RESUMO
The micro-electromechanical system (MEMS) sensors are suitable devices for vibrational analysis in complex systems. The Fabry-Pérot interferometer (FPI) is used due to its high sensitivity and immunity to electromagnetic interference (EMI). Here, we present the design, fabrication, and characterization of a silicon-on-insulator (SOI) MEMS device, which is embedded in a metallic package and connected to an optical fiber. This integrated micro-opto-electro-mechanical system (MOEMS) sensor contains a mass structure and handle layers coupled with four designed springs built on the device layer. An optical reading system using an FPI is used for displacement interrogation with a demodulation technique implemented in LabVIEW®. The results indicate that our designed MOEMS sensor exhibits a main resonant frequency of 1274 Hz with damping ratio of 0.0173 under running conditions up to 7 g, in agreement with the analytical model. Our experimental findings show that our designed and fabricated MOEMS sensor has the potential for engineering application to monitor vibrations under high-electromagnetic environmental conditions.
RESUMO
Plants that experience a lack of sufficient irrigation undergo hydric stress, which causes the modification of their mechanical properties. These changes include a complex network of chemical and physical signals that interact between plant-plant and plant-environment systems in a mechanism that is still not well understood, and that differs among species. This mechanical response implies different levels of vibration when the plant experiences structural modifications from self-hydraulic adjustments of flux exchange at specific frequencies, with these carrying behavioral information. To measure these signals, highly sensitive instrumentation that allows the decoding of displacement velocity and displacement of plants, which is possible through calibrated equipment such as 3D scanning laser vibrometers, is necessary. Laser vibrometry technology allows for noninvasive measurements in real-time. Physiological changes could reasonably affect the biomechanical condition of plants in terms of the frequency (hertz) and intensity of the plant's vibration. In this research, it is proposed that the frequency changes of a plant's vibration are related to the plant's hydric condition and that these frequency vibrations have the ecological potential to communicate water changes and levels of hydric stress. The peak of the velocity of plant displacements was found to vary from 0.079 to 1.74 mm/s, and natural frequencies (hertz) range is between 1.8 and 2.6 Hz for plants with low hydric stress (LHS), between 1.3 and 1.6 Hz for plants with medium hydric stress (MHS), and between 6.7 and 7.8 Hz for plants with high hydric stress. These values could act as preliminary references for water management using noninvasive techniques and, knowledge of the range of natural frequencies of hydric stress risk in chili pepper crops can be applied in precision agriculture practices.
Assuntos
Capsicum/fisiologia , Biofísica , Desidratação , VibraçãoRESUMO
INTRODUCTION: The cycling activity has increased in recent years, either as a means of leisure or physical activity or as means of transport. Discomfort is one of the main complaints for cyclists, especially when related to the type o pavement they use while riding. This work presents a study of measurement and evaluation of human exposure to hand-arm vibration in the leisure cyclist activity in different pavements in order to classify according to vibration discomfort and to vibration injury risk. METHODS: Vibration measurements are performed for three pavement types, asphalt (AS), precast concrete slab (PC), and interlocking concrete blocks (BI), using two bicycle models (time trial speed racing bike, S and mountain bike, MB), and cyclists with different physical characteristics. It is performed a quantitative analysis of each configuration - pavement type × bike model × cyclist - where the daily vibration exposure A(8) is evaluated, as defined in ISO 5349-1 Standard, for 2h daily exposure. It is also evaluated the maximum daily exposure in order to reach limit values, as defined by Directive 2002/44/EC. RESULTS: Based on a subjective analysis (survey), it is evaluated the comfort degree for vibration exposure for each tested pavement, according to a survey within cyclists. Finally, the results are compared using both quantitative and subjective analysis. CONCLUSIONS: Not surprisingly, it has been noticed that the most comfortable pavement type is the asphalt pavement (AS), followed by the precast concrete pavement (PC) and by the interlocking concrete blocks pavement (BI), confirming the opinion pool within cyclists. As a new finding, for some pavement types, bikes and daily journey activities, the vibration levels may reach health limit levels which justify the originality of the work and the importance as guidance for healthy public decisions for new cycle paths.