Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Parasit Vectors ; 17(1): 301, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992704

RESUMO

BACKGROUND: Soft ticks of the genus Ornithodoros are responsible for the maintenance and transmission of the African swine fever (ASF) virus in the sylvatic and domestic viral cycles in Southern Africa. They are also the main vectors of the Borrelia species causing relapsing fevers. Currently, no genetic markers are available for Afrotropical Ornithodoros ticks. As ASF spreads globally, such markers are needed to assess the role of ticks in the emergence of new outbreaks. The aim of this study is to design microsatellite markers that could be used for ticks of the Ornithodoros moubata complex, particularly Ornithodoros phacochoerus, to assess population structure and tick movements in ASF endemic areas. METHODS: A total of 151 markers were designed using the O. moubata and O. porcinus genomes after elimination of repeated sequences in the genomes. All designed markers were tested on O. phacochoerus and O. porcinus DNA to select the best markers. RESULTS: A total of 24 microsatellite markers were genotyped on two populations of O. phacochoerus and on individuals from four other Ornithodoros species. Nineteen markers were selected to be as robust as possible for population genetic studies on O. phacochoerus. CONCLUSIONS: The microsatellite markers developed here represent the first genetic tool to study nidicolous populations of O. phacochoerus.


Assuntos
Repetições de Microssatélites , Ornithodoros , Repetições de Microssatélites/genética , Animais , Ornithodoros/genética , Ornithodoros/microbiologia , Genótipo , Febre Suína Africana/virologia
2.
Trop Med Infect Dis ; 9(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38922037

RESUMO

Diverse larval habitats significantly influence female mosquito oviposition. Utilizing traps that simulate these habitats is helpful in the study of the bioecology and characteristics of pathogen-transmitting species during oviposition. This study evaluated the feasibility of different traps in natural environments by comparing sampling methods and detecting the oviposition of epidemiologically important mosquitoes, with emphasis on Haemagogus species, in a fragment of the Atlantic Forest in Silva Jardim, Rio de Janeiro State, Brazil. Monthly collections were conducted from March 2021 to October 2023 using four types of traps: plastic containers, tires, bamboo, and sapucaia. Immatures were collected from these traps using a pipette, placed in plastic bags, and transported to the laboratory. Tire was the most efficient trap, showing the highest mosquito abundance (n = 1239) and number of species (S = 11). Conversely, the plastic container trap exhibited the lowest diversity (H = 0.43), with only two species and a low mosquito abundance (n = 26). The bamboo trap captured six species and recorded the second-highest diversity index (H = 1.04), while the sapucaia trap captured five species and had the third-highest diversity index (H = 0.91). Of the total immatures collected, 1817 reached adulthood, comprising 13 species, two of which are vectors of the sylvatic yellow fever virus: Haemagogus leucocelaenus and Haemagogus janthinomys. In conclusion, detecting key vectors of the sylvatic yellow fever virus in Brazil highlights the need for ongoing entomological and epidemiological surveillance in the study area and its vicinity. These efforts are crucial for monitoring vector presence and activity, identifying potential transmission hotspots, and devising effective control and prevention strategies.

3.
J Med Entomol ; 61(4): 959-964, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38754900

RESUMO

We present an annotated checklist of fleas (Siphonaptera) known to occur in the state of Delaware based on an examination of Siphonaptera collections at the University of Delaware and the Carnegie Museum of Natural History, as well as new specimens of fleas we collected from wildlife, other hosts, and tick flags. We review published records and compile them herein with our new records, which include 3 species previously unreported from Delaware. With these additions, there are now 18 flea species from 19 avian and mammalian hosts documented from Delaware.


Assuntos
Infestações por Pulgas , Sifonápteros , Animais , Sifonápteros/classificação , Sifonápteros/fisiologia , Delaware , Infestações por Pulgas/veterinária , Infestações por Pulgas/parasitologia , Aves/parasitologia , Mamíferos/parasitologia , Distribuição Animal , Feminino , Masculino , Lista de Checagem
4.
Parasit Vectors ; 17(1): 230, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760849

RESUMO

BACKGROUND: Anopheles funestus is a leading vector of malaria in most parts of East and Southern Africa, yet its ecology and responses to vector control remain poorly understood compared with other vectors such as Anopheles gambiae and Anopheles arabiensis. This study presents the first large-scale survey of the genetic and phenotypic expression of insecticide resistance in An. funestus populations in Tanzania. METHODS: We performed insecticide susceptibility bioassays on An. funestus mosquitoes in nine regions with moderate-to-high malaria prevalence in Tanzania, followed by genotyping for resistance-associated mutations (CYP6P9a, CYP6P9b, L119F-GSTe2) and structural variants (SV4.3 kb, SV6.5 kb). Generalized linear models were used to assess relationships between genetic markers and phenotypic resistance. An interactive R Shiny tool was created to visualize the data and support evidence-based interventions. RESULTS: Pyrethroid resistance was universal but reversible by piperonyl-butoxide (PBO). However, carbamate resistance was observed in only five of the nine districts, and dichloro-diphenyl-trichloroethane (DDT) resistance was found only in the Kilombero valley, south-eastern Tanzania. Conversely, there was universal susceptibility to the organophosphate pirimiphos-methyl in all sites. Genetic markers of resistance had distinct geographical patterns, with CYP6P9a-R and CYP6P9b-R alleles, and the SV6.5 kb structural variant absent or undetectable in the north-west but prevalent in all other sites, while SV4.3 kb was prevalent in the north-western and western regions but absent elsewhere. Emergent L119F-GSTe2, associated with deltamethrin resistance, was detected in heterozygous form in districts bordering Mozambique, Malawi and the Democratic Republic of Congo. The resistance landscape was most complex in western Tanzania, in Tanganyika district, where all five genetic markers were detected. There was a notable south-to-north spread of resistance genes, especially CYP6P9a-R, though this appears to be interrupted, possibly by the Rift Valley. CONCLUSIONS: This study underscores the need to expand resistance monitoring to include An. funestus alongside other vector species, and to screen for both the genetic and phenotypic signatures of resistance. The findings can be visualized online via an interactive user interface and could inform data-driven decision-making for resistance management and vector control. Since this was the first large-scale survey of resistance in Tanzania's An. funestus, we recommend regular updates with greater geographical and temporal coverage.


Assuntos
Anopheles , Resistência a Inseticidas , Inseticidas , Malária , Mosquitos Vetores , Animais , Anopheles/genética , Anopheles/efeitos dos fármacos , Resistência a Inseticidas/genética , Tanzânia/epidemiologia , Mosquitos Vetores/genética , Mosquitos Vetores/efeitos dos fármacos , Inseticidas/farmacologia , Malária/transmissão , Malária/epidemiologia , Marcadores Genéticos , Piretrinas/farmacologia , Genótipo , Mutação
5.
BMC Genomics ; 25(1): 348, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582836

RESUMO

BACKGROUND: Insecticide resistance (IR) is one of the major threats to malaria vector control programs in endemic countries. However, the mechanisms underlying IR are poorly understood. Thus, investigating gene expression patterns related to IR can offer important insights into the molecular basis of IR in mosquitoes. In this study, RNA-Seq was used to characterize gene expression in Anopheles gambiae surviving exposure to pyrethroids (deltamethrin, alphacypermethrin) and an organophosphate (pirimiphos-methyl). RESULTS: Larvae of An. gambiae s.s. collected from Bassila and Djougou in Benin were reared to adulthood and phenotyped for IR using a modified CDC intensity bottle bioassay. The results showed that mosquitoes from Djougou were more resistant to pyrethroids (5X deltamethrin: 51.7% mortality; 2X alphacypermethrin: 47.4%) than Bassila (1X deltamethrin: 70.7%; 1X alphacypermethrin: 77.7%), while the latter were more resistant to pirimiphos-methyl (1.5X: 48.3% in Bassila and 1X: 21.5% in Djougou). RNA-seq was then conducted on resistant mosquitoes, non-exposed mosquitoes from the same locations and the laboratory-susceptible An. gambiae s.s. Kisumu strain. The results showed overexpression of detoxification genes, including cytochrome P450s (CYP12F2, CYP12F3, CYP4H15, CYP4H17, CYP6Z3, CYP9K1, CYP4G16, and CYP4D17), carboxylesterase genes (COEJHE5E, COE22933) and glutathione S-transferases (GSTE2 and GSTMS3) in all three resistant mosquito groups analyzed. Genes encoding cuticular proteins (CPR130, CPR10, CPR15, CPR16, CPR127, CPAP3-C, CPAP3-B, and CPR76) were also overexpressed in all the resistant groups, indicating their potential role in cross resistance in An. gambiae. Salivary gland protein genes related to 'salivary cysteine-rich peptide' and 'salivary secreted mucin 3' were also over-expressed and shared across all resistant groups. CONCLUSION: Our results suggest that in addition to metabolic enzymes, cuticular and salivary gland proteins could play an important role in cross-resistance to multiple classes of insecticides in Benin. These genes warrant further investigation to validate their functional role in An. gambiae resistance to insecticides.


Assuntos
Anopheles , Inseticidas , Malária , Nitrilas , Piretrinas , Animais , Inseticidas/farmacologia , Anopheles/genética , Benin , Organofosfatos/farmacologia , Mosquitos Vetores , Piretrinas/farmacologia , Resistência a Inseticidas/genética , Perfilação da Expressão Gênica
6.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 35(6): 565-572, 2024 Jan 25.
Artigo em Chinês | MEDLINE | ID: mdl-38413017

RESUMO

OBJECTIVE: To investigate the distribution of malaria vector Anopheles in Sichuan Province from 2011 to 2021, so as to provide the scientific evidence for improving the surveillance of malaria vector Anopheles and preventing re-establishment of imported malaria in Sichuan Province. METHODS: The density and species of Anopheles mosquitoes were investigated using human-bait trapping and light trapping techniques in malaria vector surveillance sites of Sichuan Province from 2011 to 2021. The number, population and density of captured Anopheles mosquitoes were collected and descriptively analyzed, and the geographical distribution map of malaria vectors was plotted using the software ArcGIS 10.7 in Sichuan Province. RESULTS: A total of 152 243 Anopheles mosquitoes were captured in malaria vector surveillance sites of Sichuan Province from 2011 to 2021, including 150 987 An. sinensis (99.18%) and 1 256 An. anthropophagus (0.82%), and no other Anopheles species were captured. The annual densities of An. sinensis and An. anthropophagus were 0.64 to 1.27 mosquitoes/(person-hour) and 0 to 0.07 mosquitoes/(person-hour) by the human-bait trapping technique, and 6.46 to 26.50 mosquitoes/(light-night) and 0 to 0.82 mosquitoes/(light-night) by the light trapping technique in malaria vector surveillance sites of Sichuan Province from 2011 to 2021. A relatively higher density of An. anthropophagus was seen in Renshou County, Jianyang City, Weiyuan County and Mabian Yi Autonomous County [> 0.40 mosquitoes/(person-hour)] by the human-bait trapping technique, and in Cuiping District and Gaoxian County in Yibin City [> 1.00 mosquito/(light-night)] by the light trapping technique in Sichuan Province from 2011 to 2018, with no An. anthropophagus captured from 2019 to 2021, and a relatively higher density of An. sinensis was detected in Emeishan City, Lushan County, Luojiang District, Tongchuan District and Zhaohua District [> 4.00 mosquitoes/(person-hour)] by the human-bait trapping technique, and in Huili County, Yuexi County, Dechang County, Langzhong City, Pingchang County and Xuanhan County [> 40.00 mosquitoes/(light-night)] by the light trapping technique in Sichuan Province from 2011 to 2021. CONCLUSIONS: Malaria vectors were still widespread in Sichuan Province from 2011 to 2021, and An. sinensis was the dominant species of malaria vectors. There is still a risk of local re-establishment of imported malaria in Sichuan Province, and it is needed to continue to improve the surveillance of imported malaria cases and malaria vectors.


Assuntos
Anopheles , Malária , Animais , Humanos , Malária/epidemiologia , Malária/prevenção & controle , Mosquitos Vetores , Densidade Demográfica , China/epidemiologia
7.
Acta Trop ; 254: 107150, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38360258

RESUMO

We assessed the presence of Aedes aegypti in five ecorregions of Salta province and compared the oviposition activity of Ae. aegypti using ovitraps in towns of two contrasting ecoregions (yungas and Chaco dry forests) in the province of Salta, Argentina, a major contrast in these ecoregions are rain patterns and altitude. Our aim was to estimate how oviposition activities were associated with the ecoregion and site scale local environmental variables. Mosquito oviposition activity was monitored weekly during the summer using ovitraps. Predictor variables were ecoregion, town, and meteorological variables. The effect of the predictor variables was measured on the response variables using multi-model inference. Besides yungas, the presence of Aedes aegypti was confirmed in towns of dry Chaco and High Monte. The only factor that had a significant effect on the presence of eggs in the ovitraps was the ecoregion, with the frequency of positives being higher in yungas. For the number of eggs, the ecoregion, the night temperature of the first week and the NDVI would explain said variable. Overall, results indicate that the variations between towns would be more related with their ecological and climatic characteristics than with the more immediate meteorological variations.


Assuntos
Aedes , Oviposição , Densidade Demográfica , Animais , Argentina , Oviposição/fisiologia , Aedes/fisiologia , Feminino , Humanos , Estações do Ano , Mosquitos Vetores/fisiologia , Ecossistema
8.
J Med Entomol ; 61(3): 808-814, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38381594

RESUMO

Malaria vector surveillance tools often incorporate features of hosts that are attractive to blood-seeking females. The recently developed host decoy trap (HDT) combines visual, thermal, and olfactory stimuli associated with human hosts and has shown great efficacy in terms of collecting malaria vectors. Synthetic odors and yeast-produced carbon dioxide (CO2) could prove useful by mimicking the human odors currently used in HDTs and provide standardized and easy-to-use olfactory attractants. The objective of this study was to test the attractiveness of various olfactory attractant cues in HDTs to capture malaria vectors. We compared 4 different odor treatments in outdoor field settings in southern Benin and western Burkina Faso: the standard HDT using a human, HDT with yeast-produced CO2, HDT with an artificial odor blend, and HDT with yeast-produced CO2 plus artificial odor blend. In both experimental sites, the standard HDT that incorporated a real human produced the greatest catch of Anopheles gambiae s.l (Diptera: Culicidae). The alternatives tested were still effective at collecting target vector species, although the most effective included CO2, either alone (Benin) or in combination with synthetic odor (Burkina Faso). The trap using synthetic human odor alone caught the fewest An. gambiae s.l. compared to the other baited traps. Both Anopheles coluzzii and Anopheles gambiae were caught by each trap, with a predominance of An. coluzzii. Synthetic baits could, therefore, represent a more standardized and easier-to-deploy approach than using real human odor baits for a robust vector monitoring strategy.


Assuntos
Anopheles , Controle de Mosquitos , Mosquitos Vetores , Odorantes , Animais , Anopheles/fisiologia , Burkina Faso , Mosquitos Vetores/fisiologia , Controle de Mosquitos/métodos , Feminino , Humanos , Benin , Malária/transmissão , Malária/prevenção & controle , Dióxido de Carbono
9.
Acta Trop ; 249: 107064, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37926385

RESUMO

More than 90 species of phlebotomines are vectors of parasites, bacteria, and viruses, which cause disease in animals and humans. Therefore, their study is necessary to establish prevention and control strategies. Mexico is an endemic country for leishmaniasis, mostly in the center and southern regions of the country, yet only few studies have been conducted in the northern part of the country. The present study aims to: (a) assess the alpha diversity of Phlebotominae in an annual cycle, (b) to correlate climatic variables with abundance, (c) to generate barcodes of these insects as part of the integrative taxonomy, and (d) to detect Leishmania, Wolbachia and blood sources in an area close to where a case of autochthonous leishmaniasis has been detected in Nuevo Leon, Mexico. A systematic sampling was conducted during three consecutive nights from 17:00 to 22:00 h., placing Shannon traps, CDC traps with incandescent light, and BG Sentinel 2 + BG Lure traps. A total catch effort of 660 nights/traps/hours was achieved, in which a total number of 707 phlebotomines (58% female and 42% male) of six species were collected and identified. The most abundant species were Psathyromyia cratifer (57%) and Psathyromyia shannoni sensu stricto (26%). The highest abundance (72%; 507/707) was collected during March, April and May 2021. Barcodes were generated for four species of phlebotomines, which represent new records for Mexico. For the molecular detection of microorganisms, 302 specimens were analyzed, although no specimens were positive for Leishmania spp. Wolbachia strains were detected in phlebotomines with an infection rate of 1.32% (4/302) and found in Pa. cratifer and Lu. cruciata. Likewise, human DNA was identified in female Lu. cruciata and Pa. cratifer phlebotomines. These findings indicate the presence of potential vector species of the parasite Leishmania spp. This result shows the need for further entomological surveillance to elucidate the transmission mechanisms in these northern areas of the country.


Assuntos
Leishmania , Leishmaniose , Psychodidae , Animais , Masculino , Feminino , Humanos , Psychodidae/parasitologia , México , Insetos Vetores/parasitologia , Leishmania/genética , Comportamento Alimentar
10.
Parasitol Res ; 123(1): 9, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38052759

RESUMO

Phlebotomine sand flies are crepuscular and nocturnal small dipteran insects in the family Psychodidae. Several disease agents, including Leishmania parasites, are transmitted to humans and other vertebrate hosts by the bite of an infected female sand fly. As part of leishmaniasis surveillance programs, light traps have been routinely used in sand fly collections. In this context, new trapping devices are always being required to improve vector monitoring. Here, the efficiency of a new suction light trap, named Silva suction trap or SS trap, was field evaluated in collecting sand flies. Two SS traps, one with green (520 nm, 15,000 mcd) and the other with white (wide spectrum, 18,000 mcd) LEDs, and one CDC-type trap were deployed in a rural forested environment. A total of 4686 phlebotomine sand flies were captured. The most frequent species were females of the Ps. Chagasi series (77.8%) followed by males of Ps. wellcomei (11.6%), Nyssomyia whitmani (3.3%), and Bichromomyia flaviscutellata (2.4%). The CDC-type light trap collected 101.9 ± 20.89 sand flies and 14 species, followed by the white-baited SS trap (87.78 ± 16.36, 14), and the green-baited SS trap (70.61 ± 14.75, 15), but there were no statistically significant differences among traps. A discussion on the considerable advantages of the use of SS traps over CDC traps is included. In this study, the Silva suction trap proved to be efficient and can be an alternative to CDC traps for monitoring adult phlebotomine sand fly populations.


Assuntos
Leishmania , Leishmaniose , Phlebotomus , Psychodidae , Humanos , Masculino , Animais , Feminino , Sucção
11.
Malar J ; 22(1): 230, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553665

RESUMO

Anopheles mosquitoes present a major public health challenge in sub-Saharan Africa; notably, as vectors of malaria that kill over half a million people annually. In parts of the east and southern Africa region, one species in the Funestus group, Anopheles funestus, has established itself as an exceptionally dominant vector in some areas, it is responsible for more than 90% of all malaria transmission events. However, compared to other malaria vectors, the species is far less studied, partly due to difficulties in laboratory colonization and the unresolved aspects of its taxonomy and systematics. Control of An. funestus is also increasingly difficult because it has developed widespread resistance to public health insecticides. Fortunately, recent advances in molecular techniques are enabling greater insights into species identity, gene flow patterns, population structure, and the spread of resistance in mosquitoes. These advances and their potential applications are reviewed with a focus on four research themes relevant to the biology and control of An. funestus in Africa, namely: (i) the taxonomic characterization of different vector species within the Funestus group and their role in malaria transmission; (ii) insecticide resistance profile; (iii) population genetic diversity and gene flow, and (iv) applications of genetic technologies for surveillance and control. The research gaps and opportunities identified in this review will provide a basis for improving the surveillance and control of An. funestus and malaria transmission in Africa.


Assuntos
Anopheles , Inseticidas , Malária , Humanos , Animais , Malária/epidemiologia , Mosquitos Vetores/genética , Inseticidas/farmacologia , Resistência a Inseticidas/genética , África Austral
12.
Euro Surveill ; 28(26)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37382886

RESUMO

BackgroundArthropod vectors such as ticks, mosquitoes, sandflies and biting midges are of public and veterinary health significance because of the pathogens they can transmit. Understanding their distributions is a key means of assessing risk. VectorNet maps their distribution in the EU and surrounding areas.AimWe aim to describe the methodology underlying VectorNet maps, encourage standardisation and evaluate output.Methods: Vector distribution and surveillance activity data have been collected since 2010 from a combination of literature searches, field-survey data by entomologist volunteers via a network facilitated for each participating country and expert validation. Data were collated by VectorNet members and extensively validated during data entry and mapping processes.ResultsAs of 2021, the VectorNet archive consisted of ca 475,000 records relating to > 330 species. Maps for 42 species are routinely produced online at subnational administrative unit resolution. On VectorNet maps, there are relatively few areas where surveillance has been recorded but there are no distribution data. Comparison with other continental databases, namely the Global Biodiversity Information Facility and VectorBase show that VectorNet has 5-10 times as many records overall, although three species are better represented in the other databases. In addition, VectorNet maps show where species are absent. VectorNet's impact as assessed by citations (ca 60 per year) and web statistics (58,000 views) is substantial and its maps are widely used as reference material by professionals and the public.ConclusionVectorNet maps are the pre-eminent source of rigorously validated arthropod vector maps for Europe and its surrounding areas.


Assuntos
Artrópodes , Humanos , Animais , Mosquitos Vetores , Vetores de Doenças , Vetores Artrópodes , Europa (Continente)/epidemiologia
13.
Malar J ; 22(1): 187, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37337209

RESUMO

BACKGROUND: Anopheles stephensi is an efficient vector of both Plasmodium falciparum and Plasmodium vivax in South Asia and the Middle East. The spread of An. stephensi to countries within the Horn of Africa threatens progress in malaria control in this region as well as the rest of sub-Saharan Africa. METHODS: The available malaria data and the timeline for the detection of An. stephensi was reviewed to analyse the role of An. stephensi in malaria transmission in Horn of Africa of the Eastern Mediterranean Region (EMR) in Djibouti, Somalia, Sudan and Yemen. RESULTS: Malaria incidence in Horn of Africa of EMR and Yemen, increased from 41.6 in 2015 to 61.5 cases per 1000 in 2020. The four countries from this region, Djibouti, Somalia, Sudan and Yemen had reported the detection of An. stephensi as of 2021. In Djibouti City, following its detection in 2012, the estimated incidence increased from 2.5 cases per 1000 in 2013 to 97.6 cases per 1000 in 2020. However, its contribution to malaria transmission in other major cities and in other countries, is unclear because of other factors, quality of the urban malaria data, human mobility, uncertainty about the actual arrival time of An. stephensi and poor entomological surveillance. CONCLUSIONS: While An. stephensi may explain a resurgence of malaria in Djibouti, further investigations are needed to understand its interpretation trends in urban malaria across the greater region. More investment for multisectoral approach and integrated surveillance and control should target all vectors particularly malaria and dengue vectors to guide interventions in urban areas.


Assuntos
Anopheles , Malária , Animais , Humanos , Saúde Pública , Iêmen/epidemiologia , Mosquitos Vetores , Malária/epidemiologia , Malária/prevenção & controle , Organização Mundial da Saúde , Sudão
14.
Front Public Health ; 11: 1166007, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37181710

RESUMO

Pyrethroids are extensively used to control adult populations of the arboviral vector Aedes aegypti, raising concerns regarding the increasing frequency and distribution of insecticide resistance mutations (kdr: knock-down resistance) in the voltage-gated sodium channel gene (Nav). The widespread use of pyrethroids imposes a threat to the success of mosquito control and the environment. In this study, we investigated the presence of two kdr mutations (V1016I and F1534C) in the Nav gene and their distribution across four neighborhoods in Posadas, Argentina, with different Ae. aegypti abundance and contrasting socioeconomic status (SES). Alleles at each locus were interrogated using TaqMan SNP genotyping assays in DNA extracted from adult females collected in a longitudinal study. We report the presence of both pyrethroid resistance alleles (kdr 1016I = 29.08%; kdr 1534C = 70.70%) among adult females. The frequency of combined kdr genotypes reveals that approximately 70% of local adult females have enhanced resistance to pyrethroids. Both, the proportion of resistant adult females (with at least one kdr allele in each locus) and Ae. aegypti abundance showed an uneven distribution between neighborhoods with different SES (p < 0.001). In high-SES neighborhoods, we found more mosquitoes and a higher frequency of pyrethroid resistance, possibly as a consequence of different public health interventions, social habits, and insecticide use. This is the first report of kdr mutations in Ae. Aegypti in the northeast region of Argentina. Our results focus on the need for within-population (city) distribution analyses of kdr mutations and highlight the relevance of incorporating insecticide resistance monitoring within the Integrated Vector Management initiative.


Assuntos
Aedes , Dengue , Piretrinas , Animais , Feminino , Adulto , Humanos , Aedes/genética , Argentina , Estudos Longitudinais , Mosquitos Vetores/genética , Piretrinas/farmacologia , Dengue/prevenção & controle
15.
Ticks Tick Borne Dis ; 14(1): 102072, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36379171

RESUMO

Kentucky experiences some of the highest incidence rates for ehrlichiosis nationwide. Ehrlichiosis is a bacterial infection caused primarily by the pathogen Ehrlichia chaffeensis and can be transmitted to humans through the bite of an infected tick, notably Amblyomma americanum. Amblyomma americanum, the lone star tick, is common to Kentucky and much of the southeast, but has expanded farther north in recent years. As an abundant and aggressive nondiscriminatory biter, this species is of major public health concern for transmission of pathogens to humans. As this vector's range expands, surveillance remains a necessary tool providing data that allows researchers to track this expansion over time. The historical information on tick distribution in Kentucky is variable with very little data on a statewide scale. From January 2019 to December 2020, we conducted surveillance for A. americanum in Kentucky through field collections and the establishment of a statewide tick submission program with the help of the Kentucky Department for Public Health and screened for E. chaffeensis on a county-level throughout the state. We collected 5,726 A. americanum ticks in 77 counties and detected E. chaffeensis in 32 counties. The minimum infection rate was 1.8%. With the expansion of A. americanum and increasing cases of tick-borne diseases, future surveillance is needed to monitor this important tick vector over time.


Assuntos
Ehrlichia chaffeensis , Humanos , Animais , Amblyomma , Kentucky/epidemiologia
16.
Pathog Glob Health ; 117(6): 554-564, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36384430

RESUMO

Ovitraps can detect Aedes vectors at an early stage and can serve as an alarm indicator for outbreak prediction. This study aimed to summarize the available literature about the ovitrap system and to determine its feasibility, required resources and costs when installing and maintaining this vector surveillance system in the municipality of Los Patios, Colombia. A scoping review to assess the role of ovitraps as a tool for Aedes vector surveillance was conducted. The subsequent fieldwork consisted of mapping the municipality, manufacturing, and installing 40 ovitraps in 10 blocks, revising them weekly for 4 weeks by two half-time employed vector control technicians, and carrying out a cost analysis. A total of 38 studies were included in this review showing that ovitraps had a better performance than other entomological surveillance methods and a positive correlation with other entomological and disease variables. From the field results over 4 weeks, a high proportion of positive ovitraps (80%, 90%, 75%, 97.5%) and positive blocks (100%) as well as a good acceptance by house owners (76.9%), were identified. Operational indicators such as average installation time of the ovitraps (10h15 m), weekly reading and reinstallation (on average 7h27 m) and the cost of the intervention (COL$1,142,304.47/US$297) were calculated. Literature shows that ovitraps are sensitive to detect the presence of Aedes mosquitoes, providing data efficiently and timely for outbreak prediction. The field testing showed it is an affordable and feasible method in the context of a Colombian municipality and similar endemic areas.


Assuntos
Aedes , Dengue , Animais , Humanos , Dengue/epidemiologia , Dengue/prevenção & controle , Mosquitos Vetores , Colômbia/epidemiologia , Controle de Mosquitos/métodos
17.
J Med Entomol ; 60(1): 193-201, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36351779

RESUMO

Culicoides Latreille (Diptera: Ceratopogonidae) biting midges are hematophagous flies that can transmit several disease-causing pathogens to animals. Surveillance of Culicoides is important for understanding pathogen transmission risk. The most commonly used traps for midge surveillance are suction traps baited with UV light or CO2. Culicoides species are understudied in the southern California desert region and trapping methods for these desert midges remain largely unexplored. In this study, capture rates of different Culicoides species were compared using suction traps baited with either UV or CO2 placed at two locations at a southern California desert site where a narrow canyon (Deep Canyon) drains the adjacent peninsular mountain range and leads to an expansive floodplain. Over all trap nights and locations, UV-baited traps outperformed CO2-baited traps for most Culicoides species captured at the study site, except for Culicoides sonorensis Wirth and Jones and C. mohave Wirth. Capture rates varied for each species by trap location, with desert Culicoides species captured in greater numbers at the canyon mouth while C. sonorensis and C. mohave were captured in greater numbers on the floodplain nearer to urban development including a golf course and small zoo. An interaction of trap type with trapping location on the capture rate was noted for some Culicoides species, especially for C. mohave which was captured in greater numbers using UV traps at the canyon mouth but captured in greater numbers using CO2 traps in the floodplain. This trap efficiency study will facilitate future research targeting Culicoides species in the southern California desert.


Assuntos
Ceratopogonidae , Animais , Raios Ultravioleta , Dióxido de Carbono , Sucção , California
18.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1011414

RESUMO

Objective To investigate the distribution of malaria vector Anopheles in Sichuan Province from 2011 to 2021, so as to provide the scientific evidence for improving the surveillance of malaria vector Anopheles and preventing re-establishment of imported malaria in Sichuan Province. Methods The density and species of Anopheles mosquitoes were investigated using human-bait trapping and light trapping techniques in malaria vector surveillance sites of Sichuan Province from 2011 to 2021. The number, population and density of captured Anopheles mosquitoes were collected and descriptively analyzed, and the geographical distribution map of malaria vectors was plotted using the software ArcGIS 10.7 in Sichuan Province. Results A total of 152 243 Anopheles mosquitoes were captured in malaria vector surveillance sites of Sichuan Province from 2011 to 2021, including 150 987 An. sinensis (99.18%) and 1 256 An. anthropophagus (0.82%), and no other Anopheles species were captured. The annual densities of An. sinensis and An. anthropophagus were 0.64 to 1.27 mosquitoes/(person-hour) and 0 to 0.07 mosquitoes/(person-hour) by the human-bait trapping technique, and 6.46 to 26.50 mosquitoes/(light-night) and 0 to 0.82 mosquitoes/(light-night) by the light trapping technique in malaria vector surveillance sites of Sichuan Province from 2011 to 2021. A relatively higher density of An. anthropophagus was seen in Renshou County, Jianyang City, Weiyuan County and Mabian Yi Autonomous County [> 0.40 mosquitoes/(person-hour)] by the human-bait trapping technique, and in Cuiping District and Gaoxian County in Yibin City [> 1.00 mosquito/(light-night)] by the light trapping technique in Sichuan Province from 2011 to 2018, with no An. anthropophagus captured from 2019 to 2021, and a relatively higher density of An. sinensis was detected in Emeishan City, Lushan County, Luojiang District, Tongchuan District and Zhaohua District [> 4.00 mosquitoes/(person-hour)] by the human-bait trapping technique, and in Huili County, Yuexi County, Dechang County, Langzhong City, Pingchang County and Xuanhan County [> 40.00 mosquitoes/(light-night)] by the light trapping technique in Sichuan Province from 2011 to 2021. Conclusions Malaria vectors were still widespread in Sichuan Province from 2011 to 2021, and An. sinensis was the dominant species of malaria vectors. There is still a risk of local re-establishment of imported malaria in Sichuan Province, and it is needed to continue to improve the surveillance of imported malaria cases and malaria vectors.

19.
Front Vet Sci ; 9: 1003550, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467661

RESUMO

Background: Vector-borne diseases have become one of the most serious local public health threats. Monitoring and controlling vectors are important means of controlling vector-borne diseases. However, traditional vector surveillance systems in China mainly monitor vector density, making its early-warning effect on vector-borne diseases weak. In this study, we applied an integrated surveillance system of multiple arthropod vectors and reservoir host containing ecology, etiology, and drug resistance monitoring to obtain better knowledge on vector populations and provide early warning of suspicious vector-borne infectious disease occurrence. Methods: An ecology surveillance of mosquitoes, rodents, ticks, and chigger mites, a pathogen infection survey on mosquitoes and rodents, and a drug resistance survey on Aedes albopictus were conducted in 12 cities in Zhejiang Province in 2020. Results: A total of 15,645 adult mosquitoes were collected at a density of 19.8 mosquitoes per Centers for Disease Control and Prevention light trap. Culex tritaeniorhynchus (72.76%) was the most abundant species. The Breteau index of Ae. albopictus was 13.11. The rodent density was 0.91 rodents per hundred traps; the most abundant species was Rattus norvegicus (33.73%). The densities of dissociate and ectoparasitic ticks were 0.79 ticks per hundred meters and 0.97 ticks per animal, respectively. The most abundant tick species was Haemaphysalis longicornis (56.38%). The density of chigger mites was 14.11 per rodent; two species were identified, with the most abundant species being Walchia spp. mite (68.35%). No flavivirus or alphavirus was found in mosquito etiology monitoring, whereas the positivity rates of hantavirus, the pathogenic bacteria Leptospira spp., Orientia tsutsugamushi, and Bartonella spp. detected in rodent etiology monitoring were 1.86, 7.36, 0.35 and 7.05%, respectively. Field populations of Ae. albopictus in Zhejiang Province were widely resistant to pyrethroids but sensitive to most insecticides tested, including organophosphorus and carbamate insecticides. Conclusion: Integrated surveillance systems on multiple arthropod vectors (mosquitoes, ticks, mites) and animal reservoirs (rodents) can provide important information for the prevention and control of epidemic emergencies.

20.
Trop Med Infect Dis ; 7(11)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36355893

RESUMO

Since 2015, the Dengue, Zika, and Chikungunya viruses gained notoriety for their impact in public health in many parts of the globe, including Brazil. In Recife, the capital of Pernambuco State, the introduction of ZIKV impacted human population tremendously, owing to the increase in the number of neurological cases, such as the Guillain−Barré and congenital Zika disorders. Later, Recife was considered to be the epicenter for ZIKV epidemics in Brazil. For arboviral diseases, there are some risk factors, such as climate changes, low socioeconomic conditions, and the high densities of vectors populations, that favor the broad and rapid dispersion of these three viruses in the city. Therefore, continuous arbovirus surveillance provides an important tool for detecting these arboviruses and predicting new outbreaks. The purpose of the present study was to evaluate the circulation of DENV, ZIKV, and CHIKV by RT-qPCR in mosquitoes collected in health care units from the metropolitan area of Recife (MAR), during 2018. A total of 2321 female mosquitoes (357 pools) belonging to two species, Aedes aegypti and Culex quinquefasciatus, were collected from 18 different healthcare units, distributed in five cities from the MAR. Twenty-three pools were positive for ZIKV, out of which, seventeen were of C. quinquefasciatus and six were of A. aegypti. Positive pools were collected in 11/18 health care units screened, with Cq values ranging from 30.0 to 37.4 and viral loads varying from 1.88 × 107 to 2.14 × 109 RNA copies/mL. Nosocomial Aedes- and Culex-borne transmission of arbovirus are widely ignored by surveillance and vector control programs, even though healthcare-associated infections (HAI) are considered a serious threat to patient safety worldwide. Although the results presented here concern only the epidemiological scenario from 2018 in MAR, the potential of hospital-acquired transmission through mosquito bites is being overlooked by public health authorities. It is, therefore, of the ultimate importance to establish specific control programs for these locations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA