Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Virus Res ; : 199458, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39187047

RESUMO

Coronaviruses (CoVs) are significant animal and human pathogens, characterized by being enveloped RNA viruses with positive-sense single-stranded RNA. The Coronaviridae family encompasses four genera, among which gammacoronaviruses pose a major threat to the poultry industry, which infectious bronchitis virus (IBV) being the most prominent of these threats. Particularly, IBV adversely affects broiler growth and egg production, causing substantial losses. The IBV strains currently circulating in Taiwan include the IBV Taiwan-I (TW-I) serotype, IBV Taiwan-II (TW-II) serotype, and vaccine strains. Therefore, ongoing efforts have focused on developing novel vaccines and discovering antiviral agents. The envelope (E) proteins of CoVs accumulate in the endoplasmic reticulum-Golgi intermediate compartment prior to virus budding. These E proteins assemble into viroporins, exhibiting ion channel activity that leads to cell membrane disruption, making them attractive targets for antiviral therapy. In this study, we investigated the E proteins of IBV H-120, as well as IBV serotypes TW-I and TW-II. E protein expression resulted in inhibited bacteria growth, increased permeability of bacteria to ß-galactosidase substrates, and blocked protein synthesis of bacteria by hygromycin B (HygB). Furthermore, in the presence of E proteins, HygB also impeded protein translation in DF-1 cells and damaged their membrane integrity. Collectively, these findings confirm the viroporin activity of the E proteins from IBV H-120, IBV serotype TW-I, and IBV serotype TW-II. Next, the viroporin inhibitors, 5-(N,N-hexamethylene) amiloride (HMA) and 4,4'-disothiocyano-2,2'-stilbenedisulphonic acid (DIDS) were used to inhibit the viroporin activities of the E proteins of IBV H-120, IBV serotype TW-I, and IBV serotype TW-II. In chicken embryos and chickens infected with IBV serotypes TW-I and IBV TW-II, no survivors were observed at 6 and 11 days post-infection (dpi), respectively. However, treatments with both DIDS and HMA increased the survival rates in infected chicken embryos and chickens and mitigated histopathological lesions in the trachea and kidney. Additionally, a 3D pentameric structure of the IBV E protein was constructed via homology modeling. As expected, both inhibitors were found to bind to the lipid-facing surface within the transmembrane domain of the E protein, inhibiting ion conduction. Taken together, our findings provide comprehensive evidence supporting the use of viroporin inhibitors as promising antiviral agents against IBV Taiwan isolates.

2.
J Virol ; 98(8): e0023124, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38980063

RESUMO

African swine fever virus (ASFV) is the causative agent of a contagious disease affecting wild and domestic swine. The function of B169L protein, as a potential integral structural membrane protein, remains to be experimentally characterized. Using state-of-the-art bioinformatics tools, we confirm here earlier predictions indicating the presence of an integral membrane helical hairpin, and further suggest anchoring of this protein to the ER membrane, with both terminal ends facing the lumen of the organelle. Our evolutionary analysis confirmed the importance of purifying selection in the preservation of the identified domains during the evolution of B169L in nature. Also, we address the possible function of this hairpin transmembrane domain (HTMD) as a class IIA viroporin. Expression of GFP fusion proteins in the absence of a signal peptide supported B169L insertion into the ER as a Type III membrane protein and the formation of oligomers therein. Overlapping peptides that spanned the B169L HTMD were reconstituted into ER-like membranes and the adopted structures analyzed by infrared spectroscopy. Consistent with the predictions, B169L transmembrane sequences adopted α-helical conformations in lipid bilayers. Moreover, single vesicle permeability assays demonstrated the assembly of lytic pores in ER-like membranes by B169L transmembrane helices, a capacity confirmed by ion-channel activity measurements in planar bilayers. Emphasizing the relevance of these observations, pore-forming activities were not observed in the case of transmembrane helices derived from EP84R, another ASFV protein predicted to anchor to membranes through a α-helical HTMD. Overall, our results support predictions of viroporin-like function for the B169L HTMD.IMPORTANCEAfrican swine fever (ASF), a devastating disease affecting domestic swine, is widely spread in Eurasia, producing significant economic problems in the pork industry. Approaches to prevent/cure the disease are mainly restricted to the limited information concerning the role of most of the genes encoded by the large (160-170 kba) virus genome. In this report, we present the experimental data on the functional characterization of the African swine fever virus (ASFV) gene B169L. Data presented here indicates that the B169L gene encodes for an essential membrane-associated protein with a viroporin function.


Assuntos
Vírus da Febre Suína Africana , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/metabolismo , Animais , Suínos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Domínios Proteicos , Proteínas Viroporinas/metabolismo , Proteínas Viroporinas/genética , Febre Suína Africana/virologia , Febre Suína Africana/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais/genética , Proteínas Virais/química , Sequência de Aminoácidos
3.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119745, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38719029

RESUMO

The dynamic interface between invading viral pathogens and programmed cell death (PCD) of the host is a finely regulated process. Host cellular demise at the end of the viral life cycle ensures the release of progeny virions to initiate new infection cycles. Rotavirus (RV), a diarrheagenic virus with double-stranded RNA genome, has been reported to trigger different types of PCD such as apoptosis and pyroptosis in a highly regulated way to successfully disseminate progeny virions. Recently our lab also showed that induction of MLKL-driven programmed necroptosis by RV. However, the host cellular machinery involved in RV-induced necroptosis and the upstream viral trigger responsible for it remained unaddressed. In the present study, the signalling upstream of MLKL-driven necroptosis has been delineated where the involvement of Receptor interacting serine/threonine kinase 3 (RIPK3) and 1 (RIPK1) from the host side and RV non-structural protein 4 (NSP4) as the viral trigger for necroptosis has been shown. Interestingly, RV-NSP4 was found to be an integral component of the necrosome complex by interacting with RIPK1, thereby bypassing the requirement of RIPK1 kinase activity. Subsequently, NSP4-driven elevated cytosolic Ca2+ concentration and Ca2+-binding to NSP4 lead further to RHIM domain-dependent RIPK1-RIPK3 interaction, RIPK3-dependent MLKL phosphorylation, and eventual necroptosis. Overall, this study presents the interplay between RV-NSP4 and the host cellular necrosome complex to induce necroptotic death of host cells.


Assuntos
Necroptose , Proteínas Quinases , Proteína Serina-Treonina Quinases de Interação com Receptores , Rotavirus , Proteínas não Estruturais Virais , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Humanos , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Rotavirus/metabolismo , Animais , Interações Hospedeiro-Patógeno , Toxinas Biológicas/metabolismo
4.
Plant Cell ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819305

RESUMO

Potassium (K+) plays crucial roles in both plant development and immunity. However, the function of K+ in plant-virus interactions remains largely unknown. Here, we utilized Barley yellow striate mosaic virus (BYSMV), an insect-transmitted plant cytorhabdovirus, to investigate the interplay between viral infection and plant K+ homeostasis. The BYSMV accessory P9 protein exhibits viroporin activity by enhancing membrane permeability in Escherichia coli. Additionally, P9 increases K+ uptake in yeast (Saccharomyces cerevisiae) cells, which is disrupted by a point mutation of Glycine 14 to Threonine (P9G14T). Furthermore, BYSMV P9 forms oligomers and targets to both the viral envelope and the plant membrane. Based on the recombinant BYSMV-green fluorescent protein (BYGFP) virus, a P9-deleted mutant (BYGFPΔP9) was rescued and demonstrated infectivity within individual plant cells of Nicotiana benthamiana and insect vectors. However, BYGFPΔP9 failed to infect barley plants after transmission by insect vectors. Furthermore, infection of barley plants was severely impaired for BYGFP-P9G14T lacking P9 K+ channel activity. In vitro assays demonstrate that K+ facilitates virion disassembly and the release of genome RNA for viral mRNA transcription. Altogether, our results show that the K+ channel activity of viroporins is conserved in plant cytorhabdoviruses and plays crucial roles in insect-mediated virus transmission.

5.
Proc Natl Acad Sci U S A ; 121(21): e2401748121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739789

RESUMO

Potyviridae, the largest family of plant RNA viruses, includes many important pathogens that significantly reduce the yields of many crops worldwide. In this study, we report that the 6-kilodalton peptide 1 (6K1), one of the least characterized potyviral proteins, is an endoplasmic reticulum-localized protein. AI-assisted structure modeling and biochemical assays suggest that 6K1 forms pentamers with a central hydrophobic tunnel, can increase the cell membrane permeability of Escherichia coli and Nicotiana benthamiana, and can conduct potassium in Saccharomyces cerevisiae. An infectivity assay showed that viral proliferation is inhibited by mutations that affect 6K1 multimerization. Moreover, the 6K1 or its homologous 7K proteins from other viruses of the Potyviridae family also have the ability to increase cell membrane permeability and transmembrane potassium conductance. Taken together, these data reveal that 6K1 and its homologous 7K proteins function as viroporins in viral infected cells.


Assuntos
Nicotiana , Nicotiana/virologia , Nicotiana/metabolismo , Potyviridae/genética , Potyviridae/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais/genética , Permeabilidade da Membrana Celular , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Viroporinas/metabolismo , Proteínas Viroporinas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Vírus de Plantas/genética , Vírus de Plantas/fisiologia , Doenças das Plantas/virologia , Potássio/metabolismo
6.
Protein Sci ; 33(4): e4923, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501465

RESUMO

The envelope (E) proteins of coronaviruses (CoVs) form cation-conducting channels that are associated with the pathogenicity of these viruses. To date, high-resolution structural information about these viroporins is limited to the SARS-CoV E protein. To broaden our structural knowledge of other members of this family of viroporins, we now investigate the conformation of the E protein of the human coronavirus (hCoV), NL63. Using two- and three-dimensional magic-angle-spinning NMR, we have measured 13 C and 15 N chemical shifts of the transmembrane domain of E (ETM), which yielded backbone (ϕ, ψ) torsion angles. We further measured the water accessibility of NL63 ETM at neutral pH versus acidic pH in the presence of Ca2+ ions. These data show that NL63 ETM adopts a regular α-helical conformation that is unaffected by pH and the N-terminal ectodomain. Interestingly, the water accessibility of NL63 ETM increases only modestly at acidic pH in the presence of Ca2+ compared to neutral pH, in contrast to SARS ETM, which becomes much more hydrated at acidic pH. This difference suggests a structural basis for the weaker channel conductance of α-CoV compared to ß-CoV E proteins. The weaker E channel activity may in turn contribute to the reduced virulence of hCoV-NL63 compared to SARS-CoV viruses.


Assuntos
Infecções por Coronavirus , Coronavirus , Humanos , Proteínas Viroporinas , Proteínas do Envelope Viral/química , Infecções por Coronavirus/metabolismo , Água
7.
J Biol Chem ; 300(1): 105575, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38110034

RESUMO

The carboxy-terminal tail of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) envelope protein (E) contains a PDZ-binding motif (PBM) which is crucial for coronavirus pathogenicity. During SARS-CoV-2 infection, the viral E protein is expressed within the Golgi apparatus membrane of host cells with its PBM facing the cytoplasm. In this work, we study the molecular mechanisms controlling the presentation of the PBM to host PDZ (PSD-95/Dlg/ZO-1) domain-containing proteins. We show that at the level of the Golgi apparatus, the PDZ-binding motif of the E protein is not detected by E C-terminal specific antibodies nor by the PDZ domain-containing protein-binding partner. Four alanine substitutions upstream of the PBM in the central region of the E protein tail is sufficient to generate immunodetection by anti-E antibodies and trigger robust recruitment of the PDZ domain-containing protein into the Golgi organelle. Overall, this work suggests that the presentation of the PBM to the cytoplasm is under conformational regulation mediated by the central region of the E protein tail and that PBM presentation probably does not occur at the surface of Golgi cisternae but likely at post-Golgi stages of the viral cycle.


Assuntos
Proteínas do Envelope de Coronavírus , Citoplasma , SARS-CoV-2 , Humanos , Motivos de Aminoácidos , Proteínas do Envelope de Coronavírus/química , Proteínas do Envelope de Coronavírus/metabolismo , COVID-19/patologia , COVID-19/virologia , Citoplasma/metabolismo , Citoplasma/virologia , Complexo de Golgi/química , Complexo de Golgi/metabolismo , Guanilato Quinases/metabolismo , Domínios PDZ , Ligação Proteica , Conformação Proteica , Transporte Proteico , SARS-CoV-2/química , SARS-CoV-2/metabolismo
8.
Genomics Inform ; 21(3): e41, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37813637

RESUMO

The Dengue virus M protein is a 75 amino acid polypeptide with two helical transmembranes (TM). The TM domain oligomerizes to form an ion channel, facilitating viral release from the host cells. The M protein has a critical role in the virus entry and life cycle, making it a potent drug target. The oligomerization of the monomeric protein was studied using ab initio modeling and molecular dynamics (MD) simulation in an implicit membrane environment. The representative structures obtained showed pentamer as the most stable oligomeric state, resembling an ion channel. Glutamic acid, threonine, serine, tryptophan, alanine, isoleucine form the pore-lining residues of the pentameric channel, conferring an overall negative charge to the channel with approximate length of 51.9 Å. Residue interaction analysis (RIN) for M protein shows that Ala94, Leu95, Ser112, Glu124, and Phe155 are the central hub residues representing the physicochemical interactions between domains. The virtual screening with 165 different ion channel inhibitors from the ion channel library shows monovalent ion channel blockers, namely lumacaftor, glipizide, gliquidone, glisoxepide, and azelnidipine to be the inhibitors with high docking scores. Understanding the three-dimensional structure of M protein will help design therapeutics and vaccines for Dengue infection.

9.
Apoptosis ; 28(11-12): 1596-1617, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37658919

RESUMO

SARS-CoV-2 Envelope protein (E) is one of the crucial components in virus assembly and pathogenesis. The current study investigated its role in the SARS-CoV-2-mediated cell death and inflammation in lung and gastrointestinal epithelium and its effect on the gastrointestinal-lung axis. We observed that transfection of E protein increases the lysosomal pH and induces inflammation in the cell. The study utilizing Ethidium bromide/Acridine orange and Hoechst/Propidium iodide staining demonstrated necrotic cell death in E protein transfected cells. Our study revealed the role of the necroptotic marker RIPK1 in cell death. Additionally, inhibition of RIPK1 by its specific inhibitor Nec-1s exhibits recovery from cell death and inflammation manifested by reduced phosphorylation of NFκB. The E-transfected cells' conditioned media induced inflammation with differential expression of inflammatory markers compared to direct transfection in the gastrointestinal-lung axis. In conclusion, SARS-CoV-2 E mediates inflammation and necroptosis through RIPK1, and the E-expressing cells' secretion can modulate the gastrointestinal-lung axis. Based on the data of the present study, we believe that during severe COVID-19, necroptosis is an alternate mechanism of cell death besides ferroptosis, especially when the disease is not associated with drastic increase in serum ferritin.


Assuntos
Apoptose , COVID-19 , Humanos , SARS-CoV-2 , Necroptose/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Pulmão/metabolismo , Inflamação/patologia , Colo/metabolismo , Colo/patologia
10.
Protein Sci ; 32(10): e4755, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37632140

RESUMO

The SARS-CoV-2 envelope (E) protein forms a five-helix bundle in lipid bilayers whose cation-conducting activity is associated with the inflammatory response and respiratory distress symptoms of COVID-19. E channel activity is inhibited by the drug 5-(N,N-hexamethylene) amiloride (HMA). However, the binding site of HMA in E has not been determined. Here we use solid-state NMR to measure distances between HMA and the E transmembrane domain (ETM) in lipid bilayers. 13 C, 15 N-labeled HMA is combined with fluorinated or 13 C-labeled ETM. Conversely, fluorinated HMA is combined with 13 C, 15 N-labeled ETM. These orthogonal isotopic labeling patterns allow us to conduct dipolar recoupling NMR experiments to determine the HMA binding stoichiometry to ETM as well as HMA-protein distances. We find that HMA binds ETM with a stoichiometry of one drug per pentamer. Unexpectedly, the bound HMA is not centrally located within the channel pore, but lies on the lipid-facing surface in the middle of the TM domain. This result suggests that HMA may inhibit the E channel activity by interfering with the gating function of an aromatic network. These distance data are obtained under much lower drug concentrations than in previous chemical shift perturbation data, which showed the largest perturbation for N-terminal residues. This difference suggests that HMA has higher affinity for the protein-lipid interface than the channel pore. These results give insight into the inhibition mechanism of HMA for SARS-CoV-2 E.


Assuntos
Amilorida , COVID-19 , Humanos , Amilorida/farmacologia , Amilorida/química , SARS-CoV-2 , Bicamadas Lipídicas/química
11.
Heliyon ; 9(8): e18754, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37609425

RESUMO

The accessory protein ORF3a, from SARS-CoV-2, plays a critical role in viral infection and pathogenesis. Here, we characterized ORF3a assembly, ion channel activity, subcellular localization, and interactome. At the plasma membrane, ORF3a exists mostly as monomers and dimers, which do not alter the native cell membrane conductance, suggesting that ORF3a does not function as a viroporin at the cell surface. As a membrane protein, ORF3a is synthesized at the ER and sorted via a canonical route. ORF3a overexpression induced an approximately 25% increase in cell death. By developing an APEX2-based proximity labeling assay, we uncovered proteins proximal to ORF3a, suggesting that ORF3a recruits some host proteins to weaken the cell. In addition, it exposed a set of mitochondria related proteins that triggered mitochondrial fission. Overall, this work can be an important instrument in understanding the role of ORF3a in the virus pathogenicity and searching for potential therapeutic treatments for COVID-19.

12.
J Virol ; 97(8): e0038823, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37540019

RESUMO

The influenza A virus (IAV) M2 protein has proton channel activity, which plays a role in virus uncoating and may help to preserve the metastable conformation of the IAV hemagglutinin (HA). In contrast to the highly conserved M2 proteins of conventional IAV, the primary sequences of bat IAV H17N10 and H18N11 M2 proteins show remarkable divergence, suggesting that these proteins may differ in their biological function. We, therefore, assessed the proton channel activity of bat IAV M2 proteins and investigated its role in virus replication. Here, we show that the M2 proteins of bat IAV did not fully protect acid-sensitive HA of classical IAV from low pH-induced conformational change, indicating low proton channel activity. Interestingly, the N31S substitution not only rendered bat IAV M2 proteins sensitive to inhibition by amantadine but also preserved the metastable conformation of acid-sensitive HA to a greater extent. In contrast, the acid-stable HA of H18N11 did not rely on such support by M2 protein. When mutant M2(N31S) protein was expressed in the context of chimeric H18N11/H5N1(6:2) encoding HA and NA of avian IAV H5N1, amantadine significantly inhibited virus entry, suggesting that ion channel activity supported virus uncoating. Finally, the cytoplasmic domain of the H18N11 M2 protein mediated rapid internalization of the protein from the plasma membrane leading to low-level expression at the cell surface. However, cell surface levels of H18N11 M2 protein were significantly enhanced in cells infected with the chimeric H18N11/H5N1(6:2) virus. The potential role of the N1 sialidase in arresting M2 internalization is discussed. IMPORTANCE Bat IAV M2 proteins not only differ from the homologous proteins of classical IAV by their divergent primary sequence but are also unable to preserve the metastable conformation of acid-sensitive HA, indicating low proton channel activity. This unusual feature may help to avoid M2-mediated cytotoxic effects and inflammation in bats infected with H17N10 or H18N11. Unlike classical M2 proteins, bat IAV M2 proteins with the N31S substitution mediated increased protection of HA from acid-induced conformational change. This remarkable gain of function may help to understand how single point mutations can modulate proton channel activity. In addition, the cytoplasmic domain was found to be responsible for the low cell surface expression level of bat IAV M2 proteins. Given that the M2 cytoplasmic domain of conventional IAV is well known to participate in virus assembly at the plasma membrane, this atypical feature might have consequences for bat IAV budding and egress.


Assuntos
Quirópteros , Vírus da Influenza A , Animais , Amantadina/farmacologia , Linhagem Celular , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A/fisiologia , Virus da Influenza A Subtipo H5N1/metabolismo , Prótons
13.
mBio ; 14(4): e0074923, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37477430

RESUMO

The human cytomegalovirus (HCMV) US12 gene family contributes to virus-host interactions by regulating the virus' cell tropism and its evasion of host innate immune responses. US21, one of the 10 US12 genes (US12-US21), is a descendant of a captured cellular transmembrane BAX inhibitor motif-containing gene. It encodes a 7TMD endoplasmic reticulum (ER)-resident viroporin (pUS21) capable of reducing the Ca2+ content of ER stores, which, in turn, protects cells against apoptosis. Since regulation of Ca2+ homeostasis affects a broad range of cellular responses, including cell motility, we investigated whether pUS21 might also interfere with this cytobiological consequence of Ca2+ signaling. Indeed, deletion of the US21 gene impaired the ability of HCMV-infected cells to migrate, whereas expression of US21 protein stimulated cell migration and adhesion, as well as focal adhesion (FA) dynamics, in a way that depended on its ability to manipulate ER Ca2+ content. Mechanistic studies revealed pUS21-mediated cell migration to involve calpain 2 activation since its inhibition prevented the viroporin's effects on cell motility. Pertinently, pUS21 expression stimulated a store-operated Ca2+ entry (SOCE) mechanism that may determine the activation of calpain 2 by promoting Ca2+ entry. Furthermore, pUS21 was observed to interact with talin-1, a calpain 2 substrate, and crucial protein component of FA complexes. A functional consequence of this interaction was confirmed by talin-1 knockdown, which abrogated the pUS21-mediated increase in cell migration. Together, these results indicate the US21-encoded viroporin to be a viral regulator of cell adhesion and migration in the context of HCMV infection. IMPORTANCE Human cytomegalovirus (HCMV) is an opportunistic pathogen that owes part of its success to the capture, duplication, and tuning of cellular genes to generate modern viral proteins which promote infection and persistence in the host by interfering with many cell biochemical and physiological pathways. The US21 viral protein provides an example of this evolutionary strategy: it is a cellular-derived calcium channel that manipulates intracellular calcium homeostasis to confer edges to HCMV replication. Here, we report on the characterization of a novel function of the US21 protein as a viral regulator of cell migration and adhesion through mechanisms involving its calcium channel activity. Characterization of HCMV multifunctional regulatory proteins, like US21, supports the better understanding of viral pathogenesis and may open avenues for the design of new antiviral strategies that exploit their functions.


Assuntos
Citomegalovirus , Proteínas Viroporinas , Humanos , Citomegalovirus/fisiologia , Proteínas Viroporinas/metabolismo , Calpaína/genética , Calpaína/metabolismo , Talina/metabolismo , Proteínas Virais/metabolismo , Canais de Cálcio/metabolismo , Movimento Celular
14.
Virol J ; 20(1): 142, 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422646

RESUMO

BACKGROUND: SARS-CoV-2 has caused a worldwide pandemic since December 2019 and the search for pharmaceutical targets against COVID-19 remains an important challenge. Here, we studied the envelope protein E of SARS-CoV and SARS-CoV-2, a highly conserved 75-76 amino acid viroporin that is crucial for virus assembly and release. E protein channels were recombinantly expressed in HEK293 cells, a membrane-directing signal peptide ensured transfer to the plasma membrane. METHODS: Viroporin channel activity of both E proteins was investigated using patch-clamp electrophysiology in combination with a cell viability assay. We verified inhibition by classical viroporin inhibitors amantadine, rimantadine and 5-(N,N-hexamethylene)-amiloride, and tested four ivermectin derivatives. RESULTS: Classical inhibitors showed potent activity in patch-clamp recordings and viability assays. In contrast, ivermectin and milbemycin inhibited the E channel in patch-clamp recordings but displayed only moderate activity on the E protein in the cell viability assay, which is also sensitive to general cytotoxic activity of the tested compounds. Nemadectin and ivermectin aglycon were inactive. All ivermectin derivatives were cytotoxic at concentrations > 5 µM, i.e. below the level required for E protein inhibition. CONCLUSIONS: This study demonstrates direct inhibition of the SARS-CoV-2 E protein by classical viroporin inhibitors. Ivermectin and milbemycin inhibit the E protein channel but their cytotoxicity argues against clinical application.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Humanos , Proteínas Viroporinas , SARS-CoV-2 , Sobrevivência Celular , Células HEK293 , Ivermectina/farmacologia
15.
J Virol ; 97(6): e0035023, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37212688

RESUMO

African swine fever virus (ASFV) is causing a devastating pandemic in domestic and wild swine in Central Europe to East Asia, resulting in economic losses for the swine industry. The virus contains a large double-stranded DNA genome that contains more than 150 genes, most with no experimentally characterized function. In this study, we evaluate the potential function of the product of ASFV gene B117L, a 115-amino-acid integral membrane protein transcribed at late times during the virus replication cycle and showing no homology to any previously published protein. Hydrophobicity distribution along B117L confirmed the presence of a single transmembrane helix, which, in combination with flanking amphipathic sequences, composes a potential membrane-associated C-terminal domain of ca. 50 amino acids. Ectopic transient cell expression of the B117L gene as a green fluorescent protein (GFP) fusion protein revealed the colocalization with markers of the endoplasmic reticulum (ER). Intracellular localization of various B117L constructs also displayed a pattern for the formation of organized smooth ER (OSER) structures compatible with the presence of a single transmembrane helix with a cytoplasmic carboxy terminus. Using partially overlapping peptides, we further demonstrated that the B117L transmembrane helix has the capacity to establish spores and ion channels in membranes at low pH. Furthermore, our evolutionary analysis showed the high conservation of the transmembrane domain during the evolution of the B117L gene, indicating that the integrity of this domain is preserved by the action of the purifying selection. Collectively our data support a viroporin-like assistant role for the B117L gene-encoded product in ASFV entry. IMPORTANCE ASFV is responsible for an extensively distributed pandemic causing important economic losses in the pork industry in Eurasia. The development of countermeasures is partially limited by the insufficient knowledge regarding the function of the majority of the more than 150 genes present on the virus genome. Here, we provide data regarding the functional experimental evaluation of a previously uncharacterized ASFV gene, B117L. Our data suggest that the B117L gene encodes a small membrane protein that assists in the permeabilization of the ER-derived envelope during ASFV infection.


Assuntos
Vírus da Febre Suína Africana , Permeabilidade da Membrana Celular , Proteínas de Membrana , Proteínas Virais , Internalização do Vírus , Animais , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/metabolismo , Genoma Viral , Concentração de Íons de Hidrogênio , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Suínos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Permeabilidade da Membrana Celular/genética
16.
Front Immunol ; 14: 1064293, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36891303

RESUMO

Background: Compared to healthy controls, severe COVID19 patients display increased levels of activated NLRP3-inflammasome (NLRP3-I) and interleukin (IL)-1ß. SARS-CoV-2 encodes viroporin proteins E and Orf3a(2-E+2-3a) with homologs to SARS-CoV-1, 1-E+1-3a, which elevate NLRP3-I activation; by an unknown mechanism. Thus, we investigated how 2-E+2-3a activates the NLRP3-I to better understand the pathophysiology of severe COVID-19. Methods: We generated a polycistronic expression-vector co-expressing 2-E+2-3a from a single transcript. To elucidate how 2-E+2-3a activates the NLRP3-I, we reconstituted the NLRP3-I in 293T cells and used THP1-derived macrophages to monitor the secretion of mature IL-1ß. Mitochondrial physiology was assessed using fluorescent microscopy and plate reader assays, and the release of mitochondrial DNA (mtDNA) was detected from cytosolic-enriched fractions using Real-Time PCR. Results: Expression of 2-E+2-3a in 293T cells increased cytosolic Ca++ and elevated mitochondrial Ca++, taken up through the MCUi11-sensitive mitochondrial calcium uniporter. Increased mitochondrial Ca++ stimulated NADH, mitochondrial reactive oxygen species (mROS) production and the release of mtDNA into the cytosol. Expression of 2-E+2-3a in NLRP3-I reconstituted 293T cells and THP1-derived macrophages displayed increased secretion of IL-1ß. Increasing mitochondrial antioxidant defenses via treatment with MnTBAP or genetic expression of mCAT abolished 2-E+2-3a elevation of mROS, cytosolic mtDNA levels, and secretion of NLRP3-activated-IL-1ß. The 2-E+2-3a-induced release of mtDNA and the secretion of NLRP3-activated-IL-1ß were absent in cells lacking mtDNA and blocked in cells treated with the mitochondrial-permeability-pore(mtPTP)-specific inhibitor NIM811. Conclusion: Our findings revealed that mROS activates the release of mitochondrial DNA via the NIM811-sensitive mitochondrial-permeability-pore(mtPTP), activating the inflammasome. Hence, interventions targeting mROS and the mtPTP may mitigate the severity of COVID-19 cytokine storms.


Assuntos
COVID-19 , Inflamassomos , Humanos , Inflamassomos/genética , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Viroporinas , SARS-CoV-2/genética , Poro de Transição de Permeabilidade Mitocondrial , DNA Mitocondrial/metabolismo
17.
J Cell Sci ; 136(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36807531

RESUMO

The coronavirus SARS-CoV-2, the agent of the deadly COVID-19 pandemic, is an enveloped virus propagating within the endocytic and secretory organelles of host mammalian cells. Enveloped viruses modify the ionic homeostasis of organelles to render their intra-luminal milieu permissive for viral entry, replication and egress. Here, we show that infection of Vero E6 cells with the delta variant of the SARS-CoV-2 alkalinizes the endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC) as well as lysosomes, mimicking the effect of inhibitors of vacuolar proton ATPases. We further show the envelope protein of SARS-CoV-2 accumulates in the ERGIC when expressed in mammalian cells and selectively dissipates the ERGIC pH. This viroporin action is prevented by mutations of Val25 but not Asn15 within the channel pore of the envelope (E) protein. We conclude that the envelope protein acts as a proton channel in the ERGIC to mitigate the acidity of this intermediate compartment. The altered pH homeostasis of the ERGIC likely contributes to the virus fitness and pathogenicity, making the E channel an attractive drug target for the treatment of COVID-19.


Assuntos
COVID-19 , Proteínas do Envelope Viral , Animais , Humanos , Proteínas do Envelope Viral/metabolismo , Proteínas Viroporinas/metabolismo , COVID-19/metabolismo , Prótons , Pandemias , SARS-CoV-2/metabolismo , Complexo de Golgi/metabolismo , Lisossomos/metabolismo , Mamíferos/metabolismo
18.
J Mol Biol ; 435(5): 167966, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36682677

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) envelope (E) protein forms a pentameric ion channel in the lipid membrane of the endoplasmic reticulum Golgi intermediate compartment (ERGIC) of the infected cell. The cytoplasmic domain of E interacts with host proteins to cause virus pathogenicity and may also mediate virus assembly and budding. To understand the structural basis of these functions, here we investigate the conformation and dynamics of an E protein construct (residues 8-65) that encompasses the transmembrane domain and the majority of the cytoplasmic domain using solid-state NMR. 13C and 15N chemical shifts indicate that the cytoplasmic domain adopts a ß-sheet-rich conformation that contains three ß-strands separated by turns. The five subunits associate into an umbrella-shaped bundle that is attached to the transmembrane helices by a disordered loop. Water-edited NMR spectra indicate that the third ß-strand at the C terminus of the protein is well hydrated, indicating that it is at the surface of the ß-bundle. The structure of the cytoplasmic domain cannot be uniquely determined from the inter-residue correlations obtained here due to ambiguities in distinguishing intermolecular and intramolecular contacts for a compact pentameric assembly of this small domain. Instead, we present four structural topologies that are consistent with the measured inter-residue contacts. These data indicate that the cytoplasmic domain of the SARS-CoV-2 E protein has a strong propensity to adopt ß-sheet conformations when the protein is present at high concentrations in lipid bilayers. The equilibrium between the ß-strand conformation and the previously reported α-helical conformation may underlie the multiple functions of E in the host cell and in the virion.


Assuntos
SARS-CoV-2 , Humanos , Bicamadas Lipídicas/química , Modelos Moleculares , Conformação Proteica em Folha beta , SARS-CoV-2/química
19.
Biomolecules ; 12(11)2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36421688

RESUMO

BACKGROUND: SARS-CoV-2 has undergone mutations, yielding clinically relevant variants. HYPOTHESIS: We hypothesized that in SARS-CoV-2, two highly conserved Orf3a and E channels directly related to the virus replication were a target for the detection and inhibition of the viral replication, independent of the variant, using FDA-approved ion channel modulators. METHODS: A combination of a fluorescence potassium ion assay with channel modulators was developed to detect SARS-CoV-2 Orf3a/E channel activity. Two FDA-approved drugs, amantadine (an antiviral) and amitriptyline (an antidepressant), which are ion channel blockers, were tested as to whether they inhibited Orf3a/E channel activity in isolated virus variants and in nasal swab samples from COVID-19 patients. The variants were confirmed by PCR sequencing. RESULTS: In isolated SARS-CoV-2 Alpha, Beta, and Delta variants, the channel activity of Orf3a/E was detected and inhibited by emodin and gliclazide (IC50 = 0.42 mM). In the Delta swab samples, amitriptyline and amantadine inhibited the channel activity of viral proteins, with IC50 values of 0.73 mM and 1.11 mM, respectively. In the Omicron swab samples, amitriptyline inhibited the channel activity, with an IC50 of 0.76 mM. CONCLUSIONS: We developed an efficient method to screen FDA-approved ion channel modulators that could be repurposed to detect and inhibit SARS-CoV-2 viral replication, independent of variants.


Assuntos
Tratamento Farmacológico da COVID-19 , Canais Iônicos , SARS-CoV-2 , Humanos , Amantadina/farmacologia , Amitriptilina/farmacologia , Canais Iônicos/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos
20.
Res Sq ; 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36299429

RESUMO

Viroporins are ion channels encoded within a virus's genome, that facilitate a range of devastating infectious diseases such as COVID-19, HIV, and rotavirus. The non-structural protein 4 (NSP4) from rotavirus includes a viroporin domain that disrupts cellular Ca2+ homeostasis, initiating viral replication, and leading to life-threatening vomiting and diarrhea. Though the structure of soluble segments of NSP4 has been determined, membrane-associated regions, including the viroporin domain, remain elusive when utilizing well-established available experimental methods such as x-ray crystallography. However, two recently published protein folding algorithms, AlphaFold2 and trRosetta, demonstrated a high degree of accuracy, when determining the structure of membrane proteins from their primary amino acid sequences, though their training datasets are known to exclude proteins from viral systems. We tested the ability of these non-viral algorithms to predict functional molecular structures of the full-length NSP4 from SA11 rotavirus. We also compared the accuracy of these structures to predictions of other experimental structures of eukaryotic proteins from the Protein Data Banks (PDB), and show that the algorithms predict models more similar to corresponding experimental data than what we saw for the viroporin structure. Our data suggest that while AlphaFold2 and trRosetta each produced distinct NSP4 models, constructs based on either model showed viroporin activity when expressed in E. coli, consistent with that seen from other historical NSP4 sequences.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA