Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Molecules ; 27(15)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35956855

RESUMO

The development of conjugated polymer-based nanocomposites by adding metallic particles into the polymerization medium allows the proposition of novel materials presenting improved electrical and optical properties. Polyaniline Emeraldine-salt form (ES-PANI) has been extensively studied due to its controllable electrical conductivity and oxidation states. On the other hand, tungsten oxide (WO3) and its di-hydrated phases, such as WO3·2H2O, have been reported as important materials in photocatalysis and sensors. Herein, the WO3·2H2O phase was directly obtained during the in-situ polymerization of aniline hydrochloride from metallic tungsten (W), allowing the formation of hybrid nanocomposites based on its full oxidation into WO3·2H2O. The developed ES-PANI-WO3·2H2O nanocomposites were successfully characterized using experimental techniques combined with Density Functional Theory (DFT). The formation of WO3·2H2O was clearly verified after two hours of synthesis (PW2 nanocomposite), allowing the confirmation of purely physical interaction between matrix and reinforcement. As a result, increased electrical conductivity was verified in the PW2 nanocomposite: the DFT calculations revealed a charge transfer from the p-orbitals of the polymeric phase to the d-orbitals of the oxide phase, resulting in higher conductivity when compared to the pure ES-PANI.

2.
Nanomaterials (Basel) ; 9(9)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514340

RESUMO

High-porosity nanostructured amorphous tungsten OXIDE (a-WO3) films were synthesized by a Hot Filament Chemical Vapor Deposition technique (HFCVD) and then transformed into a crystalline WO3 by simple thermal annealing. The a-WO3 films were annealed at 100, 300, and 500 °C for 10 min in an air environment. The films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), micro-Raman spectroscopy, high-resolution transmission electron microscopy (HR-TEM), and UV-vis spectroscopy. Results revealed that the a-WO3 films were highly porous, composed of cauliflower-like structures made of nanoparticles with average sizes of 12 nm. It was shown that the effect of annealing on the morphology of the a-WO3 films leads to a sintering process. However, the morphology is conserved. It was found that at annealing temperatures of 100 °C, the a-WO3 films are of an amorphous nature, while at 300 °C, the films crystallize in the monoclinic phase of WO3. The calculated bandgap for the a-WO3 was 3.09 eV, and 2.53 eV for the film annealed at 500 °C. Finally, the results show that porous WO3 films preserve the morphology and maintain the porosity, even after the annealing at 500 °C.

3.
Braz. arch. biol. technol ; Braz. arch. biol. technol;57(4): 532-541, Jul-Aug/2014. tab, graf
Artigo em Inglês | LILACS | ID: lil-712935

RESUMO

Tungsten (VI) oxide (WO3) nanoparticles (NPs) are used for many industrial purposes in everyday life. However, their effects on human health have not been sufficiently evaluated. Therefore, the present study was designed to investigate the toxicity potentials of various concentrations (0 to 1000 ppm) of WO3 NPs (<100 nm particle size) in cultured primary rat hepatocytes. The results of cell viability assay showed that the higher concentrations of dispersed WO3 NPs (300, 500 and 1000 ppm) caused significant (p<0.05) decreases of cell viability. Also, dose dependent negative alterations were observed in oxidative status and antioxidant capacity levels after the application of WO3 in cultured rat primary hepatocytes. The results of genotoxicity tests revealed that these NPs did not cause significant increases of micronucleated hepatocytes (MNHEPs) but increased 8-oxo-2-deoxyguanosine (8-OH-dG) levels as compared to the control culture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA