Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
PeerJ ; 12: e17495, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39076782

RESUMO

Age is an independent risk factor for atrial fibrillation (AF), and curcumin can delay aging related disease through reducing oxidative stress and inflammation. However, its target in aging-related AF remains unclear. Transfer RNA-derived small RNA (tsRNA) is a novel short non-coding RNA (sncRNA), and exerts a potential regulatory function in aging. This study was to explore the therapeutic targets of curcumin in atrium of aged mice by PANDORA-seq. Aged mice (18 month) were treated with curcumin (100 mg/kg). Rapid transjugular atrial pacing was performed to observe AF inducibility. SA-ß-gal staining, reactive oxygen species (ROS) detection and qRT-PCR were used to assess the degree of aging and oxidative stress/inflammation levels. PANDORA-seq was performed to reveal the differentially expressed sncRNAs in the atrium of mice. The results showed that curcumin reduced the susceptibility AF of aged mice by improving aging-related atrial fibrosis. Compared to young mice (5 month) group, aged mice yielded 473 significantly altered tsRNA sequences, while 947 tsRNA sequences were significantly altered after treated with curcumin. Enrichment analysis revealed that the target genes were mainly related to DNA damage and protein modification. Compared with the 5 month group, the expression levels of mature-mt_tRNA-Val-TAC_CCA_end, mature-mt_tRNA-Glu-TTC_CCA_end, and mature-tRNA-Asp-GTC_CCA_end were up-regulated in the 18 month group, while the expression of mature-mt_tRNA-Thr-TGT_5_end was down-regulated. This trend was reversed in the 18 month + curcumin group. Increased cellular ROS levels, inflammation expression and senescence in aged mice atrium were improved by the down-regulation of mature-mt_tRNA-Val-TAC_CCA_end. In conclusion, our findings identified mature-mt_tRNA-Val-TAC_CCA_end participated in the mechanism of aging-related atrial fibrosis, providing new intervention target of aging-related AF.


Assuntos
Envelhecimento , Fibrilação Atrial , Curcumina , Átrios do Coração , Estresse Oxidativo , Animais , Curcumina/farmacologia , Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Fibrilação Atrial/tratamento farmacológico , Camundongos , Envelhecimento/efeitos dos fármacos , Envelhecimento/genética , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Estresse Oxidativo/efeitos dos fármacos , RNA de Transferência/genética , RNA de Transferência/metabolismo , Masculino , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fibrose , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
2.
Genomics ; 116(4): 110885, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38866256

RESUMO

BACKGROUND: Spinal cord injury (SCI) is a devastating neurological and pathological condition. Exosomal tsRNAs have reported to be promising biomarkers for cancer diagnosis and therapy. This study aimed to investigate the roles of SCI-associated exosomes, and related tsRNA mechanisms in SCI. METHODS: The serum of healthy controls and SCI patients at the acute stage were collected for exosomes isolation, and the two different exosomes were used to treat human astrocytes (HA). The cell viability, apoptosis, and cycle were determined, and the expression of the related proteins were detected by western blot. Then, the two different exosomes were sent for tsRNA sequencing, and four significant known differentially expressed tsRNAs (DE-tsRNAs) were selected for RT-qPCR validation. Finally, tRT-41 was chosen to further explore its roles and related mechanisms in SCI. RESULTS: After sequencing, 21 DE-tsRNAs were identified, which were significantly enriched in pathways of Apelin, AMPK, Hippo, MAPK, Ras, calcium, PI3K-Akt, and Rap1. RT-qPCR showed that tRF-41 had higher levels in the SCI-associated exosomes. Compared with the control HA, healthy exosomes did not significantly affect the growth of HA cells, but SCI-associated exosomes inhibited viability of HA cells, while promoted their apoptosis and increased the HA cells in G2/M phase; but tRF-41 inhibitor reversed the actions of SCI-associated exosomes. Additionally, SCI-associated exosomes, similar with tRF-41 mimics, down-regulated IGF-1, NGF, Wnt3a, and ß-catenin, while up-regulated IL-1ß and IL-6; but tRF-41 inhibitor had the opposite actions, and reversed the effects induced by SCI-associated exosomes. CONCLUSIONS: SCI-associated exosomes delivered tRF-41 may inhibit the growth of HA through regulating Wnt/ ß-catenin pathway and inflammation response, thereby facilitating the progression of SCI.


Assuntos
Exossomos , Traumatismos da Medula Espinal , Exossomos/metabolismo , Humanos , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/genética , Apoptose , Astrócitos/metabolismo , Masculino , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Feminino , Progressão da Doença , Células Cultivadas , Midkina/metabolismo , Midkina/genética , Adulto , Proliferação de Células , Pessoa de Meia-Idade
3.
Cancer Cell Int ; 24(1): 200, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840243

RESUMO

Ferroptosis, an iron-dependent regulated cell death mechanism, holds significant promise as a therapeutic strategy in oncology. In the current study, we explored the regulatory effects of epigallocatechin gallate (EGCG), a prominent polyphenol in green tea, on ferroptosis and its potential therapeutic implications for non-small cell lung cancer (NSCLC). Treatment of NSCLC cell lines with varying concentrations of EGCG resulted in a notable suppression of cell proliferation, as evidenced by a reduction in Ki67 immunofluorescence staining. Western blot analyses demonstrated that EGCG treatment led to a decrease in the expression of glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11) while increasing the levels of acyl-CoA synthetase long-chain family member 4 (ACSL4). These molecular changes were accompanied by an increase in intracellular iron, malondialdehyde (MDA), and reactive oxygen species (ROS), alongside ultrastructural alterations characteristic of ferroptosis. Through small RNA sequencing and RT-qPCR, transfer RNA-derived small RNA 13502 (tsRNA-13502) was identified as a significant target of EGCG action, with its expression being upregulated in NSCLC tissues compared to adjacent non-tumorous tissues. EGCG was found to modulate the ferroptosis pathway by downregulating tsRNA-13502 and altering the expression of key ferroptosis regulators (GPX4/SLC7A11 and ACSL4), thereby promoting the accumulation of iron, MDA, and ROS, and ultimately inducing ferroptosis in NSCLC cells. This study elucidates EGCG's multifaceted mechanisms of action, underscoring the modulation of ferroptosis as a viable therapeutic approach for enhancing NSCLC treatment outcomes.

4.
J Mol Med (Berl) ; 102(8): 973-985, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38850298

RESUMO

The tRNA-derived small RNAs (tsRNAs) can be categorized into two main groups: tRNA-derived fragments (tRFs) and tRNA-derived stress-induced RNAs (tiRNAs). Each group possesses specific molecular sizes, nucleotide compositions, and distinct physiological functions. Notably, hypoxia-inducible factor-1 (HIF-1), a transcriptional activator dependent on oxygen, comprises one HIF-1ß subunit and one HIF-α subunit (HIF-1α/HIF-2α/HIF-3α). The activation of HIF-1 plays a crucial role in gene transcription, influencing key aspects of cancer biology such as angiogenesis, cell survival, glucose metabolism, and invasion. The involvement of HIF-1α activation has been demonstrated in numerous human diseases, particularly cancer, making HIF-1 an attractive target for potential disease treatments. Through a series of experiments, researchers have identified two tiRNAs that interact with the HIF-1 pathway, impacting disease development: 5'tiRNA-His-GTG in colorectal cancer (CRC) and tiRNA-Val in diabetic retinopathy (DR). Specifically, 5'tiRNA-His-GTG promotes CRC development by targeting LATS2, while tiRNA-Val inhibits Sirt1, leading to HIF-1α accumulation and promoting DR development. Clinical data have further indicated that certain tsRNAs' expression levels are associated with the prognosis and pathological features of CRC patients. In CRC tumor tissues, the expression level of 5'tiRNA-His-GTG is significantly higher compared to normal tissues, and it shows a positive correlation with tumor size. Additionally, KEGG analysis has revealed multiple tRFs involved in regulating the HIF-1 pathway, including tRF-Val-AAC-016 in diabetic foot ulcers (DFU) and tRF-1001 in pathological ocular angiogenesis. This comprehensive article reviews the biological functions and mechanisms of tsRNAs related to the HIF-1 pathway in diseases, providing a promising direction for subsequent translational medicine research.


Assuntos
Pequeno RNA não Traduzido , RNA de Transferência , Transdução de Sinais , Humanos , RNA de Transferência/genética , RNA de Transferência/metabolismo , Animais , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Fator 1 Induzível por Hipóxia/metabolismo , Fator 1 Induzível por Hipóxia/genética , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia
5.
Theriogenology ; 226: 87-94, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38870583

RESUMO

Small non-coding RNAs (sncRNAs) present in the conditioned medium (CM) of bovine preimplantation embryos are potential noninvasive biomarkers for assessing embryo quality. Accurate quantification of sncRNA levels in the spent CM is of utmost importance in this regard. RT-qPCR is considered as the gold standard for quantifying RNA. In order to standardize RT-qPCR data in the sample type under investigation, the use of suitable stable sncRNAs is essential. Here, we selected 10 sncRNAs from small RNA sequencing of CM samples derived from both bovine blastocysts and degenerate embryos, and evaluated their expression stability together with that of cel-miR-39 as a spike and the often-used U6 small nuclear RNA at different embryo developmental stages. In CM of 2-cell embryos, rsRNA-1044 showed the most stable expression, while tDR-1:32-Gly-CCC-1 was the most stable expressed sncRNA in CM of the stages beyond the 2-cell stage. Next, tDR-1:32-Gly-CCC-1 was used for normalizing the RT-qPCR data from the CM of blastocysts and degenerate embryos. Bta-miR-155 and tDR-39:75-Arg-CCG-2 were found to be significantly up-regulated in the CM of blastocysts compared to that of the degenerated embryos (P = 0.028 and P = 0.017, respectively), suggesting their expression levels are related to embryo development stage. In conclusion, tDR-1:32-Gly-CCC-1 can serve as a suitable reference sncRNA for normalization of RT-qPCR data of the CM from bovine blastocysts.


Assuntos
Blastocisto , Pequeno RNA não Traduzido , Animais , Bovinos/embriologia , Pequeno RNA não Traduzido/genética , Meios de Cultivo Condicionados , Técnicas de Cultura Embrionária/veterinária , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reação em Cadeia da Polimerase em Tempo Real/métodos , Regulação da Expressão Gênica no Desenvolvimento , Desenvolvimento Embrionário
6.
J Zhejiang Univ Sci B ; 25(5): 438-450, 2024 May 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38725342

RESUMO

Gastric cancer (GC) is one of the most common gastrointestinal tumors. As a newly discovered type of non-coding RNAs, transfer RNA (tRNA)|-derived small RNAs (tsRNAs) play a dual biological role in cancer. Our previous studies have demonstrated the potential of tRF-23-Q99P9P9NDD as a diagnostic and prognostic biomarker for GC. In this work, we confirmed for the first time that tRF-23-Q99P9P9NDD can promote the proliferation, migration, and invasion of GC cells in vitro. The dual luciferase reporter gene assay confirmed that tRF-23-Q99P9P9NDD could bind to the 3' untranslated region (UTR) site of acyl-coenzyme A dehydrogenase short/branched chain (ACADSB). In addition, ACADSB could rescue the effect of tRF-23-Q99P9P9NDD on GC cells. Next, we used Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) to find that downregulated ACADSB in GC may promote lipid accumulation by inhibiting fatty acid catabolism and ferroptosis. Finally, we verified the correlation between ACADSB and 12 ferroptosis genes at the transcriptional level, as well as the changes in reactive oxygen species (ROS) levels by flow cytometry. In summary, this study proposes that tRF-23-Q99P9P9NDD may affect GC lipid metabolism and ferroptosis by targeting ACADSB, thereby promoting GC progression. It provides a theoretical basis for the diagnostic and prognostic monitoring value of GC and opens up new possibilities for treatment.


Assuntos
Progressão da Doença , Pequeno RNA não Traduzido , RNA de Transferência , Neoplasias Gástricas , Humanos , Regiões 3' não Traduzidas , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Ferroptose/genética , Regulação Neoplásica da Expressão Gênica , RNA de Transferência/genética , RNA de Transferência/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Pequeno RNA não Traduzido/metabolismo
7.
J Cancer ; 15(9): 2613-2626, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577588

RESUMO

tRNA-derived small RNAs (tsRNAs) are a novel class of non-coding small RNAs, generated from specific cleavage sites of tRNA or pre-tRNA. tsRNAs can directly participate in RNA silencing, transcription, translation, and other processes. Their dysregulation is closely related to the occurrence and development of various cancers. Breast cancer is one of the most common and fastest-growing malignant tumors in humans. tsRNAs have been found to be dysregulated in breast cancer, serving as a new target for exploring the pathogenesis of breast cancer. They are also considered new tumor markers, providing a basis for diagnosis and treatment. This article reviews the generation, classification, mechanism of action, function of tsRNAs, and their biological effects and related mechanisms in breast cancer, in the hope of providing a new direction for the diagnosis and treatment of breast cancer.

8.
Aging (Albany NY) ; 16(5): 4299-4326, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38451187

RESUMO

The tsRNAs (tRNA-derived small RNAs) are a novel class of small non-coding RNAs derived from transfer-RNAs. Colon adenocarcinoma (COAD) is the most malignant intestinal tumor. This study focused on the identification and characterization of tsRNA biomarkers in colon adenocarcinomas. Data processing and bioinformatic analyses were performed with the packages of R and Python software. The cell proliferation, migration and invasion abilities were determined by CCK-8 and transwell assays. Luciferase reporter assay was used to test the binding of tsRNA with its target genes. With computational methods, we identified the tRNA fragments profiles within COAD datasets, and discriminated forty-two differentially expressed tsRNAs between paired colon adenocarcinomas and non-tumor controls. Among the fragments derived from the 3' end of tRNA-His-GUG (a histidyl-transfer-RNA), tRFdb-3013a and tRFdb-3013b (tRFdb-3013a/b) were notably decreased in colon and rectum adenocarcinomas, especially, tRFdb-3013a/b might tend to be down-regulated in patients with lymphatic or vascular invasion present. The clinical survival of colorectal adenocarcinoma patients with low tRFdb-3013a/b expression was significantly worse than that of high expression patients. In colon adenocarcinoma cells, tRFdb-3013a could have inhibited cell proliferations, and reduced cell migration and invasion abilities. The enrichment analyses showed that most of tRFdb-3013a correlated-genes were enriched in the extracellular matrix associated GO terms, phagosome pathway, and a GSEA molecular signature pathway. Additionally, the 3'UTR of ST3GAL1 mRNA was predicted to contain the binding site of tRFdb-3013a/b, tRFdb-3013a/b might directly target and regulate ST3GAL1 expression in colon adenocarcinomas. These results suggested that tRFdb-3013a/b might serve as novel biomarkers for diagnosis and prognosis of colon adenocarcinomas, and act a key player in the progression of colon adenocarcinomas.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Humanos , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , RNA , RNA de Transferência/genética , RNA de Transferência/metabolismo , Biomarcadores
9.
Gene ; 913: 148399, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38518902

RESUMO

Metformin, a widely used anti-diabetic drug, has demonstrated its efficacy in addressing various inflammatory conditions. tRNA-derived small RNA (tsRNA), a novel type of small non-coding RNA, exhibits diverse regulatory functions and holds promise as both a diagnostic biomarker and a therapeutic target for various diseases. The purpose of this study is to investigate whether the abundance of tsRNAs changed in LPS versus LPS + metformin-treated cells, utilizing microarray technology. Firstly, we established an in vitro lipopolysaccharide (LPS)-induced inflammation model using RAW264.7 macrophages and assessed the protective effects of metformin against inflammatory damage. Subsequently, we extracted total RNA from both LPS-treated and metformin + LPS-treated cell samples for microarray analysis to identify differentially abundant tsRNAs (DA-tsRNAs). Furthermore, we conducted bioinformatics analysis to predict target genes for validated DA-tsRNAs and explore the biological functions and signaling pathways associated with DA-tsRNAs. Notably, metformin was found to inhibit the inflammatory response in RAW264.7 macrophages. The microarray results revealed a total of 247 DA-tsRNAs, with 58 upregulated and 189 downregulated tsRNAs in the Met + LPS group compared to the LPS group. The tsRNA-mRNA network was visualized, shedding light on potential interactions. The results of bioinformatics analysis suggested that these potential targets of specific tsRNAs were mainly related to inflammation and immunity. Our study provides compelling evidence that metformin exerts anti-inflammatory effects and modulates the abundance of tsRNAs in LPS-treated RAW264.7 macrophages. These findings establish a valuable foundation for using tsRNAs as potential biomarkers for metformin in the treatment of inflammatory conditions.


Assuntos
MicroRNAs , Pequeno RNA não Traduzido , Humanos , Lipopolissacarídeos/farmacologia , RNA de Transferência/genética , RNA de Transferência/metabolismo , MicroRNAs/genética , Pequeno RNA não Traduzido/metabolismo , Análise em Microsséries , Inflamação/tratamento farmacológico , Inflamação/genética
10.
Life Sci ; 341: 122475, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309576

RESUMO

Cardio-metabolic diseases, including a cluster of metabolic disorders and their secondary affections on cardiovascular physiology, are gradually brought to the forefront by researchers due to their high prevalence and mortality, as well as an unidentified pathogenesis. tRNA-derived small RNAs (tsRNAs), cleaved by several specific enzymes and once considered as some "metabolic junks" in the past, have been proved to possess numerous functions in human bodies. More interestingly, such a potential also seems to influence the progression of cardio-metabolic diseases to some extent. In this review, the biogenesis, classification and mechanisms of tsRNAs will be discussed based on some latest studies, and their relations with several cardio-metabolic diseases will be highlighted in sequence. Lastly, some future prospects, such as their clinical applications as biomarkers and therapeutic targets will also be mentioned, in order to provide researchers with a comprehensive understanding of the research status of tsRNAs as well as its association with cardio-metabolic diseases, thus presenting as a beacon to indicate directions for the next stage of study.


Assuntos
Doenças Metabólicas , RNA de Transferência , Humanos , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA/genética , Doenças Metabólicas/genética
11.
Mol Ther Nucleic Acids ; 35(1): 102114, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38314096

RESUMO

tRNA-derived small RNAs (tsRNAs) constitute a subgroup of small noncoding RNAs (ncRNAs) originating from tRNA molecules. Their rich content, evolutionary conservatism, high stability, and widespread existence makes them significant in disease research. These characteristics have positioned tsRNAs as key players in various physiological and pathological processes. tsRNA actively participates in regulating many cellular processes, such as cell death, proliferation, and metabolism. tsRNAs could be promising diagnostic markers for cardiovascular diseases (CVDs). tsRNAs have been identified in serums, suggesting their utility as early indicators for the diagnosis of CVDs. Moreover, the regulatory roles of tsRNAs in CVDs make them promising targets for therapeutic intervention. This review provides a succinct overview of the characteristics, classification, and regulatory functions of tsRNAs in the context of CVDs. By shedding light on the intricate roles of tsRNAs, this knowledge could pave the way for the development of innovative diagnostic tools and therapeutic strategies for CVDs.

12.
Cancer Lett ; 587: 216701, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38369004

RESUMO

A new class of noncoding RNAs, tsRNAs are not only abundant in humans but also have high tissue specificity. Recently, an increasing number of studies have explored the correlations between tsRNAs and tumors, showing that tsRNAs can affect biological behaviors of tumor cells, such as proliferation, apoptosis and metastasis, by modulating protein translation, RNA transcription or posttranscriptional regulation. In addition, tsRNAs are widely distributed and stably expressed, which endows them with broad application prospects in diagnosing and predicting the prognosis of tumors, and they are expected to become new biomarkers. However, notably, the current research on tsRNAs still faces problems that need to be solved. In this review, we describe the characteristics of tsRNAs as well as their unique features and functions in tumors. Moreover, we also discuss the potential opportunities and challenges in clinical applications and research of tsRNAs.


Assuntos
MicroRNAs , Neoplasias , Humanos , Relevância Clínica , MicroRNAs/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo , Neoplasias/diagnóstico , Neoplasias/genética , RNA não Traduzido
13.
J Assist Reprod Genet ; 41(3): 781-793, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38270749

RESUMO

PURPOSE: Can small RNA derived from embryos in conditioned embryo culture medium (ECM) influence embryo implantation? METHODS: We employed small RNA sequencing to investigate the expression profiles of transfer RNA-derived small RNA (tsRNA) and microRNA (miRNA) in ECM from high-quality and low-quality embryos. Quantitative real-time PCR was employed to validate the findings of small RNA sequencing. Additionally, we conducted bioinformatics analysis to predict the potential functions of these small RNAs in embryo implantation. To establish the role of tiRNA-1:35-Leu-TAG-2 in embryonic trophoblast cell adhesion, we utilized co-culture systems involving JAR and Ishikawa cells. RESULTS: Our analysis revealed upregulation of nine tsRNAs and four miRNAs in ECM derived from high-quality embryos, whereas 37 tsRNAs and 12 miRNAs exhibited upregulation in ECM from low-quality embryos. The bioinformatics analysis of tsRNA, miRNA, and mRNA pathways indicated that their respective target genes may play pivotal roles in both embryo development and endometrial receptivity. Utilizing tiRNA mimics, we demonstrated that the prominently expressed tiRNA-1:35-Leu-TAG-2 in the low-quality ECM group can be internalized by Ishikawa cells. Notably, transfection of tiRNA-1:35-Leu-TAG-2 into Ishikawa cells reduced the attachment rate of JAR spheroids. CONCLUSION: Our investigation uncovers significant variation in the expression profiles of tsRNAs and miRNAs between ECM derived from high- and low-quality embryos. Intriguingly, the release of tiRNA-1:35-Leu-TAG-2 by low-quality embryos detrimentally affects embryo implantation and endometrial receptivity. These findings provide fresh insights into understanding the molecular foundations of embryo-endometrial communication.


Assuntos
MicroRNAs , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Implantação do Embrião/genética , Embrião de Mamíferos/metabolismo , Técnicas de Cocultura , Desenvolvimento Embrionário/genética , Endométrio/metabolismo
14.
J Cancer Res Clin Oncol ; 150(2): 51, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289488

RESUMO

OBJECTIVE: tRNA-derived small RNAs (tsRNAs) are novel non-coding RNAs with various functions in multiple cancers. Nevertheless, whether vitamin D executes its function in mitochondrial dysfunction and non-small cell lung cancer (NSCLC) progression through tsRNAs remains obscure. METHODS: Differentially expressed tsRNAs between control and vitamin D-treated H1299 cells were acquired by small RNA sequencing. Cell and animal experiments were implemented to elucidate the impacts of vitamin D and tsRNA on mitochondrial dysfunction and NSCLC progression. Dual-luciferase reporter assay, quantitative real-time PCR, western blot and recovery experiments were applied to determine the mechanism of tsRNA in NSCLC. RESULTS: We discovered that vitamin D receptor resulted in decreased mitochondrial-related functions and vitamin D caused mitochondrial dysfunction of NSCLC cells. tsRNA-07804 was remarkably upregulated in vitamin D-treated H1299 cells. Functional experiments indicated that vitamin D led to mitochondrial dysfunction, repressed the proliferation, migration, invasion, and promoted apoptosis of H1299 cells via regulating tsRNA-07804. Mechanistically, tsRNA-07804 induced mitochondrial dysfunction and inhibited the malignancy of H1299 cells by suppressing CRKL expression. In vivo experiments showed that vitamin D inhibited the tumor growth in NSCLC by increasing tsRNA-07804 expression. Moreover, clinical sample analysis unveiled that tsRNA-07804 had a negative correlation with CRKL. CONCLUSIONS: In conclusion, our study proved that vitamin D induced mitochondrial dysfunction and suppressed the progression of NSCLC through the tsRNA-07804/CRKL axis. Overall, these results unveiled that tsRNA-07804 might act as a potential therapeutic target for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Doenças Mitocondriais , Animais , Vitamina D/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Vitaminas
15.
Exp Cell Res ; 435(2): 113923, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38190870

RESUMO

Atrial fibrillation (AF) is an extremely common clinical arrhythmia disease, but whether its mechanism is associated with ferroptosis remains unclear. The tRNA-derived small RNAs (tsRNAs) are involved in a variety of cardiovascular diseases, however, their role and mechanism in atrial remodeling in AF have not been studied. We aimed to explore whether tsRNAs mediate ferroptosis in AF progression. The AF models were constructed to detect ferroptosis-related indicators, and Ferrostatin-1 (Fer-1) was introduced to clarify the relationship between ferroptosis and AF. Atrial myocardial tissue was used for small RNA sequencing to screen potential tsRNAs. tsRNA functioned on ferroptosis and AF was explored. Atrial fibrosis and changes in the cellular structures and arrangement were observed in AF mice model, and these alterations were accompanied by ferroptosis occurrence, exhibited by the accumulation of Fe2+ and MDA levels and the decrease of expression of FTH1, GPX4, and SLC7A11. Blocking above ferroptosis activation with Fer-1 resulted in a significant improvement for AF. A total of 7 tsRNAs were upregulated (including tsRNA-5008a) and 2 tsRNAs were downregulated in atrial myocardial tissue in the AF group compared with the sham group. We constructed a tsRNA-mRNA regulated network, which showed tsRNA-5008a targeted 16 ferroptosis-related genes. Knockdown of tsRNA-5008a significantly suppressed ferroptosis through targeting SLC7A11 and diminished myocardial fibrosis both in vitro and in vivo. On the contrary, tsRNA-5008a mimics promoted ferroptosis in cardiomyocytes. Collectively, tsRNA-5008a involved in AF through ferroptosis. Our study provides novel insights into the role of tsRNA-5008a mediated ferroptosis in AF progression.


Assuntos
Fibrilação Atrial , Remodelamento Atrial , Cicloexilaminas , Ferroptose , Fenilenodiaminas , Animais , Camundongos , Fibrilação Atrial/genética , Miócitos Cardíacos , Remodelamento Atrial/genética , Ferroptose/genética , Átrios do Coração
16.
Theriogenology ; 215: 241-248, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38100996

RESUMO

Sperm small non-coding RNAs (sncRNAs), such as microRNAs (miRNAs) and tRNA-derived small RNAs (tsRNAs), have been found to have implications for male fertility and play a role in the intergenerational transmission of specific phenotypes by influencing the early embryo's physiological processes in various animal species. This study postulates that there exists a correlation between sperm small non-coding RNAs (sncRNAs) and bull fertility, which in turn can influence the fertility of offspring through the modulation of early embryo development. To investigate this hypothesis, we generated comparative libraries of sperm sncRNAs from sires exhibiting high (n = 3) versus low bull fertility (n = 3), as well as high (n = 3) versus low daughter fertility (n = 3), as determined by the industry-standard Bull fertility index and Daughter fertility index. In total, 12 tsRNAs carried by sperm (11 down-regulated and 1 up-regulated) were found to be associated with bull fertility, while 19 tsRNAs (11 down-regulated and 8 up-regulated) were found to be associated with daughter fertility (q < 0.05, Log2foldchange>±1.5, base mean > 50). Notably, tRX-Glu-NNN-3811 exhibited potential as a biomarker for predicting fertility in both male and female dairy cattle. Moreover, a total of six miRNAs sperm-borne (two up-regulated and four down-regulated) and 35 miRNAs (27 up-regulated and eight down-regulated) exhibited a significant correlation with both bull fertility and daughter fertility individually (p < 0.05, base mean > 50, log2foldchange>±1.5), two microRNAs, namely miR-2385-5p (down-regulated) and miR-98 (up-regulated), exhibit a significant association (p < 0.05, base mean > 50, log2foldchange>±1.5) with the fertility of both bulls and daughter. The targets of these two microRNAs were subsequently identified and integrated with the transcriptomic database of the embryonic cells at the two-cell stage, which is known to be indicative of embryonic competence. The KEGG analysis revealed a potential correlation between these targets and choline metabolism, a crucial factor in embryonic epigenetic programming. In summary, the findings of this study indicate that sperm-borne small non-coding RNAs (sncRNAs) hold promise as biomarkers for predicting and enhancing fertility in dairy cattle. Furthermore, it is plausible that these sncRNAs may exert their effects on daughter fertility by targeting genes in the early embryo.


Assuntos
MicroRNAs , Pequeno RNA não Traduzido , Masculino , Bovinos/genética , Animais , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Sêmen/metabolismo , Fertilidade/genética , Espermatozoides/fisiologia , Pequeno RNA não Traduzido/metabolismo
17.
Reprod Biol Endocrinol ; 21(1): 106, 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37924131

RESUMO

Small non-coding RNAs (sncRNAs), being the top regulators of gene expression, have been thoroughly studied in various biological systems, including the testis. Research over the last decade has generated significant evidence in support of the crucial roles of sncRNAs in male reproduction, particularly in the maintenance of primordial germ cells, meiosis, spermiogenesis, sperm fertility, and early post-fertilization development. The most commonly studied small RNAs in spermatogenesis are microRNAs (miRNAs), PIWI-interacting RNA (piRNA), small interfering RNA (siRNA), and transfer RNA-derived small RNAs (ts-RNAs). Small non-coding RNAs are crucial in regulating the dynamic, spatial, and temporal gene expression profiles in developing germ cells. A number of small RNAs, particularly miRNAs and tsRNAs, are loaded on spermatozoa during their epididymal maturation. With regard to their roles in fertility, miRNAs have been studied most often, followed by piRNAs and tsRNAs. Dysregulation of more than 100 miRNAs has been shown to correlate with infertility. piRNA and tsRNA dysregulations in infertility have been studied in only 3-5 studies. Sperm-borne small RNAs hold great potential to act as biomarkers of sperm quality and fertility. In this article, we review the role of small RNAs in spermatogenesis, their association with infertility, and their potential as biomarkers of sperm quality and fertility.


Assuntos
Infertilidade Masculina , MicroRNAs , Pequeno RNA não Traduzido , Humanos , Masculino , Sêmen/metabolismo , Espermatogênese/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Espermatozoides/metabolismo , RNA Interferente Pequeno/genética , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Biomarcadores/metabolismo
18.
Front Genet ; 14: 1232325, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37953919

RESUMO

An unique subclass of functional non-coding RNAs generated by transfer RNA (tRNA) under stress circumstances is known as tRNA-derived small RNA (tsRNA). tsRNAs can be divided into tRNA halves and tRNA-derived fragments (tRFs) based on the different cleavage sites. Like microRNAs, tsRNAs can attach to Argonaute (AGO) proteins to target downstream mRNA in a base pairing manner, which plays a role in rRNA processing, gene silencing, protein expression and viral infection. Notably, tsRNAs can also directly bind to protein and exhibit functions in transcription, protein modification, gene expression, protein stabilization, and signaling pathways. tsRNAs can control the expression of tumor suppressor genes and participate in the initiation of cancer. It can also mediate the progression of diseases by regulating cell viability, migration ability, inflammatory factor content and autophagy ability. Precision medicine targeting tsRNAs and drug therapy of plant-derived tsRNAs are expected to be used in clinical practice. In addition, liquid biopsy technology based on tsRNAs indicates a new direction for the non-invasive diagnosis of diseases.

19.
Brain Res Bull ; 204: 110773, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37793597

RESUMO

Depression is a common mental illness. Ferroptosis is a form of cell death that may be responsible for neurological disease, but the role of ferroptosis in depression remains unclear. tRNA-derived small RNA (tsRNA) is an emerging non-coding small RNA, making it an important medium for studying neurological diseases. Chronic unpredictable mild stress (CUMS) was used to construct the depression model in mice, which was treated with ferrostatin-1 (Fer-1). Classical behavioral test, immunofluorescence and small RNA sequencing were used to detect depression-like behaviors, neuronal proliferation and the expression profile of tsRNAs in mice, respectively. The primary neuronal cell damage model was constructed by corticosterone (CORT), and the function of key tsRNA was investigated by quantitative real-time PCR, western blot and CCK-8 assays. Here, Fer-1 reduced the depression-like behavior of CUMS-induced mice and promoted neuronal growth. In addition, CUMS caused the disorder of tsRNA expression profile in hippocampal tissues of mice, and Fer-1 alleviated the abnormal tsRNA expression, among which tsRNA-3029b was an effective target. In vitro experiments manifested that ROS accumulation and decreased expression of SLC7A11 and GPX4 were found in CORT-induced depression-like cell model, suggesting that ferroptosis was involved in neuronal injury. However, inhibition of tsRNA-3029b suppressed neuronal cell ferroptosis and facilitated neuronal regeneration. In conclusion, Fer-1 showed an antidepressant effect in CUMS-induced mice and alleviated the abnormal expression profile of tsRNA. tsRNA-3029b was a key target in depression, and silencing of tsRNA-3029b reduced the occurrence of ferroptosis and protected neurons from injury, which may provide novel target for the treatment of depression.


Assuntos
Transtorno Depressivo , Ferroptose , Camundongos , Animais , Depressão/tratamento farmacológico , Depressão/metabolismo , Transtorno Depressivo/tratamento farmacológico , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , RNA/farmacologia , RNA/uso terapêutico
20.
Cancer Sci ; 114(12): 4607-4621, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37770420

RESUMO

Evaluating the accuracy of pulmonary nodule diagnosis avoids repeated low-dose computed tomography (LDCT)/CT scans or invasive examination, yet remains a main clinical challenge. Screening for new diagnostic tools is urgent. Herein, we established a nomogram based on the diagnostic signature of five circulating tsRNAs and CT information to predict malignant pulmonary nodules. In total, 249 blood samples of patients with pulmonary nodules were selected from three different lung cancer centers. Five tsRNAs were identified in the discovery and training cohorts and the diagnostic signature was established by the randomForest algorithm (tRF-Ser-TGA-003, tRF-Val-CAC-005, tRF-Ala-AGC-060, tRF-Val-CAC-024, and tiRNA-Gln-TTG-001). A nomogram was developed by combining tsRNA signature and CT information. The high level of accuracy was identified in an internal validation cohort (n = 83, area under the receiver operating characteristic curve [AUC] = 0.930, sensitivity 100.0%, specificity 73.8%) and external validation cohort (n = 66, AUC = 0.943, sensitivity 100.0%, specificity 86.8%). Furthermore, the diagnostic ability of our model discriminating invasive malignant ones from noninvasive lesions was assessed. A robust performance was achieved in the diagnosis of invasive malignant lesions in both training and validation cohorts (discovery cohort: AUC = 0.850, sensitivity 86.0%, specificity 81.4%; internal validation cohort: AUC = 0.784, sensitivity 78.8%, specificity 78.1%; and external validation cohort: AUC = 0.837, sensitivity 85.7%, specificity 84.0%). This novel circulating tsRNA-based diagnostic model has potential significance in predicting malignant pulmonary nodules. Application of the model could improve the accuracy of pulmonary nodule diagnosis and optimize surgical plans.


Assuntos
Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Humanos , Nomogramas , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Nódulos Pulmonares Múltiplos/patologia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/genética , Tomografia Computadorizada por Raios X/métodos , Pulmão/patologia , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA