Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Neurooncol ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960965

RESUMO

BACKGROUND: Quantifying tumor growth and treatment response noninvasively poses a challenge to all experimental tumor models. The aim of our study was, to assess the value of quantitative and visual examination and radiomic feature analysis of high-resolution MR images of heterotopic glioblastoma xenografts in mice to determine tumor cell proliferation (TCP). METHODS: Human glioblastoma cells were injected subcutaneously into both flanks of immunodeficient mice and followed up on a 3 T MR scanner. Volumes and signal intensities were calculated. Visual assessment of the internal tumor structure was based on a scoring system. Radiomic feature analysis was performed using MaZda software. The results were correlated with histopathology and immunochemistry. RESULTS: 21 tumors in 14 animals were analyzed. The volumes of xenografts with high TCP (H-TCP) increased, whereas those with low TCP (L-TCP) or no TCP (N-TCP) continued to decrease over time (p < 0.05). A low intensity rim (rim sign) on unenhanced T1-weighted images provided the highest diagnostic accuracy at visual analysis for assessing H-TCP (p < 0.05). Applying radiomic feature analysis, wavelet transform parameters were best for distinguishing between H-TCP and L-TCP / N-TCP (p < 0.05). CONCLUSION: Visual and radiomic feature analysis of the internal structure of heterotopically implanted glioblastomas provide reproducible and quantifiable results to predict the success of transplantation.

2.
Chem Biodivers ; 21(4): e202400100, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38263951

RESUMO

A total of seven compounds, including four triterpene acids and three triterpene lactones, were isolated from the ethanolic extract of the roots of Astilbe grandis Stapf ex Wils. Two of the triterpene lactones (1-2) were never reported before and compounds 3-5 were isolated for the first time from the plant. The structures of these compounds were all identified by spectroscopic analysis. Compounds 1-2 were analyzed by 2D NMR and their absolute configurations were determined using experimental CD in comparison with calculated ECD values. The structure of compound 1 was also further confirmed by single crystal X-ray diffraction analysis. The cytotoxicity of compounds 1-7 on A549, Caco-2, H460 and Skov-3 tumor cells were all evaluated using CCK-8. They all exhibited positive inhibitory effects on Caco-2 tumor cells with IC50 less than10 µM, while the inhibitory effects on H460 tumor cells were more moderate. Unfortunately, they displayed little apparent cytotoxicity to the other two types of cells.


Assuntos
Triterpenos , Humanos , Triterpenos/farmacologia , Triterpenos/química , Estrutura Molecular , Células CACO-2 , Linhagem Celular Tumoral , Lactonas/química , Proliferação de Células
3.
Int J Mol Sci ; 24(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38139067

RESUMO

Metabolic reprogramming, especially reprogrammed glucose metabolism, is a well-known cancer hallmark related to various characteristics of tumor cells, including proliferation, survival, metastasis, and drug resistance. Glucose-6-phosphate dehydrogenase (G6PD) is the first and rate-limiting enzyme of the pentose phosphate pathway (PPP), a branch of glycolysis, that converts glucose-6-phosphate (G6P) into 6-phosphogluconolactone (6PGL). Furthermore, PPP produces ribose-5-phosphate (R5P), which provides sugar-phosphate backbones for nucleotide synthesis as well as nicotinamide adenine dinucleotide phosphate (NADPH), an important cellular reductant. Several studies have shown enhanced G6PD expression and PPP flux in various tumor cells, as well as their correlation with tumor progression through cancer hallmark regulation, especially reprogramming cellular metabolism, sustaining proliferative signaling, resisting cell death, and activating invasion and metastasis. Inhibiting G6PD could suppress tumor cell proliferation, promote cell death, reverse chemoresistance, and inhibit metastasis, suggesting the potential of G6PD as a target for anti-tumor therapeutic strategies. Indeed, while challenges-including side effects-still remain, small-molecule G6PD inhibitors showing potential anti-tumor effect either when used alone or in combination with other anti-tumor drugs have been developed. This review provides an overview of the structural significance of G6PD, its role in and regulation of tumor development and progression, and the strategies explored in relation to G6PD-targeted therapy.


Assuntos
Glucosefosfato Desidrogenase , Neoplasias , Humanos , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Glicólise , Neoplasias/metabolismo , Via de Pentose Fosfato , Animais
4.
Toxicol Lett ; 390: 5-14, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37944650

RESUMO

Formaldehyde (FA) exposure has been positively correlated with many diseases including various types of cancers. However, the mechanisms of FA-related carcinogenesis are still unclear. Tumor-associated macrophages (TAMs) are the most abundant immune cells in tumor microenvironment, which is a heterogeneous population consist of both pro-inflammatory (M1) and immunosuppressive (M2) cells. TAMs are deeply involved in tumor development and progression. Our previous studies demonstrated that FA enhanced M1 polarization of macrophages through induction of HIF-1α-mediated glycolysis. To examine if TAM polarizations are also potentiated by FA, BALB/c nude mice were inoculated with A549 cells to develop subcutaneous tumors and exposed to 2.0 mg/m3 FA for 14 days. Significant increases of both M1 and M2 polarizations of TAMs were observed in tumor tissues of FA-exposed mice. After confirmation of the potentiation effects in RAW264.7 and THP-1-derived in vitro TAM models, FA at 25 and 50 µM was found to enhance TAM immunosuppressive functions and glycolytic metabolism. In addition, FA-induced glycolysis in TAMs was reversed by a specific HIF-1α inhibitor PX-478 at 5 µM, and suppression of glycolytic metabolism with a glucose analog 2-DG at 1 mM also alleviated FA-potentiated TAM functions, which indicated that FA induced TAM polarizations through the upregulation of HIF-1α-mediated glycolysis. These results illustrated a potential carcinogenic mechanism of FA through metabolic disturbance of tumor immunity, which could be utilized to develop preventative or therapeutic agents for FA-induced carcinogenesis and immune disorders.


Assuntos
Neoplasias , Macrófagos Associados a Tumor , Animais , Camundongos , Camundongos Nus , Neoplasias/induzido quimicamente , Glicólise , Carcinogênese , Microambiente Tumoral
5.
Front Pharmacol ; 14: 1272546, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818195

RESUMO

Leonurine refers to the desiccated aerial portion of a plant in the Labiatae family. The primary bioactive constituent of Leonurine is an alkaloid, Leonurine alkaloid (Leo), renowned for its substantial therapeutic efficacy in the treatment of gynecological disorders, in addition to its broad-spectrum antineoplastic capabilities. Over recent years, the pharmacodynamic mechanisms of Leo have garnered escalating scholarly interest. Leo exhibits its anticancer potential by means of an array of mechanisms, encompassing the inhibition of neoplastic cell proliferation, induction of both apoptosis and autophagy, and the containment of oncogenic cell invasion and migration. The key signal transduction pathways implicated in these processes include the Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL), the Phosphoinositide3-Kinase/Serine/Threonine Protein Kinase (PI3K/AKT), the Signal Transducer and Activator of Transcription 3 (STAT3), and the Mitogen-Activated Protein/Extracellular Signal-Regulated Kinase (MAP/ERK). This paper commences with an exploration of the principal oncogenic cellular behaviors influenced by Leo and the associated signal transduction pathways, thereby scrutinizing the mechanisms of Leo in the antineoplastic sequence of events. The intention is to offer theoretical reinforcement for the elucidation of more profound mechanisms underpinning Leo's anticancer potential and correlating pharmaceutical development.

6.
World J Gastrointest Oncol ; 15(8): 1384-1399, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37663941

RESUMO

BACKGROUND: Altered miR-188-3p expression has been observed in various human cancers. AIM: To investigate the miR-188-3p expression, its roles, and underlying molecular events in gastric cancer. METHODS: Fifty gastric cancer and paired normal tissues were collected to analyze miR-188-3p and CBL expression. Normal and gastric cancer cells were used to manipulate miR-188-3p and CBL expression through different assays. The relationship between miR-188-3p and CBL was predicted bioinformatically and confirmed using a luciferase gene reporter assay. A Kaplan-Meier analysis was used to associate miR-188-3p or CBL expression with patient survival. A nude mouse tumor cell xenograft assay was used to confirm the in vitro data. RESULTS: MiR-188-3p was found to be lower in the plasma of gastric cancer patients, tissues, and cell lines compared to their healthy counterparts. It was associated with overall survival of gastric cancer patients (P < 0.001), tumor differentiation (P < 0.001), lymph node metastasis (P = 0.033), tumor node metastasis stage (I/II vs III/IV, P = 0.024), and American Joint Committee on Cancer stage (I/II vs III/IV, P = 0.03). Transfection with miR-188-3p mimics reduced tumor cell growth and invasion while inducing apoptosis and autophagy. CBL was identified as a direct target of miR-188-3p, with its expression antagonizing the effects of miR-188-3p on gastric cancer (GC) cell proliferation by inducing tumor cell apoptosis and autophagy through the inactivation of the Akt/mTOR signaling pathway. The in vivo data confirmed antitumor activity via CBL downregulation in gastric cancer. CONCLUSION: The current data provides ex vivo, in vitro, and in vivo evidence that miR-188-3p acts as a tumor suppressor gene or possesses antitumor activity in GC.

7.
J Transl Med ; 21(1): 532, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550679

RESUMO

BACKGROUND: Glioblastoma (GBM) is a brain tumor with the highest level of malignancy and the worst prognosis in the central nervous system. Mitochondrial metabolism plays a vital role in the occurrence and development of cancer, which provides critical substances to support tumor anabolism. Mito-LND is a novel small-molecule inhibitor that can selectively inhibit the energy metabolism of tumor cells. However, the therapeutic effect of Mito-LND on GBM remains unclear. METHODS: The present study evaluated the inhibitory effect of Mito-LND on the growth of GBM cells and elucidated its potential mechanism. RESULTS: The results showed that Mito-LND could inhibit the survival, proliferation and colony formation of GBM cells. Moreover, Mito-LND induced cell cycle arrest and apoptosis. Mechanistically, Mito-LND inhibited the activity of mitochondrial respiratory chain complex I and reduced mitochondrial membrane potential, thus promoting ROS generation. Importantly, Mito-LND could inhibit the malignant proliferation of GBM by blocking the Raf/MEK/ERK signaling pathway. In vivo experiments showed that Mito-LND inhibited the growth of GBM xenografts in mice and significantly prolonged the survival time of tumor-bearing mice. CONCLUSION: Taken together, the current findings support that targeting mitochondrial metabolism may be as a potential and promising strategy for GBM therapy, which will lay the theoretical foundation for further clinical trials on Mito-LND in the future.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Animais , Camundongos , Glioblastoma/patologia , Linhagem Celular Tumoral , Transdução de Sinais , Apoptose , Neoplasias Encefálicas/patologia , Proliferação de Células
8.
Eur J Pharm Sci ; 180: 106323, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36336277

RESUMO

In the current investigation, fifteen novel imidazole-pyridine-based molecules were synthesized and tested against cell lines of the lung (H1299) and colon (HCT116) adenocarcinomas by proliferation assay. The results demonstrated that compounds 5a, 5d, 5e, and 5f were the most active (IC50<30 µM). Based on recent literature and the current results, the glycogen synthase kinase-3ß (GSK-3ß) protein was investigated in-silico as a possible target. The molecular docking and QSAR revealed an excellent binding affinity of the selected imidazole-pyridine compounds to GSK-3ß. Notably, GSK-3ß protein levels were significantly upregulated in hepatocellular liver carcinoma (LIHCs) tissues and negatively affected patient prognosis. Consequently, the compounds were evaluated on liver cancer cell lines (HepG2, HUH-7, and PLC/PRF/5) by the MTT assay, and 5d showed the highest antitumor activity. This study offers new compounds with interesting biological activity on GSK-3ß as a target, exhibiting a potential therapeutic impact for hepatocellular carcinoma patients.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Glicogênio Sintase Quinase 3 beta , Simulação de Acoplamento Molecular , Carcinoma Hepatocelular/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Neoplasias Hepáticas/tratamento farmacológico
9.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36293358

RESUMO

Biological therapy, with its multifaceted applications, has revolutionized the treatment of tumors, mainly due to its ability to exclusively target cancer cells and reduce the adverse effects on normal tissues. This review focuses on the therapies targeting the CXCR4 and CD47 receptors. We surveyed the results of early clinical trials testing compounds classified as nonpeptides, small peptides, CXCR4 antagonists or specific antibodies whose activity reduces or completely blocks the intracellular signaling pathways and cell proliferation. We then examined antibodies and fusion proteins against CD47, the receptor that acts as a "do not eat me" signal to phagocytes escaping immune surveillance. Despite these molecules being tested in early clinical trials, some drawbacks are emerging that impair their use in practice. Finally, we examined the ImmunoGenic Surrender mechanism that involves crosstalk and co-internalization of CXCR4 and CD47 upon engagement of CXCR4 by ligands or other molecules. The favorable effect of such compounds is dual as CD47 surface reduction impact on the immune response adds to the block of CXCR4 proliferative potential. These results suggest that a combination of different therapeutic approaches has more beneficial effects on patients' survival and may pave the way for new accomplishments in personalized anticancer therapy.


Assuntos
Antígeno CD47 , Neoplasias , Humanos , Antígeno CD47/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais , Neoplasias/patologia , Anticorpos/uso terapêutico , Peptídeos/farmacologia
10.
Chem Pharm Bull (Tokyo) ; 70(9): 637-641, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36047235

RESUMO

Human epidermal growth factor (EGFR) is an important target for antitumor drug research. A series of novel quinazolinone derivatives were synthesized and developed as potent inhibitors of EGFR. The results showed that most of the aimed compounds had potential anti-tumor cell proliferation activities. Some compounds were tested for their EGFR inhibitory activity. Especially, compound 6d showed the most potent antitumor activity with IC50 values of 1.58 µM against human breast cancer (MCF-7) cell lines and exhibited the most potent EGFR inhibitory activity with IC50 of 0.77 µM. Docking simulation was performed to position compound 6d into the EGFR active site to determine the probable binding conformation.


Assuntos
Antineoplásicos , Quinazolinonas , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Quinazolinonas/química , Quinazolinonas/farmacologia , Relação Estrutura-Atividade
11.
Int J Mol Sci ; 23(15)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35897689

RESUMO

Hepatocellular carcinoma (HCC) constitutes a devastating health burden. Recently, tumor microenvironment-directed interventions have profoundly changed the landscape of HCC therapy. In the present study, the function of the chemokine CXCL10 during fibrosis-associated hepatocarcinogenesis was analyzed with specific focus on its impact in shaping the tumor microenvironment. C57BL/6J wild type (WT) and Cxcl10 knockout mice (Cxcl10-/-) were treated with diethylnitrosamine (DEN) and tetrachloromethane (CCl4) to induce fibrosis-associated HCCs. Cxcl10 deficiency attenuated hepatocarcinogenesis by decreasing tumor cell proliferation as well as tumor vascularization and modulated tumor-associated extracellular matrix composition. Furthermore, the genetic inactivation of Cxcl10 mediated an alteration of the tumor-associated immune response and modified chemokine/chemokine receptor networks. The DEN/CCl4-treated Cxcl10-/- mice presented with a pro-inflammatory tumor microenvironment and an accumulation of anti-tumoral immune cells in the tissue. The most striking alteration in the Cxcl10-/- tumor immune microenvironment was a vast accumulation of anti-tumoral T cells in the invasive tumor margin. In summary, our results demonstrate that CXCL10 exerts a non-redundant impact on several hallmarks of the tumor microenvironment and especially modulates the infiltration of anti-tumorigenic immune cells in HCC. In the era of microenvironment-targeted HCC therapies, interfering with CXCL10 defines a novel asset for further improvement of therapeutic strategies.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinogênese/genética , Carcinoma Hepatocelular/patologia , Quimiocina CXCL10/genética , Fibrose , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microambiente Tumoral
12.
Chem Biodivers ; 19(6): e202200189, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35510593

RESUMO

A series of novel quinazolinone hydrazide derivatives were designed and synthesized as EGFR inhibitors. The results indicated that most of the aimed compounds had potential anti-tumor cell proliferation and EGFR inhibitory activities. In the comprehensive analysis of all the tested compounds, the target compound 9c showed the best anti-tumor cell proliferation activity, (IC50 =1.31 µM for MCF-7, IC50 =1.89 µM for HepG2, IC50 =2.10 µM for SGC), and IC50 =0.59 µM for the EGFR inhibitory activity. Docking results showed that compound 9c could ideally insert the active site and interact with the critical amino acid residues (Val702, Lys721, Met769, Asp831) in the active site.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/química , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB , Humanos , Hidrazinas/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Quinazolinonas/química , Relação Estrutura-Atividade
13.
Cancers (Basel) ; 14(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35008391

RESUMO

Cancer cells rewire their metabolic programs to favor biological processes that promote cell survival, proliferation, and dissemination. Among this relevant reprogramming, sphingolipid metabolism provides metabolites that can favor or oppose these hallmarks of cancer. The sphingolipid ceramide 1-phosphate (C1P) and the enzyme responsible for its biosynthesis, ceramide kinase (CERK), are well established regulators of cell growth and survival in normal, as well as malignant cells through stress-regulated signaling pathways. This metabolite also promotes cell survival, which has been associated with the feedback regulation of other antitumoral sphingolipids or second messengers. C1P also regulates cancer cell invasion and migration of different types of cancer, including lung, breast, pancreas, prostate, or leukemia cells. More recently, CERK and C1P have been implicated in the control of inflammatory responses. The present review provides an updated view on the important role of CERK/C1P in the regulation of cancer cell growth, survival, and dissemination.

14.
Front Mol Biosci ; 8: 755911, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34859049

RESUMO

Background: PDZ binding kinase (PBK) is a serine/threonine kinase, which belongs to the mitogen-activated protein kinase kinase (MAPKK) family. It has been shown to be a critical gene in the regulation of mitosis and tumorigenesis, but the role of PBK in various cancers remains unclear. In this study, we systematically explored the prognostic and predictive value of PBK expression in 33 cancer types. Methods: Public databases including the cBioPortal database, GDSC database, GTEx database, CCLE database, and TCGA database were used to detect the PBK expression and its association with the prognosis, clinicopathologic stage, TMB, MSI, immune microenvironment, immune checkpoints, immune cell infiltration, enrichment pathways, and IC50 across pan-cancer. The statistical analyses and visualization were conducted using R software. Results: PBK expression is relatively high in most cancers compared to their normal counterparts, and this gene is barely expressed in normal tissues. High expression of PBK is significantly associated with poor prognosis and clinicopathologic stages I, II, and III in different cancers. Furthermore, PBK expression is strongly associated with TMB in 23 cancer types and associated with MSI in nine cancer types. Moreover, the correlation analysis of the microenvironment and immune cells indicated that PBK is negatively correlated with the immune infiltration levels but positively correlated with the infiltration levels of M0 and M1 macrophages, T cells CD4 memory activated, and T cells follicular helper. GSEA analysis revealed that the biological function or pathways relevant to the cell cycle and mitosis were frequently enriched at the level of high expression of PBK. Conclusion: These results revealed the oncogenic role of PBK, which is significantly upregulated in various cancers and indicated poor prognosis and immune infiltration in multiple cancers. It also suggested that PBK may serve as a biomarker in multiple tumor progress and patient survival.

15.
Children (Basel) ; 8(9)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34572216

RESUMO

Neuroblastoma, like other cancer types, has an increased need for energy. This results in an increased thermogenic profile of the cells. How tumor cells optimize their energy efficiency has been discussed since Warburg described the fact that tumor cells prefer an anaerobic to an aerobic metabolism in the 1920s. An important question is how far the energy efficiency is influenced by the substrate. The aim of this study was to investigate how the metabolic activity of neuroblastoma cells is stimulated by addition of glucose or fructose to the medium and if this can be measured accurately by using isothermal microcalorimetry. Proliferation of Kelly and SH-EP Tet-21/N cells was determined in normal medium, in fructose-enriched, in glucose-enriched and in a fructose/glucose-enriched environment. Heat development of cells was measured by isothermal microcalorimetry. The addition of fructose, glucose or both to the medium led to increases in the metabolic activity of the cells, resulting in increased proliferation under the influence of fructose. These changes were reflected in an enhanced thermogenic profile, mirroring the results of the proliferation assay. The tested neuroblastoma cells prefer fructose metabolism over glucose metabolism, a quality that provides them with a survival benefit under unfavorable low oxygen and low nutrient supply when fructose is available. This can be quantified by measuring thermogenesis.

16.
J Bone Oncol ; 26: 100346, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33425674

RESUMO

Prostate cancer (PCa) metastasizes to bone, where the bone marrow microenvironment controls disease progression. However, the cellular interactions that result in active bone marrow metastases are poorly understood. A better understanding of these interactions is critical to success in the pursuit of effective treatments for this life ending disease. Anecdotally, we observe that after intracardiac injection of PCa cells, one of the greatest tools to investigate the mechanisms of bone-metastatic disease, animals frequently present with mandible metastasis before hind limb metastasis. Therefore, in this study, we investigated whether the bone cells derived from the mouse mandible influence PCa progression differently than those from the hind limb. Interestingly, we found that osteoblasts harvested from mouse mandibles grew faster, expressed more vascular endothelial growth factor (VEGF), increased vascularity and formed more bone, and stimulated faster growth of PCa cells when cultured together than osteoblasts harvested from mouse hind limbs. Additionally, these findings were confirmed in vivo when mouse mandible osteoblasts were co-implanted into mice with PCa cells. Importantly, the enhancement of PCa growth mediated by mandible osteoblasts was not shown to be due to their differentiation or proliferation activities, but may be partly due to increased vascularization and expression of VEGF.

17.
Chem Pharm Bull (Tokyo) ; 69(1): 32-39, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33390519

RESUMO

The persistent calyx on the fruit of Diospyros kaki, called "Shitei" in Japanese, is reported to contain phenolic compounds including condensed tannins. In this study, we isolated and characterized a new compound, together with 26 phenolic components, from the 70% acetone extract of Shitei, with structural elucidation based on spectroscopic analyses. In addition, we confirmed the presence of condensed tannins by 13C-NMR spectra, and the weight-average molecular weight was estimated by gel permeation chromatography (GPC) analysis. Next, Shiteito, a Kampo medicine consisting of Shitei, ginger, and clove clinically used to treat chronic hiccoughs occurring in association with anticancer drug treatments, and hot-water extracts of each of its components, were analyzed by HPLC, which determined that the main ingredient in Shiteito was derived from clove. We therefore isolated the ingredients and investigated their anti-tumor cell proliferative activity, together with Shiteito and Shitei extracts. As a result, Shiteito showed weak inhibition of hepatocellular carcinoma (Hep3B) cell proliferation at a high concentration. In contrast, ellagic acid, one of the main constituents of Shiteito, showed significant cytotoxicity against Hep3B cells, and significant inhibition of gastric adenocarcinoma (AGS) cell proliferation in a concentration-dependent manner. The ethyl acetate (EtOAc) fraction of the 70% acetone extract of Shitei significantly inhibited the proliferation of colon adenocarcinoma (Caco-2) and AGS cells at low to middle concentration, while showing strong cytotoxicity against Hep3B. These data indicate that Shiteito and Shitei extracts could enhance cancer drug treatment by preventing the associated chronic hiccups, and have the potential to be adjuvant treatments as well.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Diospyros/química , Frutas/química , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Fenóis/química , Fenóis/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Relação Estrutura-Atividade , Células Tumorais Cultivadas
18.
Int J Mol Sci ; 21(21)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158289

RESUMO

Fibronectin (FN) expressed by tumor cells has been known to be tumor suppressive but the pericellular FN (periFN) assembled on circulating tumor cells appears to evidently promote distant metastasis. Whereas the regulation of periFN assembly in suspended cells has currently been under investigation, how it is regulated in adherent tumor cells and the role of periFN in primary tumor growth remain elusive. Techniques of RNAi, plasmid transfections, immunoblotting, fluorescence/immunohistochemistry staining, cell proliferation assays, and primary tumor growth in C57BL6 mice and Fischer 344 rats were employed in this study. We found that endogenously synthesized FN in adherent tumor cells was required for periFN assembly which was aligned by RhoA-organized actin stress fiber (SF). Depleting periFN on adherent tumor cells congruently promoted in vivo tumor growth but surprisingly did not autonomously impact on in vitro tumor cell proliferation and apoptosis, suggestive of a non-autonomous role of periFN in in vivo tumor growth. We showed that the proliferative ability of shFN-expressing tumor cells was higher than shScramble cells did in the presence of fibroblasts. Altogether, these results suggested that depriving RhoA/SF-regulated periFN matrices non-autonomously promotes fibroblast-mediated tumor cell growth.


Assuntos
Matriz Extracelular/metabolismo , Fibroblastos/fisiologia , Fibronectinas/metabolismo , Neoplasias/patologia , Fibras de Estresse/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Adesão Celular/genética , Proliferação de Células/genética , Matriz Extracelular/patologia , Fibroblastos/patologia , Fibronectinas/genética , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Neoplasias/metabolismo , Ratos , Ratos Endogâmicos F344 , Fibras de Estresse/patologia , Carga Tumoral/fisiologia , Células Tumorais Cultivadas , Proteína rhoA de Ligação ao GTP/genética
19.
Front Genet ; 11: 931, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33005169

RESUMO

Introduction: The Pals1-associated tight junction (PATJ) is a Crumbs (CRB) complex component that regulates epithelial cell apico-basal polarity and directional migration. This study assessed PATJ expression in clear cell renal cell carcinoma (ccRCC) vs. normal tissues and associated with ccRCC progression and prognosis. Methods: The effects of PATJ knockdown were investigated on regulation of normal kidney epithelial cell viability and protein expression in vitro. The PATJ mRNA data in ccRCC were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases and analyzed with UALCAN, LinkedOmics, Kaplan-Meier Plotter, GEPIA, and SurvExpress tools. Immunohistochemistry was performed for PATJ in tissue microarray sections (n = 150 ccRCC and 30 normal renal specimens). Normal human kidney tubular epithelial cell (HKC) cells were transfected with PATJ and negative control siRNA for cell viability CCK-8 assay, flow cytometry, and western blots. Results: The data showed that PATJ mRNA and protein were downregulated in ccRCC tissues and cell lines. Downregulation of PATJ mRNA was associated with male patients, advanced tumor stages, grades, and ccB subtypes as well as poorer overall and disease-free survival of patients. Furthermore, PATJ protein was also significantly downregulated in ccRCC tissues and associated with advanced tumor pathologic, TNM stages and poorer overall. In vitro, knockdown of PATJ expression promoted HKC proliferation and the activation of mitogen-activated protein kinases (MAPK) pathway proteins. Conclusions: This study revealed that a decrease of PATJ in ccRCC, which was associated with male patients, advanced tumor, and poorer survival, suggesting that PATJ may be a useful prognostic biomarker and therapeutic target for ccRCC.

20.
Curr Cancer Drug Targets ; 20(4): 240-252, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31951183

RESUMO

Targeting highly proliferating cells is an important issue for many types of aggressive tumors. Proliferating Cell Nuclear Antigen (PCNA) is an essential protein that participates in a variety of processes of DNA metabolism, including DNA replication and repair, chromatin organization and transcription and sister chromatid cohesion. In addition, PCNA is involved in cell survival, and possibly in pathways of energy metabolism, such as glycolysis. Thus, the possibility of targeting this protein for chemotherapy against highly proliferating malignancies is under active investigation. Currently, approaches to treat cells with agents targeting PCNA rely on the use of small molecules or on peptides that either bind to PCNA, or act as a competitor of interacting partners. Here, we describe the status of the art in the development of agents targeting PCNA and discuss their application in different types of tumor cell lines and in animal model systems.


Assuntos
Antineoplásicos/farmacologia , Aptâmeros de Nucleotídeos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Peptídeos/farmacologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Terapia de Alvo Molecular , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...