three rotational conformers. The H transfer from -CH2, -NH2 and -OH exhibits an estimated total rate constant (k OH) of approximately 1.97 × 10-11 cm3 molecule-1 s-1 at 300 K. The branching fraction analysis indicates a pronounced dominance of C-centered NH2 C ˙ HOH radicals with a favorability of 77%, surpassing the N-centered N ˙ HCH2OH (20%) and O-centered NH2CH2 O ˙ (3%) radicals. Moreover, our investigation delves into the oxidation of the prominently favored carbon-centered NH2 C ˙ HOH radical through its interaction with atmospheric oxygen molecules. Intriguingly, our findings reveal that formamide (NH2CHO) emerges as the predominant product in the NH2 C ˙ HOH + 3O2 reaction, eclipsing alternative outcomes such as amino formic acid (NH2COOH) and formimidic acid (HN = C(H)-OH). At atmospheric conditions pertinent to the troposphere, the branching fraction value for the formation of formamide is about 99%, coupled with a rate constant of 5.5 × 10-12 cm3 molecule-1 s-1. Finally, we have scrutinized the detrimental impact of formamide on the atmosphere. Interaction of formamide with atmospheric hydroxyl radicals could give rise to the production of potentially perilous compounds such as HNCO. Further, unreacted N ˙ HCH2OH radicals may initiate the formation of carcinogenic nitrosamines when reacting with trace N-oxides (namely, NO and NO2). This, in turn, escalates the environmental risk factors.

2.
J Mol Model ; 30(7): 199, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850476

RESUMO

CONTEXT: Dioxins, specifically 2,3,7,8-tetrachlorinated dibenzo-p-dioxin (TCDD), are highly toxic dioxins known for their severe health impacts and persistent environmental pollutants. This study focuses on understanding the formation pathways of TCDD from its precursor molecule 2,4,5-trichlorophenol (2,4,5-TCP). In our exploration of reaction pathways from 2,4,5-trichlorophenol (TCP), we delve into three reaction mechanisms: free-radical, direct condensation, and anionic. Our findings highlight the significance of the radical mechanism, particularly propagated by H radicals, with a notable increase in dioxin formation around 900 K. These results are consistent with experimental observations indicating an increase in the conversion of trichlorophenol from 600 to 900 K in the non-catalytic gas phase reaction. Thermodynamic parameters (∆H, ∆S, and ∆G), reaction barriers, and rate constants (k) were calculated across a temperature range of 300-1200 K to support the findings and provide insights into the optimal temperature range for controlling dioxins during the incineration process. METHOD: In this study, quantum chemical calculations were conducted using density functional theory (DFT) with the B3LYP functional and the 6-311 + + G(d,p) basis set in Gaussian 16 software. Stationary points, including transition states (TS), were confirmed with frequency calculations. Intrinsic reaction coordinate (IRC) calculations ensured minimum energy paths between TS and products, visualized in GaussView 6.0 Program. Single-point energy calculations utilized a more precise basis set, 6-311 + + G(3df,2p), for enhanced energy accuracy, incorporating zero-point vibrational energy (ZPE) and other energy corrections. These calculations were repeated over a temperature range of 298.15-1200 K at 1 atm pressure. Finally, rate constant (k) expressions associated with TCDD formation were determined using transition state theory (TST).

3.
J Hazard Mater ; 469: 134063, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38508112

RESUMO

Sulfadiazine (SDZ), a widely used effective antibiotic, is resistant to conventional biological treatment, which is concerning since untreated SDZ discharge can pose a significant environmental risk. Electro-Fenton (EF) technology is a promising advanced oxidation technology for efficiently removing SDZ. However, due to the limitations of traditional experimental methods, there is a lack of in-depth study on the mechanism of ·OH-dominated SDZ degradation in EF process. In this study, an EF system was established for SDZ degradation and the transformation products (TPs) were detected by mass spectrometry. Dynamic thermodynamic, kinetic and wave function analysis of reactants, transition states and intermediates were proposed by density functional theory calculations, which was applied to elucidate the underlying mechanism of SDZ degradation. Experimental results showed that amino, benzene, and pyrimidine sites in SDZ were oxidized by ·OH, producing TPs through hydrogen abstraction and addition reactions. ·OH was kinetically more likely to attack SDZ- than SDZ. Fe(IV) dominated the single-electron transfer oxidation reaction of SDZ, and the formed organic radicals can spontaneously generate the de-SO2 product via Smiles rearrangement. Toxicity experiments showed the toxicity of SDZ and TPs can be greatly reduced. The results of this study promote the understanding of SDZ degradation mechanism in-depth. ENVIRONMENTAL IMPLICATION: Sulfadiazine (SDZ) is one of the antibiotics widely used around the world. However, it has posed a significant environmental risk due to its overuse and cannot be efficiently removed by traditional treatment methods. The lack of in-depth study on SDZ degradation mechanism under reactive species limits the improvement of SDZ degradation efficiency. Therefore, this work focused on SDZ degradation mechanism in-depth under electro-Fenton system through reactive species investigation, mass spectrometry analysis, and theoretical calculation. The results in this study can provide a theoretical basis for improving the SDZ degradation efficiency which will contribute to solving SDZ pollution problems.


Assuntos
Sulfadiazina , Poluentes Químicos da Água , Sulfadiazina/química , Antibacterianos/química , Oxirredução , Espectrometria de Massas , Poluentes Químicos da Água/química
4.
Chem Asian J ; 19(7): e202400010, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38407472

RESUMO

The controlled release of chemicals, especially in drug delivery, is crucial, often employing "self-immolative" spacers to enhance reliability. These spacers separate the payload from the protecting group, ensuring a more controlled release. Over the years, design rules have been proposed to improve the elimination process's reaction rate by modifying spacers with electron-donating groups or reducing their aromaticity. The spacer design is critical for determining the range of functional groups released during this process. This study explores various strategies from the literature aimed at improving release rates, focusing on the electronic nature of the spacer, its aromaticity, the electronic nature of its substituents, and the leaving groups involved in the elimination reaction. Through computational analysis, I investigate activation free energies by identifying transition states for model reactions. My calculations align qualitatively with experimental results, demonstrating the feasibility and reliability of computationally pre-screening model self-immolative eliminations. This approach allows proposing optimal combinations of spacer and leaving group for achieving the highest possible release rate.

5.
Ecotoxicol Environ Saf ; 266: 115553, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37839188

RESUMO

The OH radical recycling mechanism in isoprene oxidation is one of the most exciting topics in atmospheric chemistry, and the corresponding studies expand our understanding of oxidation mechanisms of volatile organic compounds in the troposphere and provide reliable evidence to improve and develop conventional atmospheric models. In this work, we performed a detailed theoretical kinetics study on the Z-δ-(4-OH, 1-OO)-ISOPOO radical chemistry, which is proposed as the heart of OH recycling in isoprene oxidation. With the full consideration of its accumulation and consumption channels, we studied and discussed the fate of Z-δ-(4-OH, 1-OO)-ISOPOO radical by solving the energy-resolved master equation over a broad range of conditions, including not only room temperatures but also high temperatures of a forest fire or low temperatures and pressures of the upper troposphere. We found non-negligible pressure dependence of its fate at combustion temperatures (up to two orders of magnitude) and demonstrated the significance of both the multi-structural torsional anharmonicity and tunneling for accurately calculating kinetics of the studied system. More interestingly, the tunneling effect on the phenomenological rate constants of the H-shift reaction channel is also found to be pressure-dependent due to the competition with the O2 loss reaction. In addition, our time evolution calculations revealed a two-stage behavior of critical species in this reaction system and estimated the shortest half-lives for the Z-δ-(4-OH, 1-OO)-ISOPOO radical at various temperatures, pressures and altitudes. This detailed kinetics study of Z-δ-(4-OH, 1-OO)-ISOPOO radical chemistry offers a typical example to deeply understand the core mechanism of OH recycling pathways in isoprene oxidation, and provides valuable insights for promoting the development of relevant atmospheric models.


Assuntos
Radical Hidroxila , Modelos Teóricos , Radical Hidroxila/química , Temperatura , Butadienos , Cinética
6.
Chempluschem ; 88(9): e202300354, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37635074

RESUMO

Criegee intermediates (CIs), R1 R2 COO, are active molecules produced in the atmosphere from the ozonolysis of alkenes. Here, we systematically evaluated the reactivity of ten CIs with carbon monoxide and carbon dioxide using CCSD(T)-F12/cc-pVTZ-F12//B3LYP/6-311+G(2d,2p) energies and transition state theory. Many previous studies focused on alkyl substitution, but here we evaluated both alkyl and vinyl substitution toward the reactivity by studying five anti-type CIs: CH2 OO, anti-CH3 CHOO, anti-cis-C2 H5 CHOO, anti-trans-MACRO, anti-cis-MACRO; and five syn-type CIs: syn-CH3 CHOO, (CH3 )2 COO, syn-trans-C2 H5 CHOO, syn-trans-MVKO, and syn-cis-MVKO. Our study showed that reactions involving CO2 have a large substituent dependence varying nearly five orders of magnitude, while those involving CO have a much smaller two orders of magnitude difference. Analysis based on the strain interaction model showed that deformation of the CI is an important feature in determining the reactivity with CO2 . On the other hand, we used the OO and CO bond ratios to analyze the zwitterionic character of the CIs. We found that vinyl substitution with π-conjugation results in smaller zwitterionic character and lower reactivity with CO. Lastly, the reactivity of CIs with CO as well as CO2 were found to be not fast enough to be important in an atmospheric context.

7.
Chemphyschem ; 24(16): e202300272, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37537153

RESUMO

In this short review, we provide an update of recent developments in Kramers' theory of reaction rates. After a brief introduction stressing the importance of this theory initially developed for chemical reactions, we briefly present the main theoretical formalism starting from the generalized Langevin equation and continue by showing the main points of the modern Pollak, Grabert and Hänggi theory. Kramers' theory is then sketched for quantum and classical surface diffusion. As an illustration the surface diffusion of Na atoms on a Cu(110) surface is discussed showing escape rates, jump distributions and diffusion coefficients as a function of reduced friction. Finally, some very recent applications of turnover theory to different fields such as nanoparticle levitation, microcavity polariton dynamics and simulation of reaction in liquids are presented. We end with several open problems and future challenges faced up by Kramers turnover theory.

8.
Proc Natl Acad Sci U S A ; 120(34): e2222039120, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37585466

RESUMO

Cross-slip of screw dislocations in crystalline solids is a stress-driven thermally activated process essential to many phenomena during plastic deformation, including dislocation pattern formation, strain hardening, and dynamic recovery. Molecular dynamics (MD) simulation has played an important role in determining the microscopic mechanisms of cross-slip. However, due to its limited timescale, MD can only predict cross-slip rates in high-stress or high-temperature conditions. The transition state theory can predict the cross-slip rate over a broad range of stress and temperature conditions, but its predictions have been found to be several orders of magnitude too low in comparison to MD results. This discrepancy can be expressed as an anomalously large activation entropy whose physical origin remains unclear. Here, we resolve this discrepancy by showing that the large activation entropy results from anharmonic effects, including thermal softening, thermal expansion, and soft vibrational modes of the dislocation. We expect these anharmonic effects to be significant in a wide range of stress-driven thermally activated processes in solids.

9.
Int J Mol Sci ; 24(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37445807

RESUMO

Protein unfolding is a ubiquitous process responsible for the loss of protein functionality (denaturation), which, in turn, can be accompanied by the death of cells and organisms. The nature of enthalpy-entropy compensation (EEC) in the kinetics of protein unfolding is a subject of debate. In order to investigate the nature of EEC, the "completely loose" transition state (TS) model has been applied to calculate the Arrhenius parameters for the unfolding of polyglycine dimers as a model process. The calculated Arrhenius parameters increase with increasing dimer length and demonstrate enthalpy-entropy compensation. It is shown that EEC results from the linear correlations of enthalpy and entropy of activation with dimer length, which are derived directly from the properties of the transition state. It is shown that EEC in solvated (hydrated, etc.) proteins is a direct consequence of EEC in proteins themselves. The suggested model allows us also to reproduce and explain "exotic" very high values of the pre-exponential factor measured for the proteins unfolding, which are drastically higher than those known for unimolecular reactions of organic molecules. A similar approach can be applied to analyzing the nature of EEC phenomena observed in other areas of chemistry.


Assuntos
Desdobramento de Proteína , Proteínas , Entropia , Cinética , Termodinâmica , Proteínas/química , Desnaturação Proteica
10.
Chemphyschem ; 24(16): e202300259, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37326576

RESUMO

Experimental work on the OH-initiated oxidation reactions of fluorotelomer aldehydes (FTALs) strongly suggests that the respective rate coefficients do not depend on the size of the Cx F2x+1 fluoroalkyl chain. FTALs hence represent a challenging test to our multiconformer transition state theory (MC-TST) protocol based on constrained transition state randomization (CTSR), since the calculated rate coefficients should not show significant variations with increasing values of x ${x}$ . In this work we apply the MC-TST/CTSR protocol to the x = 2 , 3 ${x={\rm 2,3}}$ cases and calculate both rate coefficients at 298.15 K with a value of k = ( 2 . 4 ± 1 . 4 ) × 10 - 12 ${k=(2.4\pm 1.4)\times {10}^{-12}}$  cm3  molecule-1 s-1 , practically coincident with the recommended experimental value of kexp = ( 2 . 8 ± 1 . 4 ) × 10 - 12 ${(2.8\pm 1.4)\times {10}^{-12}}$  cm3  molecule-1 s-1 . We also show that the use of tunneling corrections based on improved semiclassical TST is critical in obtaining Arrhenius-Kooij curves with a correct behavior at lower temperatures.

11.
Front Physiol ; 14: 1166450, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37250134

RESUMO

Large-scale drug screening is currently the basis for the identification of new chemical entities. This is a rather laborious approach, because a large number of compounds must be tested to cover the chemical space in an unbiased fashion. However, the structures of targetable proteins have become increasingly available. Thus, a new era has arguably been ushered in with the advent of methods, which allow for structure-based docking campaigns (i.e., virtual screens). Solute carriers (SLCs) are among the most promising drug targets. This claim is substantiated by the fact that a large fraction of the 400 solute carrier genes is associated with human diseases. The ability to dock large ligand libraries into selected structures of solute carriers has set the stage for rational drug design. In the present study, we show that these structure-based approaches can be refined by taking into account how solute carriers operate. We specifically address the feasibility of targeting solute carriers with allosteric modulators, because their actions differ fundamentally from those of ligands, which bind to the substrate binding site. For the pertinent analysis we used transition state theory in conjunction with the linear free energy relationship (LFER). These provide the theoretical framework to understand how allosteric modulators affect solute carrier function.

12.
Chem Biol Interact ; 373: 110395, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36758887

RESUMO

Alizarin is a natural anthraquinone molecule with moderate antioxidative capacity. Some earlier investigations indicated that it can inhibit osteosarcoma and breast carcinoma cell proliferation by inhibiting of phosphorylation process of ERK protein (extracellular signal-regulated kinases). Several mechanisms of deactivation of one of the most reactive oxygen species, hydroperoxyl radical, by alizarin are estimated: hydrogen atom abstraction (HAA), radical adduct formation (RAF), and single electron transfer (SET). The plausibility of those mechanisms is estimated using density functional theory. The obtained results indicated HAA as the only thermodynamically plausible mechanism. For that purpose, two possible mechanistic pathways for hydrogen atom abstraction are studied in detail: hydrogen atom transfer (HAT) and proton-coupled electron transfer (PCET). Water and benzene are used as models of solvents with opposite polarity. To examine the difference between HAT and PCET is used kinetical approach based on the Transition state theory (TST) and determined rate constants (k). Important data used for a distinction between HAT and PCET mechanisms are obtained by applying the Quantum Theory of Atoms in Molecules (QTAIM), and by the analysis of single occupied molecular orbitals (SOMOs) in transition states for two examined mechanisms. The molecular docking analysis and molecular dynamic are used to predict the most probable positions of binding of alizarin to the sequence of ApoB-100 protein, a protein component of plasma low-density lipoproteins (LDL). It is found that alizarin links the nitrated polypeptide forming the π-π interactions with the amino acids Phenylalanine and Nitrotyrosine. The ability of alizarin to scavenge hydroperoxyl radical when it is in a sandwich structure between the polypeptide and radical species, as the operative reaction mechanism, is not significantly changed concerning its antioxidant capacity in the absence of polypeptide. Therefore, alizarin can protect the polypeptide from harmful hydroperoxyl radical attack, positioning itself between the polypeptide chain and the reactive oxygen species.


Assuntos
Antioxidantes , Hidrogênio , Espécies Reativas de Oxigênio/química , Simulação de Acoplamento Molecular , Antioxidantes/química , Hidrogênio/química , Prótons , Antraquinonas , Termodinâmica
13.
Sci Total Environ ; 867: 161519, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36639002

RESUMO

NOX are serious pollutants emitted during combustion, which are greatly harmful to human health and the environment. However, previous studies have not accurately elucidated the NOX conversion mechanism in complicated combustion reactions. To reveal the micro-chemical mechanism of NOX conversion and obtain accurate kinetics data, advanced quantum chemistry methods are employed in this study to systematically explore the pathways of NOX formation and reduction, and determine the new rate coefficients. An energy barrier analysis revealed that during NOX formation (N2 → N2O → NO→NO2), NO is primarily produced by a sequence of reactions (N2 + O → N2O → NO) rather than the traditional reaction (O + N2 → NO+N). Meanwhile, NO2 formation (NO→NO2) largely depends on the O and HO2 radicals, while the active O atom can promote both the formation and destruction of NO2. During NOX reduction (NO2 → NO→N2O → N2), NO2 reduction (NO2 → NO) is closely related to H, CO, and O, whereas CO plays a critical role in NO2 destruction. However, NO reduction (NO→N2O) is unfavourable because of a high energy barrier, while N2O reduction (N2O → N2) is strongly affected by the O atom instead of CO. HONO is mainly formed when NO2 reacts with the HO2 and H radicals, and when NO reacts with OH radicals; thus, HONO consumption largely depends on OH and H radicals. Based on the transition state theory, we obtained new kinetic parameters for NOX conversion, which supplement and correct critical kinetics data obtained from the current NOX model. Performance assessment of the proposed NOX kinetic mechanism reveals that it can improve the existing NOX kinetic mode, which is in good agreement with experimental data.

14.
ACS Appl Mater Interfaces ; 15(1): 848-858, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36542798

RESUMO

We establish that an interfacial region develops around amorphous Li1.3Al0.3Ti1.7(PO4)3 (LATP) nanoparticles in a poly(ethylene oxide) (PEO), which exhibits a 30 times higher Li+ mobility than the polymer matrix. To take advantage of this gain throughout the material, nanoparticles must be uniformly dispersed across the matrix, so that the interphase formation is minimally blocked by LATP particle agglomeration. This is achieved using a water-based in situ precipitation method, carefully controlling the temperature schedule during processing. A maximum conductivity of 3.80 × 10-4 S cm-1 at 20 °C for an ethylene oxide to Li ratio of 10 is observed at 25 wt % (12.5 vol %) particle loading, as predicted by our tri-phase model. Comparative infrared spectroscopy reveals softening and broadening of the C-O-C stretching modes, reflecting increased disorder in the polymer backbone that is consistent with opening passageways for cation migration. A transition state theory-based approach for analyzing the temperature dependence of the ionic conductivity reveals that thermally activated processes within the interphase benefit more from higher activation entropy than from the decrease in activation enthalpy. The lithium infusion from LATP particles is small, and the charge carriers tend to concentrate in a space-charge configuration near the particle/polymer interface.

15.
Chemphyschem ; 24(6): e202200638, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36409286

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are widely present in the environment as toxic pollutants. In this study, quantum chemistry methods are used to study reactions of PAHs in both particle and gas phases. Seven theoretical methods are exploited to predict the reactive sites of 15 PAHs in the particle phase. Among these methods, the performance of the condensed Fukui function (CFF) is optimum. The gas-phase reactions of eight PAHs are also investigated. Except for fluorene, CFF predicts correctly the gas-phase mono-nitro products for seven systems. The products of fluorene predicted by CFF are 1-nitrofluorene and 3-nitrofluorene, which is however inconsistent with the experimental results. Transition state theory is then used to investigate the reaction mechanism of fluorene. Calculated rate constants for 3-nitrofluorene and 2-nitrofluorene formation are much bigger than that for 1-nitrofluorene formation, which is in agreement with the experimental results.

16.
Chemosphere ; 312(Pt 1): 137243, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36395893

RESUMO

Hydrolysis plays an imperative role in the abiotic transformation process of antibiotics in aqueous solutions. However, little information is available on the hydrolysis process of spectinomycin (an aminocyclitol antibiotic). This study systematically investigated the spectinomycin hydrolysis kinetics and mechanisms under different pH via experiments and density functional theory (DFT) computation. Hydrolysis was first conducted in a pure water system under pH of 4.0-9.0 and temperature of 25 °C, 50 °C and 70 °C, respectively. Results showed that hydrolysis was highly dependent on pH and temperature. When pH > 6.0, spectinomycin hydrolysis was accelerated by the catalysis of OH-. Meanwhile, the hydrolysis rate increased with the elevation of temperature. Then, for the reference of the practical environment, the general base-catalyzed hydrolysis and mechanisms were studied under environmental pH 6.0-8.0 and 25 °C. DFT calculation demonstrated that base-catalyzed hydrolysis of spectinomycin could be more thermodynamically and kinetically favorable based on the lower Gibbs free energies of reaction and Gibbs free energies of activation. Further, instead of specific base catalysis (OH-), the general base catalysis (e.g., phosphate buffer) was also found to promote hydrolysis efficiency. The antibacterial activity and ecotoxicities of the hydrolysis product were analyzed to be lower than the precursor, thereby decreasing the environmental impact of spectinomycin.


Assuntos
Espectinomicina , Água , Hidrólise , Concentração de Íons de Hidrogênio , Cinética , Catálise , Antibacterianos , Soluções
17.
ACS Appl Mater Interfaces ; 14(47): 53213-53227, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36395432

RESUMO

Predicting and controlling nanostructure formation during nucleation can pave the way to synthesizing novel energy materials via crystallization. However, such control over nucleation and crystallization remains challenging due to an inadequate understanding of critical factors that govern evolving atomistic structures and dynamics. Herein, we utilize coordination number as a reaction coordinate and rate theory to investigate how sodium sulfate, commonly known as a phase-change energy material, nucleates in a supersaturated aqueous solution. In conjunction with ab initio and force field-based molecular dynamics simulation, the rate theoretical analysis reveals that sodium sulfate from an initially dissolved metastable state transits to a heterogeneous mixture of prenucleated clusters and finally to a large cylindrical zigzag morphology. Measurements of Raman spectra and their ab initio modeling confirm that this nucleated morphology contains a few waters for every sulfate. Rate processes such as solvent exchange and desolvation exhibit high sensitivity to the evolving prenucleation/nucleation structures, providing a means to distinguish between critical nucleation precursors. Desolvation and forming the first-shell interionic coordination structure via monomer-by-monomer addition around sulfates are found to explain the formation of large nuclei. Thus, a detailed understanding of the step-by-step structure formation across scales has been achieved. This can be leveraged to predict nucleation-related structures and dynamics and potentially control the synthesis of novel phase-change materials for energy applications.

18.
Chemosphere ; 308(Pt 2): 136373, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36113649

RESUMO

The abuse of fluoroquinolones (FQs) antibiotics leads to bacterial resistance and environmental pollution, so it is of great significance to verify the decomposition mechanism for eliminating antibiotic efficiently and conveniently. The effects of various environmental factors and the fleroxacin (FLE) photodegradation mechanisms were investigated by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS), UV-Vis absorption spectroscopy, fluorescence spectroscopy and quantum chemical calculation. Six possible photodegradation reaction paths on T1 (excited triplet state) were proposed and simulated. The departure of the piperazine ring and the substitution of F atom at C-6 position by OH group were determined as the main reactions based on the reaction rates and energy barriers of each path. The multi-pathway reactions resulted in the fastest photodegradation rates of FLE at pH 6-7 than other pH conditions. NaN3 would promote FLE photodegradation by inhibiting the reverse reaction of the separation process of F atom at C-8 and the generation of biphenyl molecules, which was a novel and distinctive phenomenon in this report. ·OH would rapidly combine with the free radicals generated in photolysis processes and made a great contribution to FLE photodegradation. Ca2+, Mg2+ and Ba2+ could stabilize the carboxyl group to impede the photo-competitive process of the decarboxylation reaction, while NO3- could generate reactive oxygen species to promote photodegradation.


Assuntos
Fleroxacino , Poluentes Químicos da Água , Antibacterianos/química , Fleroxacino/química , Fluoroquinolonas , Cinética , Fotólise , Piperazinas , Espécies Reativas de Oxigênio , Poluentes Químicos da Água/química
19.
ACS Appl Mater Interfaces ; 14(39): 44398-44404, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36134895

RESUMO

As the world enters the era of the Internet of Things (IoT), wireless devices and their networks become essential fundamental components. Recently, with the rapid development of the triboelectric nanogenerator (TENG), breakdown discharge has become an emerging hot topic in the field since it is the key limiting factor of the output performance, and it may also trigger new applications such as self-powered wireless sensing. However, understandings of the discharge behaviors in TENG are still limited. This study proposed a method to study the breakdown discharge with a large serial resistance and discovered the time-lag behavior of the breakdown discharge. A model based on the Eyring equation is demonstrated to explain this time-lag phenomenon. A convenient method to adjust the breakdown-discharge voltage is developed through this study. As an application, a wireless spark switch being modulated by a series-connected resistance is designed, which may be potentially utilized in wireless applications.

20.
ACS Appl Mater Interfaces ; 14(28): 32360-32368, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35792902

RESUMO

Single-layer graphene has been demonstrated to be a high-efficiency hydrogen isotope sieving membrane in the electrochemical hydrogen pumping system. In this work, we transferred this membrane to proton exchange membrane water electrolysis (PEMWE), which has wide industrial applications. Two membrane electrode assemblies with decorated Pt and ink-coated Pt were investigated. The graphene with the decorated Pt scheme acquired the reported highest proton-to-tritium separation factor of 19.50 in PEMWE. However, rather than graphene, the decorated catalyst was demonstrated to be responsible for this remarkable separation efficiency. Previous studies from Geim's group underestimated the enhanced separation efficiency of decorated Pt over ink-coated Pt, resulting in an exaggerated separation efficiency for graphene. The behavior of proton transfer with hydrogen isotope separation through graphene was interpreted by a serial-parallel circuit model, which suggested that hydrogen isotope separation occurs at defect sites. The limited separation efficiency for graphene was also well understood by a density functional theory (DFT) calculation using an SW 55-77 model and the transition state theory for the kinetic isotope effect. This research provides a thorough understanding of proton transfer with hydrogen isotope separation through graphene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...