Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 505
Filtrar
1.
Biochim Biophys Acta Bioenerg ; 1865(4): 149494, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960079

RESUMO

Mitochondrial bioenergetics in females and males is different. However, whether mitochondria from male and female brains display differences in enzymes of oxidative phosphorylation remains unknown. Therefore, we characterized mitochondrial complexes from the brains of male and female macaques (Macaca mulatta). Cerebral tissue from male macaques exhibits elevated content and activity of mitochondrial complex I (NADH:ubiquinone oxidoreductase) and higher activity of complex II (succinate dehydrogenase) compared to females. No significant differences between sexes were found in the content of α-ketoglutarate dehydrogenase or in the activities of cytochrome c oxidase and F1Fo ATPase. Our results underscore the need for further investigations to elucidate sex-related mitochondrial differences in humans.

2.
Biochim Biophys Acta Bioenerg ; 1865(4): 149492, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960080

RESUMO

Mitochondrial DNA (mtDNA) mutations, including the m.3243A>G mutation that causes mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), are associated with secondary coenzyme Q10 (CoQ10) deficiency. We previously demonstrated that PPARGC1A knockdown repressed the expression of PDSS2 and several COQ genes. In the present study, we compared the mitochondrial function, CoQ10 status, and levels of PDSS and COQ proteins and genes between mutant cybrids harboring the m.3243A>G mutation and wild-type cybrids. Decreased mitochondrial energy production, defective respiratory function, and reduced CoQ10 levels were observed in the mutant cybrids. The ubiquinol-10:ubiquinone-10 ratio was lower in the mutant cybrids, indicating blockage of the electron transfer upstream of CoQ, as evident from the reduced ratio upon rotenone treatment and increased ratio upon antimycin A treatment in 143B cells. The mutant cybrids exhibited downregulation of PDSS2 and several COQ genes and upregulation of COQ8A. In these cybrids, the levels of PDSS2, COQ3-a isoform, COQ4, and COQ9 were reduced, whereas those of COQ3-b and COQ8A were elevated. The mutant cybrids had repressed PPARGC1A expression, elevated ATP5A levels, and reduced levels of mtDNA-encoded proteins, nuclear DNA-encoded subunits of respiratory enzyme complexes, MNRR1, cytochrome c, and DHODH, but no change in TFAM, TOM20, and VDAC1 levels. Alterations in the CoQ10 level in MELAS may be associated with mitochondrial energy deficiency and abnormal gene regulation. The finding of a reduction in the ubiquinol-10:ubiquinone-10 ratio in the MELAS mutant cybrids differs from our previous discovery that cybrids harboring the m.8344A>G mutation exhibit a high ubiquinol-10:ubiquinone-10 ratio.

3.
Prostate ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004950

RESUMO

BACKGROUND: Benign prostatic hyperplasia (BPH) is a condition generally associated with advanced age in men that can be accompanied by bothersome lower urinary tract symptoms (LUTS) including intermittency, weak stream, straining, urgency, frequency, and incomplete bladder voiding. Pharmacotherapies for LUTS/BPH include alpha-blockers, which relax prostatic and urethral smooth muscle and 5ɑ-reductase inhibitors such as finasteride, which can block conversion of testosterone to dihydrotestosterone thereby reducing prostate volume. Celecoxib is a cyclooxygenase-2 inhibitor that reduces inflammation and has shown some promise in reducing prostatic inflammation and alleviating LUTS for some men with histological BPH. However, finasteride and celecoxib can reduce mitochondrial function in some contexts, potentially impacting their efficacy for alleviating BPH-associated LUTS. METHODS: To determine the impact of these pharmacotherapies on mitochondrial function in prostate tissues, we performed immunostaining of mitochondrial Complex I (CI) protein NADH dehydrogenase [ubiquinone] iron-sulfur protein 3 (NDUFS3) and inflammatory cells on BPH specimens from patients naïve to treatment, or who were treated with celecoxib and/or finasteride for 28 days, as well as prostate tissues from male mice treated with celecoxib or vehicle control for 28 days. Quantification and statistical correlation analyses of immunostaining were performed. RESULTS: NDUFS3 immunostaining was decreased in BPH compared to normal adjacent prostate. Patients treated with celecoxib and/or finasteride had significantly decreased NDUFS3 in both BPH and normal tissues, and no change in inflammatory cell infiltration compared to untreated patients. Mice treated with celecoxib also displayed a significant decrease in NDUFS3 immunostaining and no change in inflammatory cell infiltration. CONCLUSIONS: These findings suggest that celecoxib and/or finasteride are associated with an overall decrease in NDUFS3 levels in prostate tissues but do not impact the presence of inflammatory cells, suggesting a decline in mitochondrial CI function in the absence of enhanced inflammation. Given that BPH has recently been associated with increased prostatic mitochondrial dysfunction, celecoxib and/or finasteride may exacerbate existing mitochondrial dysfunction in some BPH patients thereby potentially limiting their overall efficacy in providing metabolic stability and symptom relief.

4.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928470

RESUMO

Coenzyme Q10 (CoQ10) plays a key role in many aspects of cellular metabolism. For CoQ10 to function normally, continual interconversion between its oxidised (ubiquinone) and reduced (ubiquinol) forms is required. Given the central importance of this ubiquinone-ubiquinol redox cycle, this article reviews what is currently known about this process and the implications for clinical practice. In mitochondria, ubiquinone is reduced to ubiquinol by Complex I or II, Complex III (the Q cycle) re-oxidises ubiquinol to ubiquinone, and extra-mitochondrial oxidoreductase enzymes participate in the ubiquinone-ubiquinol redox cycle. In clinical terms, the outcome of deficiencies in various components associated with the ubiquinone-ubiquinol redox cycle is reviewed, with a particular focus on the potential clinical benefits of CoQ10 and selenium co-supplementation.


Assuntos
Oxirredução , Ubiquinona , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Ubiquinona/deficiência , Humanos , Mitocôndrias/metabolismo , Animais , Selênio/metabolismo , Ataxia , Debilidade Muscular , Doenças Mitocondriais
5.
Antioxidants (Basel) ; 13(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38929106

RESUMO

Fluconazole (FLC) is extensively employed for the prophylaxis and treatment of invasive fungal infections (IFIs). However, the fungistatic nature of FLC renders pathogenic fungi capable of developing tolerance towards it. Consequently, converting FLC into a fungicidal agent using adjuvants assumes significance to circumvent FLC resistance and the perpetuation of fungal infections. This drug repurposing study has successfully identified pitavastatin calcium (PIT) as a promising adjuvant for enhancing the fungicidal activity of FLC from a comprehensive library of 2372 FDA-approved drugs. PIT could render FLC fungicidal even at concentrations as low as 1 µM. The median lethal dose (LD50) of PIT was determined to be 103.6 mg/kg. We have discovered that PIT achieves its synergistic effect by inhibiting the activity of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, thereby impeding ubiquinone biosynthesis, inducing reactive oxygen species (ROS) generation, triggering apoptosis, and disrupting Golgi function. We employed a Candida albicans strain that demonstrated a notable tolerance to FLC to infect mice and found that PIT effectively augmented the antifungal efficacy of FLC against IFIs. This study is an illustrative example of how FDA-approved drugs can effectively eliminate fungal tolerance to FLC.

6.
Free Radic Biol Med ; 222: 211-222, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908803

RESUMO

Oxygen is essential for aerobic life on earth but it is also the origin of harmful reactive oxygen species (ROS). Ubiquinone is par excellence the endogenous cellular antioxidant, but a very hydrophobic one. Because of that, other molecules have been envisaged, such as idebenone (IDE) and mitoquinone (MTQ), molecules having the same redox active benzoquinone moiety but higher solubility. We have used molecular dynamics to determine the location and interaction of these molecules, both in their oxidized and reduced forms, with membrane lipids in a membrane similar to that of the mitochondria. Both IDE and reduced IDE (IDOL) are situated near the membrane interface, whereas both MTQ and reduced MTQ (MTQOL) locate in a position adjacent to the phospholipid hydrocarbon chains. The quinone moieties of both ubiquinone 10 (UQ10) and reduced UQ10 (UQOL10) in contraposition to the same moieties of IDE, IDOL, MTQ and MTQOL, located near the membrane interphase, whereas the isoprenoid chains remained at the middle of the hydrocarbon chains. These molecules do not aggregate and their functional quinone moieties are located in the membrane at different depths but near the hydrophobic phospholipid chains whereby protecting them from ROS harmful effects.

7.
FEBS Lett ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38924556

RESUMO

Mitochondrial NADH-ubiquinone oxidoreductase (complex I) couples electron transfer from NADH to ubiquinone with proton translocation in its membrane part. Structural studies have identified a long (~ 30 Å), narrow, tunnel-like cavity within the enzyme, through which ubiquinone may access a deep reaction site. Although various inhibitors are considered to block the ubiquinone reduction by occupying the tunnel's interior, this view is still debatable. We synthesized a phosphatidylcholine-quinazoline hybrid compound (PC-Qz1), in which a quinazoline-type toxophore was attached to the sn-2 acyl chain to prevent it from entering the tunnel. However, PC-Qz1 inhibited complex I and suppressed photoaffinity labeling by another quinazoline derivative, [125I]AzQ. This study provides further experimental evidence that is difficult to reconcile with the canonical ubiquinone-accessing tunnel model.

8.
Biochim Biophys Acta Bioenerg ; 1865(4): 149147, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906315

RESUMO

Ubiquinone (UQ) is an essential player in the respiratory electron transfer system. In Saccharomyces cerevisiae strains lacking the ability to synthesize UQ6, exogenously supplied UQs can be taken up and delivered to mitochondria through an unknown mechanism, restoring the growth of UQ6-deficient yeast in non-fermentable medium. Since elucidating the mechanism responsible may markedly contribute to therapeutic strategies for patients with UQ deficiency, many attempts have been made to identify the machinery involved in UQ trafficking in the yeast model. However, definite experimental evidence of the direct interaction of UQ with a specific protein(s) has not yet been demonstrated. To gain insight into intracellular UQ trafficking via a chemistry-based strategy, we synthesized a hydrophobic UQ probe (pUQ5), which has a photoreactive diazirine group attached to a five-unit isoprenyl chain and a terminal alkyne to visualize and/or capture the labeled proteins via click chemistry. pUQ5 successfully restored the growth of UQ6-deficient S. cerevisiae (Δcoq2) on a non-fermentable carbon source, indicating that this UQ was taken up and delivered to mitochondria, and served as a UQ substrate of respiratory enzymes. Through photoaffinity labeling of the mitochondria isolated from Δcoq2 yeast cells cultured in the presence of pUQ5, we identified many labeled proteins, including voltage-dependent anion channel 1 (VDAC1) and cytochrome c oxidase subunit 3 (Cox3). The physiological relevance of UQ binding to these proteins is discussed.

9.
Curr Biol ; 34(12): 2728-2738.e6, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38810637

RESUMO

The mitochondrial proteome is comprised of approximately 1,100 proteins,1 all but 12 of which are encoded by the nuclear genome in C. elegans. The expression of nuclear-encoded mitochondrial proteins varies widely across cell lineages and metabolic states,2,3,4 but the factors that specify these programs are not known. Here, we identify mutations in two nuclear-localized mRNA processing proteins, CMTR1/CMTR-1 and SRRT/ARS2/SRRT-1, which we show act via the same mechanism to rescue the mitochondrial complex I mutant NDUFS2/gas-1(fc21). CMTR-1 is an FtsJ-family RNA methyltransferase that, in mammals, 2'-O-methylates the first nucleotide 3' to the mRNA CAP to promote RNA stability and translation5,6,7,8. The mutations isolated in cmtr-1 are dominant and lie exclusively in the regulatory G-patch domain. SRRT-1 is an RNA binding partner of the nuclear cap-binding complex and determines mRNA transcript fate.9 We show that cmtr-1 and srrt-1 mutations activate embryonic expression of NDUFS2/nduf-2.2, a paralog of NDUFS2/gas-1 normally expressed only in dopaminergic neurons, and that nduf-2.2 is necessary for the complex I rescue by the cmtr-1 G-patch mutant. Additionally, we find that loss of the cmtr-1 G-patch domain cause ectopic localization of CMTR-1 protein to processing bodies (P bodies), phase-separated organelles involved in mRNA storage and decay.10 P-body localization of the G-patch mutant CMTR-1 contributes to the rescue of the hyperoxia sensitivity of the NDUFS2/gas-1 mutant. This study suggests that mRNA methylation at P bodies may control nduf-2.2 gene expression, with broader implications for how the mitochondrial proteome is translationally remodeled in the face of tissue-specific metabolic requirements and stress.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Neurônios Dopaminérgicos , Complexo I de Transporte de Elétrons , Metiltransferases , Mutação , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/genética , Neurônios Dopaminérgicos/metabolismo , Metiltransferases/metabolismo , Metiltransferases/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , NADH Desidrogenase/metabolismo , NADH Desidrogenase/genética
10.
mBio ; 15(6): e0034224, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38747615

RESUMO

Amoebae are environmental predators feeding on bacteria, fungi, and other eukaryotic microbes. Predatory interactions alter microbial communities and impose selective pressure toward phagocytic resistance or escape which may, in turn, foster virulence attributes. The ubiquitous fungivorous amoeba Protostelium aurantium has a wide prey spectrum in the fungal kingdom but discriminates against members of the Saccharomyces clade, such as Saccharomyces cerevisiae and Candida glabrata. Here, we show that this prey discrimination among fungi is solely based on the presence of ubiquinone as an essential cofactor for the predator. While the amoeba readily fed on fungi with CoQ presenting longer isoprenyl side chain variants CoQ8-10, such as those from the Candida clade, it failed to proliferate on those with shorter CoQ variants, specifically from the Saccharomyces clade (CoQ6). Supplementing non-edible yeast with CoQ9 or CoQ10 rescued the growth of P. aurantium, highlighting the importance of a long isoprenyl side chain. Heterologous biosynthesis of CoQ9 in S. cerevisiae by introducing genes responsible for CoQ9 production from the evolutionary more basic Yarrowia lipolytica complemented the function of the native CoQ6. The results suggest that the use of CoQ6 among members of the Saccharomyces clade might have originated as a predatory escape strategy in fungal lineages and could be retained in organisms that were able to thrive by fermentation. IMPORTANCE: Ubiquinones (CoQ) are universal electron carriers in the respiratory chain of all aerobic bacteria and eukaryotes. Usually 8-10 isoprenyl units ensure their localization within the lipid bilayer. Members of the Saccharomyces clade among fungi are unique in using only 6. The reason for this is unclear. Here we provide evidence that the use of CoQ6 efficiently protects these fungi from predation by the ubiquitous fungivorous amoeba Protostelium aurantium which lacks its own biosynthetic pathway for this vitamin. The amoebae were starving on a diet of CoQ6 yeasts which could be complemented by either the addition of longer CoQs or the genetic engineering of a CoQ9 biosynthetic pathway.


Assuntos
Ubiquinona , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Amoeba/microbiologia , Amoeba/genética , Yarrowia/genética , Yarrowia/metabolismo , Fungos/genética , Fungos/metabolismo , Fungos/fisiologia
11.
Antioxidants (Basel) ; 13(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38790635

RESUMO

To date, there have been no review articles specifically relating to the general efficacy and safety of coenzyme Q10 (CoQ10) supplementation in younger subjects. In this article, we therefore reviewed the efficacy and safety of CoQ10 supplementation in neonates (less than 1 month of age), infants (up to 1 year of age) and children (up to 12 years of age). As there is no rationale for the supplementation of CoQ10 in normal younger subjects (as there is in otherwise healthy older subjects), all of the articles in the medical literature reviewed in the present article therefore refer to the supplementation of CoQ10 in younger subjects with a variety of clinical disorders; these include primary CoQ10 deficiency, acyl CoA dehydrogenase deficiency, Duchenne muscular dystrophy, migraine, Down syndrome, ADHD, idiopathic cardiomyopathy and Friedreich's ataxia.

12.
Physiol Rev ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722242

RESUMO

Coenzyme Q (CoQ), also known as ubiquinone, comprises a benzoquinone head group and a long isoprenoid sidechain. It is thus extremely hydrophobic and resides in membranes. It is best known for its complex function as an electron transporter in the mitochondrial electron transport chain (ETC) and in several other cellular processes. In fact, CoQ appears to be central to the redox balance of the cell. Remarkably, its structure and properties have not changed from bacteria to vertebrates. In metazoans, it is synthesized in all cells and is found in most, and maybe all, biological membranes. CoQ is also known as a nutritional supplement, mostly because of its involvement with antioxidant defenses. However, whether there is any health benefit from oral consumption of CoQ is not well established. Here we review the function of CoQ as a redox active molecule in the ETC and other enzymatic systems, its role as a pro-oxidant in reactive oxygen species generation, and its separate involvement in antioxidant mechanisms. We also review CoQ biosynthesis, which is particularly complex because of its extreme hydrophobicity, as well as the biological consequences of primary and secondary CoQ deficiency, including in human patients. Primary CoQ deficiency is a rare inborn condition due to mutation in CoQ biosynthetic genes. Secondary CoQ deficiency is much more common as it accompanies a variety of pathological conditions, including mitochondrial disorders as well as aging. In this context, we discuss the importance, but also the great difficulty, of alleviating CoQ deficiency by CoQ supplementation.

13.
Biochim Biophys Acta Bioenerg ; 1865(3): 149045, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614453

RESUMO

Cytochrome bo3 quinol oxidase belongs to the heme­copper-oxidoreductase (HCO) superfamily, which is part of the respiratory chain and essential for cell survival. While the reaction mechanism of cyt bo3 has been studied extensively over the last decades, specific details about its substrate binding and product release have remained unelucidated due to the lack of structural information. Here, we report a 2.8 Å cryo-electron microscopy structure of cyt bo3 from Escherichia coli assembled in peptidiscs. Our structural model shows a conformation for amino acids 1-41 of subunit I different from all previously published structures while the remaining parts of this enzyme are similar. Our new conformation shows a "U-shape" assembly in contrast to the transmembrane helix, named "TM0", in other reported structural models. However, TM0 blocks ubiquinone-8 (reaction product) release, suggesting that other cyt bo3 conformations should exist. Our structural model presents experimental evidence for an "open" conformation to facilitate substrate/product exchange. This work helps further understand the reaction cycle of this oxidase, which could be a benefit for potential drug/antibiotic design for health science.


Assuntos
Microscopia Crioeletrônica , Grupo dos Citocromos b , Proteínas de Escherichia coli , Escherichia coli , Ubiquinona , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Ubiquinona/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestrutura , Escherichia coli/enzimologia , Grupo dos Citocromos b/química , Grupo dos Citocromos b/metabolismo , Conformação Proteica , Modelos Moleculares , Citocromos/química , Citocromos/metabolismo
14.
J Biol Chem ; 300(5): 107269, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588811

RESUMO

Coenzyme Q10 (CoQ10) is an important cofactor and antioxidant for numerous cellular processes, and its deficiency has been linked to human disorders including mitochondrial disease, heart failure, Parkinson's disease, and hypertension. Unfortunately, treatment with exogenous CoQ10 is often ineffective, likely due to its extreme hydrophobicity and high molecular weight. Here, we show that less hydrophobic CoQ species with shorter isoprenoid tails can serve as viable substitutes for CoQ10 in human cells. We demonstrate that CoQ4 can perform multiple functions of CoQ10 in CoQ-deficient cells at markedly lower treatment concentrations, motivating further investigation of CoQ4 as a supplement for CoQ10 deficiencies. In addition, we describe the synthesis and evaluation of an initial set of compounds designed to target CoQ4 selectively to mitochondria using triphenylphosphonium. Our results indicate that select versions of these compounds can successfully be delivered to mitochondria in a cell model and be cleaved to produce CoQ4, laying the groundwork for further development.


Assuntos
Ataxia , Mitocôndrias , Doenças Mitocondriais , Debilidade Muscular , Ubiquinona , Humanos , Mitocôndrias/enzimologia , Doenças Mitocondriais/enzimologia , Doenças Mitocondriais/genética , Debilidade Muscular/enzimologia , Debilidade Muscular/genética , Ubiquinona/análogos & derivados , Ubiquinona/deficiência , Células Hep G2
15.
J Neurol ; 271(6): 3439-3454, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38520521

RESUMO

This study presents an in-depth analysis of mitochondrial enzyme activities in Friedreich's ataxia (FA) patients, focusing on the Electron Transport Chain complexes I, II, and IV, the Krebs Cycle enzyme Citrate Synthase, and Coenzyme Q10 levels. It examines a cohort of 34 FA patients, comparing their mitochondrial enzyme activities and clinical parameters, including disease duration and cardiac markers, with those of 17 healthy controls. The findings reveal marked reductions in complexes II and, specifically, IV, highlighting mitochondrial impairment in FA. Additionally, elevated Neurofilament Light Chain levels and cardiomarkers were observed in FA patients. This research enhances our understanding of FA pathophysiology and suggests potential biomarkers for monitoring disease progression. The study underscores the need for further clinical trials to validate these findings, emphasizing the critical role of mitochondrial dysfunction in FA assessment and treatment.


Assuntos
Biomarcadores , Ataxia de Friedreich , Ubiquinona , Humanos , Ataxia de Friedreich/diagnóstico , Masculino , Adulto , Biomarcadores/metabolismo , Feminino , Ubiquinona/análogos & derivados , Adulto Jovem , Pessoa de Meia-Idade , Citrato (si)-Sintase/metabolismo , Mitocôndrias/metabolismo , Adolescente , Estudos de Coortes
16.
Saudi Pharm J ; 32(2): 101882, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38469202

RESUMO

Introduction: Doxorubicin (dox) is classified as an antineoplastic antibiotic which is known as adriamycin from the anthracycline group. Due to the release of free radicals and lipid peroxidation which can cause acute cardiotoxicity. Coenzyme Q10 is found in many cells of the body, it is an antioxidant that reduces oxidative stress and lipid peroxidation. Aim: This scoping review aims to evaluate the cardioprotective effect of coenzyme Q10 in doxorubicin-induced cardiotoxicity in animals. Methods: This review was done based on Arksey and O'Malley's methodology, reviewing published articles from October 1978 and September 2023. Results: 14 out of 11,303 articles were included from the initial search, (10 out of 14 articles found that coenzyme Q10 protect has a protection effect against doxorubicin-induced cardiotoxicity). Conclusion: The results of this review found coenzyme Q10 protects against doxorubicin cardiotoxicity. It is a promising supplement that could be used to prevent cardiotoxicity induced by doxorubicin in cancer patients.

17.
Proc Natl Acad Sci U S A ; 121(13): e2321242121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38507448

RESUMO

All biological hydroxylation reactions are thought to derive the oxygen atom from one of three inorganic oxygen donors, O2, H2O2, or H2O. Here, we have identified the organic compound prephenate as the oxygen donor for the three hydroxylation steps of the O2-independent biosynthetic pathway of ubiquinone, a widely distributed lipid coenzyme. Prephenate is an intermediate in the aromatic amino acid pathway and genetic experiments showed that it is essential for ubiquinone biosynthesis in Escherichia coli under anaerobic conditions. Metabolic labeling experiments with 18O-shikimate, a precursor of prephenate, demonstrated the incorporation of 18O atoms into ubiquinone. The role of specific iron-sulfur enzymes belonging to the widespread U32 protein family is discussed. Prephenate-dependent hydroxylation reactions represent a unique biochemical strategy for adaptation to anaerobic environments.


Assuntos
Ácidos Cicloexanocarboxílicos , Cicloexenos , Escherichia coli , Ubiquinona , Hidroxilação , Ubiquinona/metabolismo , Escherichia coli/metabolismo , Oxigênio/metabolismo
18.
World J Gastroenterol ; 30(7): 714-727, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515951

RESUMO

BACKGROUND: Pancreatic cancer is a leading cause of cancer-related deaths. Increased activity of the epidermal growth factor receptor (EGFR) is often observed in pancreatic cancer, and the small molecule EGFR inhibitor erlotinib has been approved for pancreatic cancer therapy by the food and drug administration. Nevertheless, erlotinib alone is ineffective and should be combined with other drugs to improve therapeutic outcomes. We previously showed that certain receptor tyrosine kinase inhibitors can increase mitochondrial membrane potential (Δψm), facilitate tumor cell uptake of Δψm-sensitive agents, disrupt mitochondrial homeostasis, and subsequently trigger tumor cell death. Erlotinib has not been tested for this effect. AIM: To determine whether erlotinib can elevate Δψm and increase tumor cell uptake of Δψm-sensitive agents, subsequently triggering tumor cell death. METHODS: Δψm-sensitive fluorescent dye was used to determine how erlotinib affects Δψm in pancreatic adenocarcinoma (PDAC) cell lines. The viability of conventional and patient-derived primary PDAC cell lines in 2D- and 3D cultures was measured after treating cells sequentially with erlotinib and mitochondria-targeted ubiquinone (MitoQ), a Δψm-sensitive MitoQ. The synergy between erlotinib and MitoQ was then analyzed using SynergyFinder 2.0. The preclinical efficacy of the two-drug combination was determined using immune-compromised nude mice bearing PDAC cell line xenografts. RESULTS: Erlotinib elevated Δψm in PDAC cells, facilitating tumor cell uptake and mitochondrial enrichment of Δψm-sensitive agents. MitoQ triggered caspase-dependent apoptosis in PDAC cells in culture if used at high doses, while erlotinib pretreatment potentiated low doses of MitoQ. SynergyFinder suggested that these drugs synergistically induced tumor cell lethality. Consistent with in vitro data, erlotinib and MitoQ combination suppressed human PDAC cell line xenografts in mice more effectively than single treatments of each agent. CONCLUSION: Our findings suggest that a combination of erlotinib and MitoQ has the potential to suppress pancreatic tumor cell viability effectively.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Cloridrato de Erlotinib/farmacologia , Cloridrato de Erlotinib/uso terapêutico , Neoplasias Pancreáticas/patologia , Sobrevivência Celular , Adenocarcinoma/patologia , Camundongos Nus , Ubiquinona/farmacologia , Ubiquinona/uso terapêutico , Quinazolinas , Linhagem Celular Tumoral , Receptores ErbB , Mitocôndrias/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proliferação de Células
19.
FASEB J ; 38(4): e23494, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38376922

RESUMO

Pathological opening of the mitochondrial permeability transition pore (mPTP) is implicated in the pathogenesis of many disease processes such as myocardial ischemia, traumatic brain injury, Alzheimer's disease, and diabetes. While we have gained insight into mPTP biology over the last several decades, the lack of translation of this knowledge into successful clinical therapies underscores the need for continued investigation and use of different approaches to identify novel regulators of the mPTP with the hope of elucidating new therapeutic targets. Although the mPTP is known to be a voltage-gated channel, the identity of its voltage sensor remains unknown. Here we found decreased gating potential of the mPTP and increased expression and activity of sulfide quinone oxidoreductase (SQOR) in newborn Fragile X syndrome (FXS) mouse heart mitochondria, a model system of coenzyme Q excess and relatively decreased mPTP open probability. We further found that pharmacological inhibition and genetic silencing of SQOR increased mPTP open probability in vitro in adult murine cardiac mitochondria and in the isolated-perfused heart, likely by interfering with voltage sensing. Thus, SQOR is proposed to contribute to voltage sensing by the mPTP and may be a component of the voltage sensing apparatus that modulates the gating potential of the mPTP.


Assuntos
Mitocôndrias Cardíacas , Poro de Transição de Permeabilidade Mitocondrial , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Animais , Camundongos , Doença de Alzheimer , Lesões Encefálicas Traumáticas , Sulfetos , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética
20.
Curr Probl Cancer ; 48: 101063, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38330781

RESUMO

Currently, several options are available for the prevention and treatment of cancers; however, many limitations remain with these approaches. Recently, antioxidants have become important preventive and therapeutic alternatives with few adverse events and minimum cost. Coenzyme Q10 (CoQ10) is a naturally occurring component that performs an anticancer function by reducing oxidative stress. CoQ10 supplementation as an adjuvant therapy offers more progress in the elimination and development of cancers. This review aimed to critically assess and summarize the implication of CoQ10 in cancers, highlighting possible mechanisms, and future directions of research for the standardization of the current regimen for cancer prevention and treatment.


Assuntos
Neoplasias , Ubiquinona , Ubiquinona/análogos & derivados , Humanos , Ubiquinona/uso terapêutico , Ubiquinona/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Estresse Oxidativo , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA