Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
1.
Trends Parasitol ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38955655

RESUMO

Two studies defined how tuft cell acetylcholine promotes parasite expulsion. Billip et al. demonstrated that acetylcholine increases water secretion, to promote the 'weep' response. Ndjim et al. found that tuft cell acetylcholine has a direct effect on worm fecundity. Both processes are only effective in the remodeled epithelium when the rare tuft cells have become abundant.

2.
Cell Rep ; 43(7): 114364, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38900635

RESUMO

Immunoregulatory mechanisms established in the lymphoid organs are vital for preventing autoimmunity. However, the presence of similar mechanisms in non-lymphoid tissues remains unclear. Through transcriptomic and lipidomic analyses, we find a negative association between psoriasis and fatty acid metabolism, as well as Th2 signature. Homeostatic expression of liver X receptor (LXR) and peroxisome proliferator-activated receptor gamma (PPARγ) is essential for maintaining fatty acid metabolism and for conferring resistance to psoriasis in mice. Perturbation of signal transducer and activator of transcription 6 (STAT6) diminishes the homeostatic levels of LXR and PPARγ. Furthermore, mice lacking STAT6, interleukin 4 receptor alpha (IL-4Rα), or IL-13, but not IL-4, exhibit increased susceptibility to psoriasis. Under steady state, innate lymphoid cells (ILCs) are the primary producers of IL-13. In human skin, inhibiting tonic type 2 immunity exacerbates psoriasis-like inflammation and IL-17A, while activating LXR or PPARγ inhibits them. Hence, we propose that tonic type 2 immunity, driven by IL-13-producing ILCs, represents a crucial tissue checkpoint that represses autoimmunity and maintains lipid homeostasis in the skin.

3.
Front Immunol ; 15: 1405215, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38868763

RESUMO

Chronic inflammatory skin diseases are multifactorial diseases that combine genetic predisposition, environmental triggers, and metabolic disturbances associated with abnormal immune responses. From an immunological perspective, the better understanding of their physiopathology has demonstrated a large complex network of immune cell subsets and related cytokines that interact with both epidermal and dermal cells. For example, in type-1-associated diseases such as alopecia areata, vitiligo, and localized scleroderma, recent evidence suggests the presence of a type-2 inflammation that is well known in atopic dermatitis. Whether this type-2 immune response has a protective or detrimental impact on the development and chronicity of these diseases remains to be fully elucidated, highlighting the need to better understand its involvement for the management of patients. This mini-review explores recent insights regarding the potential role of type-2-related immunity in alopecia areata, vitiligo, and localized scleroderma.


Assuntos
Vitiligo , Humanos , Vitiligo/imunologia , Animais , Alopecia em Áreas/imunologia , Células Th2/imunologia , Citocinas/metabolismo , Citocinas/imunologia , Dermatite Atópica/imunologia , Dermatite Atópica/etiologia , Esclerodermia Localizada/imunologia , Inflamação/imunologia , Pele/imunologia , Pele/patologia
4.
Vet Parasitol ; : 110238, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38944590

RESUMO

Parasitic helminth Trichinella spiralis (Ts) induce mixed Th1/Th2 response with predominant type 2 immune responses, with protective immunity mediated by interleukin (IL)-4, IL-5, and IL-13. ß-Glucan (BG) has been shown to have the ability to induce trained immunity, confers non-specific protection from secondary infections. However, whether BG-induced trained immunity played a role in protective type 2 immunity against Ts infection is unclear. In this study, BG was administered five days before Ts infection to induce trained immunity. Our findings demonstrate that BG pretreatment effectively reduced the number of T. spiralis adults and muscle larvae, whereas inhibition of trained immunity abolished the effect of BG. Additionally, we observed a significant increase in goblet cells and mucus production as evidenced by Alcian blue periodic acid-Schiff staining. Furthermore, quantitative real-time PCR analysis revealed a significant upregulation of IL-4, IL-5, and IL-13 expression in response to BG. Conversely, the inhibitor of trained immunity reversed these effects, suggesting that BG-induced trained immunity confers strong protection against Ts infection. In conclusion, these findings suggest that BG-induced trained immunity may play a role in protection against infections caused by other helminths.

5.
Anaerobe ; 88: 102860, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38701912

RESUMO

OBJECTIVES: Clostridioides difficile infection (CDI) is the leading hospital-acquired infection in North America. We have previously discovered that antibiotic disruption of the gut microbiota decreases intestinal IL-33 and IL-25 and increases susceptibility to CDI. We further found that IL-33 promotes protection through type 2 Innate Lymphoid Cells (ILC2s), which produce IL-13. However, the contribution of IL-13 to disease has never been explored. METHODS: We used a validated model of CDI in mice, in which we neutralized via blocking antibodies, or administered recombinant protein, IL-13 to assess the role of this cytokine during infection using weight and clinical scores. Fluorescent activated cell sorting (FACS) was used to characterize myeloid cell population changes in response to IL-13 manipulation. RESULTS: We found that administration of IL-13 protected, and anti-IL-13 exacerbated CDI. Additionally, we observed alterations to the monocyte/macrophage cells following neutralization of IL-13 as early as day three post infection. We also observed elevated accumulation of myeloid cells by day four post-infection following IL-13 neutralization. Neutralization of the decoy receptor, IL-13Rα2, resulted in protection from disease, likely through increased available endogenous IL-13. CONCLUSIONS: Our data highlight the protective role of IL-13 in protecting from more severe CDI and the association of poor responses with a dysregulated monocyte-macrophage compartment. These results increase our understanding of type 2 immunity in CDI and may have implications for treating disease in patients.

6.
J Asthma Allergy ; 17: 431-439, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745838

RESUMO

Severe chronic rhinosinusitis with nasal polyposis (CRSwNP) is a disabling airway disease that significantly impacts patients' lives through the severity of symptoms, the need for long-term medical treatment and the high risk of recurrence post-surgery. Biological agents targeting type 2 immune responses underlying the pathogenesis of CRSwNP have shown effectiveness in reducing polyp size and eosinophilic infiltrate, and in decreasing the need for additional sinus surgeries. However, despite recent progress in understanding and treating the disease, type 2 inflammation-driven severe CRSwNP continues to pose challenges to clinical management due to several factors such as persistent inflammation, polyp recurrence, heterogeneity of disease, and comorbidities. This article presents the findings of a scientific discussion involving a panel of ear, nose and throat (ENT) specialists and pulmonologists across Sweden and Finland. The discussion aimed to explore current management practices for type 2 inflammation-driven severe CRSwNP in the Nordic region. The main topics examined encompassed screening and referral, measurements of disease control, treatment goals, and future perspectives. The experts emphasized the importance of a collaborative approach in the management of this challenging patient population. The discussion also revealed a need to broaden treatment options for patients with type 2 inflammation-driven CRSwNP and comorbid conditions with shared type 2 pathophysiology. In light of the supporting evidence, a shift in the disease model from the presence of polyps to that of type 2 inflammation may be warranted. Overall, this discussion provides valuable insights for the scientific community and can potentially guide the future management of CRSwNP.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38779734

RESUMO

AIMS: The aim of this study was to investigate the role of human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-Exo) in regulating the intestinal type 2 immune response for either protection or therapy. BACKGROUND: hUCMSC-Exo was considered a novel cell-free therapeutic product that shows promise in the treatment of various diseases. Type 2 immunity is a protective immune response classified as T-helper type 2 (Th2) cells and is associated with helminthic infections and allergic diseases. The effect of hUCMSC-Exo on intestinal type 2 immune response is not clear. METHOD: C57BL/6 mice were used to establish intestinal type 2 immune response by administering of H.poly and treated with hUCMSC-Exo before or after H.poly infection. Intestinal organoids were isolated and co-cultured with IL-4 and hUCMSC-Exo. Then, we monitored the influence of hUCMSC-Exo on type 2 immune response by checking adult worms, the hyperplasia of tuft and goblet cells. RESULT: hUCMSC-Exo significantly delays the colonization of H.poly in subserosal layer of duodenum on day 7 post-infection and promotes the hyperplasia of tuft cells and goblet cells on day 14 post-infection. HUCMSC-Exo enhances the expansion of tuft cells in IL-4 treated intestinal organoids, and promotes lytic cell death. CONCLUSION: Our study demonstrates hUCMSC-Exo may benefit the host by increasing the tolerance at an early infection stage and then enhancing the intestinal type 2 immune response to impede the helminth during Th2 priming. Our results show hUCMSC-Exo may be a positive regulator of type 2 immune response, suggesting hUCMSC-Exo has a potential therapeutic effect on allergic diseases.

8.
Immunity ; 57(6): 1243-1259.e8, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38744291

RESUMO

Epithelial cells secrete chloride to regulate water release at mucosal barriers, supporting both homeostatic hydration and the "weep" response that is critical for type 2 immune defense against parasitic worms (helminths). Epithelial tuft cells in the small intestine sense helminths and release cytokines and lipids to activate type 2 immune cells, but whether they regulate epithelial secretion is unknown. Here, we found that tuft cell activation rapidly induced epithelial chloride secretion in the small intestine. This response required tuft cell sensory functions and tuft cell-derived acetylcholine (ACh), which acted directly on neighboring epithelial cells to stimulate chloride secretion, independent of neurons. Maximal tuft cell-induced chloride secretion coincided with immune restriction of helminths, and clearance was delayed in mice lacking tuft cell-derived ACh, despite normal type 2 inflammation. Thus, we have uncovered an epithelium-intrinsic response unit that uses ACh to couple tuft cell sensing to the secretory defenses of neighboring epithelial cells.


Assuntos
Acetilcolina , Cloretos , Células Epiteliais , Mucosa Intestinal , Animais , Acetilcolina/metabolismo , Camundongos , Cloretos/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/parasitologia , Células Epiteliais/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/parasitologia , Intestino Delgado/imunologia , Intestino Delgado/parasitologia , Intestino Delgado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células em Tufo
9.
Front Public Health ; 12: 1384410, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601488

RESUMO

Introduction: After trivalent oral poliovirus vaccine (tOPV) cessation, Pakistan has maintained immunity to type 2 poliovirus by administering inactivated polio vaccine (IPV) in routine immunization, alongside monovalent OPV type 2 (mOPV2) and IPV in supplementary immunization activities (SIAs). This study assesses the change in poliovirus type 2 immunity after tOPV withdrawal and due to SIAs with mOPV2 and IPV among children aged 6-11 months. Methods: Three cross-sectional sequential serological surveys were conducted in 12 polio high-risk areas of Pakistan. 25 clusters from each geographical stratum were selected utilizing probability proportional to size. Results: Seroprevalence of type 2 poliovirus was 49%, with significant variation observed among surveyed areas; <30% in Pishin, >80% in Killa Abdullah, Mardan & Swabi, and Rawalpindi. SIAs with IPV improved immunity from 38 to 57% in Karachi and 60 to 88% in Khyber. SIAs with IPV following mOPV2 improved immunity from 62 to 65% in Killa Abdullah, and combined mOPV2 and IPV SIAs in Pishin improved immunity from 28 to 89%. Results also reflected that immunity rates for serotypes 1 and 3 were consistently above 90% during all three phases and across all geographical areas. Conclusion: The study findings highlight the importance of implementing effective vaccination strategies to prevent the re-emergence of poliovirus. Moreover, the results provide crucial information for policymakers working toward achieving global polio eradication.


Assuntos
Poliomielite , Poliovirus , Criança , Humanos , Paquistão/epidemiologia , Estudos Soroepidemiológicos , Estudos Transversais , Poliomielite/epidemiologia , Poliomielite/prevenção & controle , Vacina Antipólio Oral , Vacina Antipólio de Vírus Inativado
10.
Allergy ; 79(7): 1893-1907, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38573073

RESUMO

BACKGROUND: Extracellular vesicles (EVs) have been implicated in the pathogenesis of asthma, however, how EVs contribute to immune dysfunction and type 2 airway inflammation remains incompletely understood. We aimed to elucidate roles of airway EVs and their miRNA cargo in the pathogenesis of NSAID-exacerbated respiratory disease (N-ERD), a severe type 2 inflammatory condition. METHODS: EVs were isolated from induced sputum or supernatants of cultured nasal polyp or turbinate tissues of N-ERD patients or healthy controls by size-exclusion chromatography and characterized by particle tracking, electron microscopy and miRNA sequencing. Functional effects of EV miRNAs on gene expression and mediator release by human macrophages or normal human bronchial epithelial cells (NHBEs) were studied by RNA sequencing, LC-MS/MS and multiplex cytokine assays. RESULTS: EVs were highly abundant in secretions from the upper and lower airways of N-ERD patients. N-ERD airway EVs displayed profoundly altered immunostimulatory capacities and miRNA profiles compared to airway EVs of healthy individuals. Airway EVs of N-ERD patients, but not of healthy individuals induced inflammatory cytokine (GM-CSF and IL-8) production by NHBEs. In macrophages, N-ERD airway EVs exhibited an impaired potential to induce cytokine and prostanoid production, while enhancing M2 macrophage activation. Let-7 family miRNAs were highly enriched in sputum EVs from N-ERD patients and mimicked suppressive effects of N-ERD EVs on macrophage activation. CONCLUSION: Aberrant airway EV miRNA profiles may contribute to immune dysfunction and chronic type 2 inflammation in N-ERD. Let-7 family miRNAs represent targets for correcting aberrant macrophage activation and mediator responses in N-ERD.


Assuntos
Anti-Inflamatórios não Esteroides , Vesículas Extracelulares , Macrófagos , MicroRNAs , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/imunologia , MicroRNAs/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Anti-Inflamatórios não Esteroides/efeitos adversos , Citocinas/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Ativação de Macrófagos/imunologia , Ativação de Macrófagos/genética , Adulto
11.
Indian J Dermatol ; 69(1): 81-85, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572025

RESUMO

Omalizumab, a monoclonal anti-IgE antibody, has been used off-label in a few case series of bullous pemphigoids (BPs) with rapid efficacy and high safety profile. However, there is a lack of data to select patients who would get the most therapeutic benefit from omalizumab therapy. To assess if eosinophil-to-lymphocyte ratio (ELR), total serum IgE level, and serum eosinophil percentage would be useful in predicting response to omalizumab therapy in patients with BP. Medical records of 10 patients with BP treated with omalizumab were retrospectively analysed for clinical and laboratory data. ELRs, total serum IgE levels, and serum eosinophil percentages were compared between groups of complete responders and partial responders/flare-ups, but the results were not statistically significant. Studies with larger sample sizes should be done to predict the role of type 2 immunity markers in omalizumab therapy of BP patients.

12.
Immunity ; 57(5): 1056-1070.e5, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38614091

RESUMO

A specialized population of mast cells residing within epithelial layers, currently known as intraepithelial mast cells (IEMCs), was originally observed over a century ago, yet their physiological functions have remained enigmatic. In this study, we unveil an unexpected and crucial role of IEMCs in driving gasdermin C-mediated type 2 immunity. During helminth infection, αEß7 integrin-positive IEMCs engaged in extensive intercellular crosstalk with neighboring intestinal epithelial cells (IECs). Through the action of IEMC-derived proteases, gasdermin C proteins intrinsic to the epithelial cells underwent cleavage, leading to the release of a critical type 2 cytokine, interleukin-33 (IL-33). Notably, mast cell deficiency abolished the gasdermin C-mediated immune cascade initiated by epithelium. These findings shed light on the functions of IEMCs, uncover a previously unrecognized phase of type 2 immunity involving mast cell-epithelial cell crosstalk, and advance our understanding of the cellular mechanisms underlying gasdermin C activation.


Assuntos
Interleucina-33 , Mastócitos , Proteínas de Ligação a Fosfato , Mastócitos/imunologia , Mastócitos/metabolismo , Animais , Interleucina-33/metabolismo , Interleucina-33/imunologia , Camundongos , Proteínas de Ligação a Fosfato/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Comunicação Celular/imunologia
13.
Anaerobe ; 86: 102841, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521227

RESUMO

OBJECTIVES: Clostridioides difficile infection (CDI) is the leading hospital-acquired infection in North America. While previous work on fecal microbiota transplantation (FMT), a highly effective treatment for CDI, has focused on colonization resistance mounted against C. difficile by FMT-delivered commensals, the effects of FMT on host gene expression are relatively unexplored. This study aims to identify transcriptional changes associated with FMT, particularly changes associated with protective immune responses. METHODS: Gene expression was assessed on day 2 and day 7 after FMT in mice after antibiotic-induced dysbiosis. Flow cytometry was also performed on colon and mesenteric lymph nodes at day 7 to investigate changes in immune cell populations. RESULTS: FMT administration after antibiotic-induced dysbiosis successfully restored microbial alpha diversity to levels of donor mice by day 7 post-FMT. Bulk RNA sequencing of cecal tissue at day 2 identified immune genes, including both pro-inflammatory and Type 2 immune pathways as upregulated after FMT. RNA sequencing was repeated on day 7 post-FMT, and expression of these immune genes was decreased along with upregulation of genes associated with restoration of intestinal homeostasis. Immunoprofiling on day 7 identified increased colonic CD45+ immune cells that exhibited dampened Type 1 and heightened regulatory and Type 2 responses. These include an increased abundance of eosinophils, alternatively activated macrophages, Th2, and T regulatory cell populations. CONCLUSION: These results highlight the impact of FMT on host gene expression, providing evidence that FMT restores intestinal homeostasis after antibiotic treatment and facilitates tolerogenic and Type 2 immune responses.


Assuntos
Infecções por Clostridium , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Animais , Transplante de Microbiota Fecal/métodos , Camundongos , Infecções por Clostridium/terapia , Infecções por Clostridium/imunologia , Infecções por Clostridium/microbiologia , Microbioma Gastrointestinal , Disbiose/terapia , Clostridioides difficile/imunologia , Tolerância Imunológica , Camundongos Endogâmicos C57BL
14.
bioRxiv ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38352546

RESUMO

Metabolic byproducts of the intestinal microbiota are crucial in maintaining host immune tone and shaping inter-species ecological dynamics. Among these metabolites, succinate is a driver of tuft cell (TC) differentiation and consequent type 2 immunity-dependent protection against invading parasites in the small intestine. Succinate is also a growth enhancer of the nosocomial pathogen Clostridioides difficile in the large intestine. To date, no research has shown the role of succinate in modulating TC dynamics in the large intestine, or the relevance of this immune pathway to C. difficile pathophysiology. Here we reveal the existence of a three-way circuit between commensal microbes, C. difficile and host epithelial cells which centers around succinate. Through selective microbiota depletion experiments we demonstrate higher levels of type 2 cytokines leading to expansion of TCs in the colon. We then demonstrate the causal role of the microbiome in modulating colonic TC abundance and subsequent type 2 cytokine induction using rational supplementation experiments with fecal transplants and microbial consortia of succinate-producing bacteria. We show that administration of a succinate-deficient Bacteroides thetaiotaomicron knockout (Δfrd) significantly reduces the enhanced type 2 immunity in mono-colonized mice. Finally, we demonstrate that mice prophylactically administered with the consortium of succinate-producing bacteria show reduced C. difficile-induced morbidity and mortality compared to mice administered with heat-killed bacteria or the vehicle. This effect is reduced in a partial tuft cell knockout mouse, Pou2f3+/-, and nullified in the tuft cell knockout mouse, Pou2f3-/-, confirming that the observed protection occurs via the TC pathway. Succinate is an intermediary metabolite of the production of short-chain fatty acids, and its concentration often increases during dysbiosis. The first barrier to enteric pathogens alike is the intestinal epithelial barrier, and host maintenance and strengthening of barrier integrity is vital to homeostasis. Considering our data, we propose that activation of TC by the microbiota-produced succinate in the colon is a mechanism evolved by the host to counterbalance microbiome-derived cues that facilitate invasion by intestinal pathogens.

15.
Int Immunopharmacol ; 130: 111670, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38373386

RESUMO

Type 2 immune responses are critical for host defense, mediate allergy and Th2-high asthma. The transcription factor, promyelocytic leukemia zinc finger (PLZF), has emerged as a significant regulator of type 2 inflammation in the lung; however, its exact mechanism remains unclear. In this review, we summarized recent findings regarding the ability of PLZF to control the development and function of innate lymphoid cells (ILCs), iNKT cells, memory T cells, basophils, and other immune cells that drive type 2 responses. We discussed the important role of PLZF in the pathogenesis of Th2-high asthma. Collectively, prior studies have revealed the critical role of PLZF in the regulation of innate and adaptive immune cells involved in type 2 inflammation in the lung. Therefore, targeting PLZF signaling represents a promising therapeutic approach to suppress Th2-high asthma.


Assuntos
Asma , Leucemia , Humanos , Proteína com Dedos de Zinco da Leucemia Promielocítica , Imunidade Inata , Linfócitos/metabolismo , Pulmão/metabolismo , Inflamação , Dedos de Zinco , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo
16.
Open Forum Infect Dis ; 11(2): ofad630, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38312212

RESUMO

Background: We previously conducted a phase 2a randomized placebo-controlled trial of 40 subjects to assess the efficacy and safety of dupilumab use in people hospitalized with coronavirus disease 2019 (COVID-19) (NCT04920916). Based on our preclinical data suggesting that downstream pulmonary dysfunction with COVID-19 induced type 2 inflammation, we contacted patients from our phase 2a study at 1 year for assessment of post-COVID-19 conditions. Methods: Subjects at 1 year after treatment underwent pulmonary function tests, high-resolution computed tomographic imaging, symptom questionnaires, neurocognitive assessments, and serum immune biomarker analysis, with subject survival also monitored. The primary outcome was the proportion of abnormal diffusion capacity for carbon monoxide (DLCO) or 6-minute walk test (6MWT) at the 1-year visit. Results: Of those survivors who consented to 1-year visits (n = 16), subjects who had originally received dupilumab were less likely than those who received placebo to have an abnormal DLCO or 6MWT (Fisher exact P = .011; adjusted P = .058). As a secondary endpoint, we saw that 16% of subjects in the dupilumab group died by 1 year compared to 38% in the placebo group, though this was not statistically significant (log-rank P = .12). We did not find significant differences in neurocognitive testing, symptoms, or chest computed tomography between treatment groups but observed a larger reduction in eotaxin levels in those who received dupilumab. Conclusions: In this observational study, subjects who received dupilumab during acute COVID-19 hospitalization were less likely to have a reduced DLCO or 6MWT, with a nonsignificant trend toward reduced mortality at 1 year compared to placebo.

17.
Dermatologie (Heidelb) ; 75(3): 218-224, 2024 Mar.
Artigo em Alemão | MEDLINE | ID: mdl-38351374

RESUMO

The pathogenesis of fibrosing alterations in the skin and other organ systems is not yet sufficiently understood and current therapeutic options are limited. Fibrosing diseases of the skin lead to a loss of function, which can subsequently be accompanied by serious impairments in quality of life, increased morbidity and ultimately increased mortality. There are currently only a few pharmacological and therapeutic approaches approved to prevent or ameliorate fibrosing diseases. Furthermore, tissue-specific versus common, non-organ-specific pathophysiological cellular and molecular mechanisms are not resolved. The development of new, cause-based and therefore likely more efficient therapeutic approaches is urgently needed. This represents a major challenge, but also opens up the opportunity for special contributions to improve this medically unsolved problem. Here we present important findings from recent years with a focus on the role of the immune response in fibrogenesis.


Assuntos
Qualidade de Vida , Dermatopatias , Humanos , Fibrose , Dermatopatias/etiologia , Pele/patologia
18.
Annu Rev Immunol ; 42(1): 259-288, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38277692

RESUMO

Gastrointestinal nematode (GIN) infection has applied significant evolutionary pressure to the mammalian immune system and remains a global economic and human health burden. Upon infection, type 2 immune sentinels activate a common antihelminth response that mobilizes and remodels the intestinal tissue for effector function; however, there is growing appreciation of the impact GIN infection also has on the distal tissue immune state. Indeed, this effect is observed even in tissues through which GINs never transit. This review highlights how GIN infection modulates systemic immunity through (a) induction of host resistance and tolerance responses, (b) secretion of immunomodulatory products, and (c) interaction with the intestinal microbiome. It also discusses the direct consequences that changes to distal tissue immunity can have for concurrent and subsequent infection, chronic noncommunicable diseases, and vaccination efficacy.


Assuntos
Microbioma Gastrointestinal , Nematoides , Infecções por Nematoides , Animais , Humanos , Infecções por Nematoides/imunologia , Nematoides/imunologia , Nematoides/fisiologia , Microbioma Gastrointestinal/imunologia , Imunomodulação , Interações Hospedeiro-Parasita/imunologia , Enteropatias Parasitárias/imunologia , Tolerância Imunológica , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/parasitologia
19.
J Allergy Clin Immunol ; 153(5): 1206-1214, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38295881

RESUMO

Chronic rhinosinusitis (CRS) is a common chronic nasal cavity and sinus disease affecting a growing number of individuals worldwide. Recent advances have shifted our understanding of CRS pathophysiology from a physical obstruction model of ventilation and drainage to a mucosal concept that recognizes the complexities of mucosal immunologic variations and cellular aberrations. A growing number of studies have demonstrated the alteration of the epithelial barrier during inflammatory states. Therefore, the current review has focused on the crucial role of epithelial cells within this mucosal framework in CRS, detailing the perturbed epithelial homeostasis, impaired epithelial cell barrier, dysregulated epithelial cell repair processes, and enhanced interactions between epithelial cells and immune cells. Notably, the utilization of novel technologies, such as single-cell transcriptomics, has revealed the novel functions of epithelial barriers, such as inflammatory memory and neuroendocrine functions. Therefore, this review also emphasizes the importance of epithelial inflammatory memory and the necessity of further investigations into neuroendocrine epithelial cells and neurogenic inflammation in CRS. We conclude by contemplating the prospective benefits of epithelial cell-oriented biological treatments, which are currently under investigation in rigorous randomized, double-blind clinical trials in patients with CRS with nasal polyps.


Assuntos
Mucosa Nasal , Rinite , Sinusite , Humanos , Sinusite/imunologia , Sinusite/patologia , Doença Crônica , Rinite/imunologia , Rinite/patologia , Mucosa Nasal/imunologia , Mucosa Nasal/patologia , Células Epiteliais/imunologia , Animais , Rinossinusite
20.
FASEB J ; 38(2): e23428, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38236184

RESUMO

Asthma is a chronic inflammatory disease of the airways characterized by recurrent episodes of airway obstruction, hyperresponsiveness, remodeling, and eosinophilia. Phospholipase A2 s (PLA2 s), which release fatty acids and lysophospholipids from membrane phospholipids, have been implicated in exacerbating asthma by generating pro-asthmatic lipid mediators, but an understanding of the association between individual PLA2 subtypes and asthma is still incomplete. Here, we show that group III-secreted PLA2 (sPLA2 -III) plays an ameliorating, rather than aggravating, role in asthma pathology. In both mouse and human lungs, sPLA2 -III was expressed in bronchial epithelial cells and decreased during the asthmatic response. In an ovalbumin (OVA)-induced asthma model, Pla2g3-/- mice exhibited enhanced airway hyperresponsiveness, eosinophilia, OVA-specific IgE production, and type 2 cytokine expression as compared to Pla2g3+/+ mice. Lipidomics analysis showed that the pulmonary levels of several lysophospholipids, including lysophosphatidylcholine, lysophosphatidylethanolamine, and lysophosphatidic acid (LPA), were decreased in OVA-challenged Pla2g3-/- mice relative to Pla2g3+/+ mice. LPA receptor 2 (LPA2 ) agonists suppressed thymic stromal lymphopoietin (TSLP) expression in bronchial epithelial cells and reversed airway hyperresponsiveness and eosinophilia in Pla2g3-/- mice, suggesting that sPLA2 -III negatively regulates allergen-induced asthma at least by producing LPA. Thus, the activation of the sPLA2 -III-LPA pathway may be a new therapeutic target for allergic asthma.


Assuntos
Asma , Eosinofilia , Fosfolipases A2 Secretórias , Hipersensibilidade Respiratória , Humanos , Animais , Camundongos , Lisofosfolipídeos , Fosfolipases A2 Secretórias/genética , Citocinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...