Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.629
Filtrar
1.
J Environ Sci (China) ; 147: 582-596, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003073

RESUMO

As an emerging environmental contaminant, antibiotic resistance genes (ARGs) in tap water have attracted great attention. Although studies have provided ARG profiles in tap water, research on their abundance levels, composition characteristics, and potential threat is still insufficient. Here, 9 household tap water samples were collected from the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) in China. Additionally, 75 sets of environmental sample data (9 types) were downloaded from the public database. Metagenomics was then performed to explore the differences in the abundance and composition of ARGs. 221 ARG subtypes consisting of 17 types were detected in tap water. Although the ARG abundance in tap water was not significantly different from that found in drinking water plants and reservoirs, their composition varied. In tap water samples, the three most abundant classes of resistance genes were multidrug, fosfomycin and MLS (macrolide-lincosamide-streptogramin) ARGs, and their corresponding subtypes ompR, fosX and macB were also the most abundant ARG subtypes. Regarding the potential mobility, vanS had the highest abundance on plasmids and viruses, but the absence of key genes rendered resistance to vancomycin ineffective. Generally, the majority of ARGs present in tap water were those that have not been assessed and are currently not listed as high-threat level ARG families based on the World Health Organization Guideline. Although the current potential threat to human health posed by ARGs in tap water is limited, with persistent transfer and accumulation, especially in pathogens, the potential danger to human health posed by ARGs should not be ignored.


Assuntos
Água Potável , Resistência Microbiana a Medicamentos , Metagenômica , Resistência Microbiana a Medicamentos/genética , Água Potável/microbiologia , China , Monitoramento Ambiental , Antibacterianos/farmacologia , Microbiologia da Água
2.
J Adv Res ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960277

RESUMO

INTRODUCTION: Gene exchange between viruses and hosts plays an important role in driving virus-host coevolution, enabling adaptation of both viruses and hosts to environmental changes. However, the mechanisms and functional significance of virus-host gene exchanges over long-term scales remain largely unexplored. OBJECTIVE: The present study aimed to gain insights into the role of viruses in virus-host interactions and coevolution by monitoring virome dynamics along a millennium-long land reclamation chronosequence. METHODS: We collected 24 soil samples from 8 stages of a millennium-long land reclamation chronosequence, including non-reclamation, and reclamation periods of 10, 50, 100, 300, 500, 700, and 1000 years. We characterized their metagenomes, and identified DNA viruses within these metagenomes. RESULTS: Our findings reveal a significant shift in viral community composition after 50 years of land reclamation, but soil viral diversity reached a stable phase approximately 300 years after the initial reclamation. Analysis of the virus-host network showed a scale-free degree distribution and a reduction in complexity over time, with generalist viruses emerging as key facilitators of horizontal gene transfer. CONCLUSION: These findings highlight the integral role of viruses, especially generalist types, in mediating gene exchanges between viruses and hosts, thereby influencing the coevolutionary dynamics in soil ecosystems over significant timescales. This study offers novel insights into long-term virus-host interactions, showing how the virome responds to environmental changes, driving shifts in various microbial functions in reclaimed land.

3.
J Appl Microbiol ; 135(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38991986

RESUMO

AIM: The high incidence of virus-related infections and the large diffusion of drug-resistant pathogens stimulate the search and identification of new antiviral agents with a broad spectrum of action. Antivirals can be designed to act on a single target by interfering with a specific step in the viral lifecycle. On the contrary, antiviral peptides (AVPs) are known for acting on a wide range of viruses, with a diversified mechanism of action targeting virus and/or host cell. In the present study, we evaluated the antiviral potential of the peptide Hylin-a1 secreted by the frog Hypsiobas albopunctatus against members of the Herpesviridae family. METHODS AND RESULTS: The inhibitory capacity of the peptide was evaluated in vitro by plaque assays in order to understand the possible mechanism of action. The results were also confirmed by real-time PCR and Western blot evaluating the expression of viral genes. Hylin-a1 acts to block the herpetic infection interfering at the early stages of both herpes simplex virus type 1 (HSV-1) and type 2 infection. Its mechanism is mainly directed on the membrane, probably by damaging the viral envelope. The same effect was also observed against HSV-1 strains resistant to acyclovir. CONCLUSIONS: The data presented in this study, such as the increased activity of the peptide when combined to acyclovir, a weak hemolytic profile, an anti-inflammatory effect, and a tolerable half-life in serum, indicates Hylin-a1 as a novel antiherpetic molecule with promising potential in the clinical setting.


Assuntos
Anti-Inflamatórios , Antivirais , Anuros , Animais , Antivirais/farmacologia , Anti-Inflamatórios/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Proteínas de Anfíbios/farmacologia , Peptídeos/farmacologia , Células Vero , Chlorocebus aethiops
4.
Tumour Virus Res ; 18: 200289, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38977263

RESUMO

DNA viruses are common in the human population and act as aetiological agents of cancer on a large scale globally. They include the human papillomaviruses (HPV), Epstein-Barr virus (EBV), Kaposi sarcoma-associated herpesvirus (KSHV), hepatitis viruses, and human polyomaviruses. Oncogenic viruses employ different mechanisms to induce cancer. Notably, cancer only develops in a minority of individuals who are infected, usually following protracted years of chronic infection. The human papillomaviruses (HPVs) are associated with the highest number of cancer cases, including cervical cancer and other epithelial malignancies. Hepatitis B virus (HBV) and the RNA virus hepatitis C (HCV) are significant contributors to hepatocellular cancer (HCC). Other oncoviruses include Epstein-Barr virus (EBV), Kaposi sarcoma-associated herpes virus (KSHV), human T-cell leukemia virus (HTLV-I), and Merkel cell polyomavirus (MCPyV). The identification of these infectious agents as aetiological agents for cancer has led to reductions in cancer incidence through preventive interventions such as HBV and HPV vaccination, HPV-DNA based cervical cancer screening, antiviral treatments for chronic HBV and HCV infections, and screening of blood for transfusion for HBV and HCV. Successful efforts to identify additional oncogenic viruses in human cancer may provide further understanding of the aetiology and development of cancer, and novel approaches for prevention and treatment. Cervical cancer, caused by HPV, is the leading gynaecological malignancy in LMICs, with high age-standardised incidence and mortality rates, HCC due to HBV is an important cause of cancer deaths, and the burden of other cancer attributable to infections continues to rise globally. Hence, cancers attributable to DNA viruses have become a significant global health challenge. These viruses hence warrant continued attention and interrogation as efforts to understand them further and device further preventive interventions are critical.

5.
Elife ; 122024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39009040

RESUMO

Background: Prinflammatory extracellular chromatin from neutrophil extracellular traps (NETs) and other cellular sources is found in COVID-19 patients and may promote pathology. We determined whether pulmonary administration of the endonuclease dornase alfa reduced systemic inflammation by clearing extracellular chromatin. Methods: Eligible patients were randomized (3:1) to the best available care including dexamethasone (R-BAC) or to BAC with twice-daily nebulized dornase alfa (R-BAC + DA) for seven days or until discharge. A 2:1 ratio of matched contemporary controls (CC-BAC) provided additional comparators. The primary endpoint was the improvement in C-reactive protein (CRP) over time, analyzed using a repeated-measures mixed model, adjusted for baseline factors. Results: We recruited 39 evaluable participants: 30 randomized to dornase alfa (R-BAC +DA), 9 randomized to BAC (R-BAC), and included 60 CC-BAC participants. Dornase alfa was well tolerated and reduced CRP by 33% compared to the combined BAC groups (T-BAC). Least squares (LS) mean post-dexamethasone CRP fell from 101.9 mg/L to 23.23 mg/L in R-BAC +DA participants versus a 99.5 mg/L to 34.82 mg/L reduction in the T-BAC group at 7 days; p=0.01. The anti-inflammatory effect of dornase alfa was further confirmed with subgroup and sensitivity analyses on randomised participants only, mitigating potential biases associated with the use of CC-BAC participants. Dornase alfa increased live discharge rates by 63% (HR 1.63, 95% CI 1.01-2.61, p=0.03), increased lymphocyte counts (LS mean: 1.08 vs 0.87, p=0.02) and reduced circulating cf-DNA and the coagulopathy marker D-dimer (LS mean: 570.78 vs 1656.96 µg/mL, p=0.004). Conclusions: Dornase alfa reduces pathogenic inflammation in COVID-19 pneumonia, demonstrating the benefit of cost-effective therapies that target extracellular chromatin. Funding: LifeArc, Breathing Matters, The Francis Crick Institute (CRUK, Medical Research Council, Wellcome Trust). Clinical trial number: NCT04359654.


Assuntos
Anti-Inflamatórios , Tratamento Farmacológico da COVID-19 , COVID-19 , Desoxirribonuclease I , Humanos , Masculino , Feminino , Desoxirribonuclease I/administração & dosagem , Desoxirribonuclease I/uso terapêutico , Pessoa de Meia-Idade , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/uso terapêutico , Idoso , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/uso terapêutico , Armadilhas Extracelulares/efeitos dos fármacos , SARS-CoV-2 , Proteína C-Reativa/análise , Proteína C-Reativa/metabolismo , Dexametasona/administração & dosagem , Dexametasona/uso terapêutico , Adulto , Nebulizadores e Vaporizadores , Resultado do Tratamento , Administração por Inalação
6.
Huan Jing Ke Xue ; 45(7): 3941-3952, 2024 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-39022942

RESUMO

Dangerous biological agents (DBAs) refer to microorganisms, toxins, and other biological substances that have the potential to cause significant harm to humans, animals, plants, and the environment. They are the primary target of the prevention and response in China's Biosafety Law, and it is of great importance to clarify the characteristics of DBAs in the Beijing suburban rivers for the insurance of the water safety in Beijing. The typical Beijing suburban rivers (Mangniu River, Chaohe River, and Baihe River) were selected, and the occurrence and distribution of DBAs concerning the molecular biology composition as the nucleic acid (antibiotic resistance genes, ARGs), nucleic acid and proteins (viruses), and intact cellular structures (pathogens) were determined based on the metagenomics. The results showed that there was a high abundance of multidrug-resistant ARGs in the water and substrates of the urban river; on average, they made up 74.11% ±6.82% of the total, and the abundance of aminoglycoside and MLS (macrolide-lincosamide-streptomycin)-resistant ARGs was the highest, but the predominant subtypes of ARGs were of low risk and had limited transmission potential. The viruses in the tributary mainly belonged to the phages, most of which were Kyanoviridae and Peduoviridae, with averages of 16.98% ±8.44% and 16.19% ±10.79%, respectively. Eukaryotic viral populations consisted mainly of members from the Mimiviridae and Phycodnaviridae families, with averages of 10.37% ±12.68% and 8.34% ±6.97%, respectively, whereas there were few viruses related to human and animal diseases. The pathogenic bacteria mainly contained Neisseria meningitidis, Brucella suis, Salmonella enterica, and Burkholderia pseudomalle, with averages of 19.17% ±3.63%, 12.76% ±2.88%, 11.22% ±1.95%, and 8.26% ±1.84%, respectively. The composition and abundance of pathogenic bacteria varied significantly among different tributaries and locations, possibly owing to water quality, pollution sources, environmental factors, and human activities. These findings can provide data support for the water safety management and biological risk control of Beijing suburban rivers.


Assuntos
Rios , Pequim , Monitoramento Ambiental , Microbiologia da Água , Vírus/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , China , Resistência Microbiana a Medicamentos/genética , Metagenômica
7.
Plant Dis ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39021152

RESUMO

Citrus chlorotic dwarf disease (CCDD) seriously affects the citrus industry. Citrus chlorotic dwarf-associated virus (CCDaV) is speculated to be the causal agent of CCDD. However, this speculation has not been confirmed by fulfilling Koch's postulates. In this study, an infectious clone was constructed that comprises a 1.6-fold tandem CCDaV genome in the binary vector pBinPLUS and agro-inoculated into Eureka lemon (Citrus limon) seedlings through vacuum infiltration. At 60 days post inoculation, 25% of the Eureka lemon seedlings developed symptoms of crinkling and curling that are the same as those associated with the wild-type virus. Western blotting and graft transmission assays confirmed that the infectious clone systemically infected Eureka lemon seedlings. In addition, CCDaV can establish infection on three more Citrus species and one hybrid, although at different infection rates. These findings support that CCDaV is the primary causal agent of CCDD. The infectious CCDaV clone will allow further studies on the functions of viral proteins and molecular interactions of CCDaV with its hosts.

8.
J Med Virol ; 96(7): e29750, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38953413

RESUMO

The Phylum Cressdnaviricota consists of a large number of circular Rep-encoding single-stranded (CRESS)-DNA viruses. Recently, metagenomic analyzes revealed their ubiquitous distribution in a diverse range of eukaryotes. Data relating to CRESS-DNA viruses in humans remains scarce. Our study investigated the presence and genetic diversity of CRESS-DNA viruses in human vaginal secretions. Vaginal swabs were collected from 28 women between 29 and 43 years old attending a fertility clinic in New York City. An exploratory metagenomic analysis was performed and detection of CRESS-DNA viruses was confirmed through analysis of near full-length sequences of the viral isolates. A phylogenetic tree was based on the REP open reading frame sequences of the CRESS-DNA virus genome. Eleven nearly complete CRESS-DNA viral genomes were identified in 16 (57.1%) women. There were no associations between the presence of these viruses and any demographic or clinical parameters. Phylogenetic analysis indicated that one of the sequences belonged to the genus Gemycircularvirus within the Genomoviridae family, while ten sequences represented previously unclassified species of CRESS-DNA viruses. Novel species of CRESS-DNA viruses are present in the vaginal tract of adult women. Although they be transient commensal agents, the potential clinical implications for their presence at this site cannot be dismissed.


Assuntos
Vírus de DNA , Genoma Viral , Metagenômica , Filogenia , Vagina , Humanos , Feminino , Adulto , Vagina/virologia , Genoma Viral/genética , Vírus de DNA/genética , Vírus de DNA/classificação , Vírus de DNA/isolamento & purificação , DNA Viral/genética , Cidade de Nova Iorque , Análise de Sequência de DNA , Variação Genética
9.
Glob Med Genet ; 11(3): 200-213, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38947761

RESUMO

Avian influenza viruses (AIVs) have the potential to cause severe illness in wild birds, domestic poultry, and humans. The ongoing circulation of highly pathogenic avian influenza viruses (HPAIVs) has presented significant challenges to global poultry industry and public health in recent years. This study aimed to elucidate the circulation of HPAIVs during 2019 to 2023. Specifically, we assess the alarming global spread and continuous evolution of HPAIVs. Moreover, we discuss their transmission and prevention strategies to provide valuable references for future prevention and control measures against AIVs.

10.
Food Environ Virol ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951381

RESUMO

Pathogenic viruses in environmental water are usually present in levels too low for direct detection and thus, a concentration step is often required to increase the analytical sensitivity. The objective of this study was to evaluate an automated filtration device, the Innovaprep Concentrating Pipette Select (CP Select) for the rapid concentration of viruses in saline water samples, while considering duration of process and ease of use. Four bacteriophages (MS2, P22, Phi6, and PhiX174) and three animal viruses (adenovirus, coronavirus OC43, and canine distemper virus) were seeded in artificial seawater, aquarium water, and bay water samples, and processed using the CP Select. The recovery efficiencies of viruses were determined either using a plaque assay or droplet digital PCR (ddPCR). Using plaque assays, the average recovery efficiencies for bacteriophages ranged from 4.84 ± 3.8% to 82.73 ± 27.3%, with highest recovery for P22 phage. The average recovery efficiencies for the CP Select were 39.31 ± 26.6% for adenovirus, 19.04 ± 11.6% for coronavirus OC43, and 19.84 ± 13.6% for canine distemper virus, as determined by ddPCR. Overall, viral genome composition, not the size of the virus, affected the recovery efficiencies for the CP Select. The small sample volume size used for the ultrafilter pipette of the system hinders the use of this method as a primary concentration step for viruses in marine waters. However, the ease of use and rapid processing time of the CP Select are especially beneficial when rapid detection of viruses in highly contaminated water, such as wastewater or sewage-polluted surface water, is needed.

11.
J Gen Virol ; 105(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38959058

RESUMO

The family Turriviridae includes viruses with a dsDNA genome of 16-17 kbp. Virions are spherical with a diameter of approximately 75 nm and comprise a host-derived internal lipid membrane surrounded by a proteinaceous capsid shell. Members of the family Turriviridae infect extremophilic archaea of the genera Sulfolobus and Saccharolobus. Viral infection results in cell lysis for Sulfolobus turreted icosahedral virus 1 infection but other members of the family can be temperate. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Turriviridae, which is available at ictv.global/report/turriviridae.


Assuntos
Vírus de DNA , Genoma Viral , Vírion , Vírus de DNA/classificação , Vírus de DNA/genética , Vírus de DNA/ultraestrutura , Vírion/ultraestrutura , Vírus de Archaea/classificação , Vírus de Archaea/genética , Vírus de Archaea/ultraestrutura , Vírus de Archaea/fisiologia , Sulfolobus/virologia , Sulfolobus/genética , DNA Viral/genética
12.
Emerg Infect Dis ; 30(8)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981189

RESUMO

Nucleocapsid antibody assays can be used to estimate SARS-CoV-2 infection prevalence in regions implementing spike-based COVID-19 vaccines. However, poor sensitivity of nucleocapsid antibody assays in detecting infection after vaccination has been reported. We derived a lower cutoff for identifying previous infections in a large blood donor cohort (N = 142,599) by using the Ortho VITROS Anti-SARS-CoV-2 Total-N Antibody assay, improving sensitivity while maintaining specificity >98%. We validated sensitivity in samples donated after self-reported swab-confirmed infections diagnoses. Sensitivity for first infections in unvaccinated donors was 98.1% (95% CI 98.0-98.2) and for infection after vaccination was 95.6% (95% CI 95.6-95.7) based on the standard cutoff. Regression analysis showed sensitivity was reduced in the Delta compared with Omicron period, in older donors, in asymptomatic infections, <30 days after infection, and for infection after vaccination. The standard Ortho N antibody threshold demonstrated good sensitivity, which was modestly improved with the revised cutoff.

13.
Plant Dis ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985506

RESUMO

Whiteflies (Bemisia tabaci) are a significant pest of cucurbits and vectors many viruses leading to substantial economic losses. Modern diagnostic tools offer the potential for early detection of viruses in the whiteflies before crop production. One such tool is the multiplex reverse transcriptase quantitative PCR (RT-qPCR) probe-based technique, which can detect multiple targets in a single reaction and simultaneously quantify the levels of each target, with a detection limit of 100 copies per target. In this study, a multiplex RT-qPCR-based detection system capable of identifying one DNA virus and three RNA viruses in whiteflies: cucurbit leaf crumple virus (CuLCrV), cucurbit chlorotic yellows virus (CCYV), cucurbit yellow stunting disorder virus (CYSDV), and squash vein yellowing virus (SqVYV) was developed. To ensure the reliability of the assay, an internal gene control as the fifth target to monitor false-negative results was incorporated. This newly developed molecular diagnostic tool possesses several advantages. It can detect up to five desired targets from a single whitefly RNA sample, even at concentrations as low as 1 ng/µl. To evaluate its sensitivity, we conducted experiments using serially diluted cloned plasmids and in vitro transcribed RNA transcripts of the target viruses. We also assessed the specificity of the assay by including aphid-transmitted viruses and other viruses known to infect cucurbits. The diagnostic method successfully detected all five targets simultaneously and allowed for the quantification of up to 100 copies using a mixture of healthy? RNA and in vitro transcribed RNA. Our aim with this study was to develop a highly specific and sensitive one-step multiplex RT-qPCR system for the simultaneous detection of viruses transmitted by whiteflies in cucurbits. This system offers significant advantages for early detection, enabling prompt control measures to mitigate the further spread of viral infections and reduce yield losses. Additionally, we demonstrated the ability to simultaneously detect mixed viruses (CCYV, CYSDV, CuLCrV, and SqVYV) in individual whiteflies and quantify the number of viral copies carried by each whitefly. The multiplex RT-qPCR assay outperforms currently available techniques for detecting many samples at a given time and can be effectively utilized for early monitoring of plant viruses in individual whiteflies and symptomless plants.

14.
World J Virol ; 13(2): 92115, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38984086

RESUMO

BACKGROUND: Birth-dose (Hep-BD) followed by three additional doses (Hep-B3) of hepatitis B virus (HBV) vaccine are key to eliminating HBV by 2030. Unfortunately, Hep-BD and Hep-B3 coverage in our country is poor. AIM: To studied the parent's knowledge and awareness about HBV infection, its prevention, consequences and vaccination. METHODS: Parents of 6 months to 8 years old children were interviewed to assess their knowledge & awareness about hepatitis B, its transmission, prevention, illness caused by this, and vaccination. Eighteen close-ended questions were administered, and responses were recorded as 'yes', 'no', or 'not sure'. HBV knowledge score was calculated based on the sum of correct answers. Each correct response scored one point and incorrect, missing or 'not sure' responses received no points. Categorical data are presented as number (%) and numerical data are expressed as median. Data were compared using Chi2 tests and level of significance was kept as P < 0.05. RESULTS: Parents (58.3% mothers) of 384 children (89.9% age < 5 years; 82% age-appropriately vaccinated) were included. Three hundred and twenty-two (83.9%) children were Hep-B3 vaccinated. 94.3%, 87.5%, and 29.2% parents knew about polio, tetanus, and hepatitis B vaccine. Overall, 41.2%, 15.8%, and 23% parents knew about hepatitis B transmission, consequences of infection, and prevention respectively. Only 7.6% parents knew about three-dose schedule of hepatitis B vaccination. Only 23% parents believed that vaccine could prevent HBV, 15.7% knew that HBV affects liver. Parents of Hep-B3 vaccinated children were significantly more aware about HBV than the parents of unvaccinated children (P < 0.05 for 17/18 questions). CONCLUSION: The knowledge and awareness among the parents about hepatitis B is poor. The Increasing knowledge/awareness about HBV among parents may improve Hep-B3 vaccination coverage.

15.
Emerg Infect Dis ; 30(8)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38986148

RESUMO

Several subtypes and many different genotypes of highly pathogenic avian influenza viruses of subtype H5 clade 2.3.4.4b have repeatedly caused outbreaks in Germany. Four new highly pathogenic avian influenza genotypes emerged in November 2023 after reassortment with low pathogenicity precursors, replacing genotype BB, which had dominated in Europe since 2022.

16.
Emerg Infect Dis ; 30(8)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38986151

RESUMO

An increased risk for human infection with avian influenza A(H5N1) viruses is of concern. We developed an internally controlled, dual-target reverse transcription PCR for influenza A(H5) subtyping. This test could be used to detect influenza A(H5) in clinical samples.

17.
Water Res ; 261: 122024, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38986282

RESUMO

Water quality, critical for human survival and well-being, necessitates rigorous control to mitigate contamination risks, particularly from pathogens amid expanding urbanization. Consequently, the necessity to maintain the microbiological safety of water supplies demands effective surveillance strategies, reliant on the collection of representative samples and precise measurement of contaminants. This review critically examines the advancements of passive sampling techniques for monitoring pathogens in various water systems, including wastewater, freshwater, and seawater. We explore the evolution from conventional materials to innovative adsorbents for pathogen capture and the shift from culture-based to molecular detection methods, underscoring the adaptation of this field to global health challenges. The comparison highlights passive sampling's efficacy over conventional techniques like grab sampling and its potential to overcome existing sampling challenges through the use of innovative materials such as granular activated carbon, thermoplastics, and polymer membranes. By critically evaluating the literature, this work identifies standardization gaps and proposes future research directions to augment passive sampling's efficiency, specificity, and utility in environmental and public health surveillance.

18.
Transfus Apher Sci ; 63(4): 103965, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38986352

RESUMO

Blood transfusion is a critical life-saving medical intervention, but it carries the risk of transfusion-transmitted infections (TTIs) that can lead to serious consequences. TTIs include viral, bacterial, parasitic, and prion infections, transmitted through asymptomatic donor blood, contamination of stored blood products, or transfusion-related immunosuppression. Recognized global agents posing challenges to blood safety include human immunodeficiency virus (HIV), hepatitis C virus (HCV), hepatitis B virus (HBV), Syphilis, etc. Emerging pathogens like SARS-CoV-2, hepatitis E, and others present additional risks. The residual risk of TTIs, representing the likelihood of infected donations passing screening tests, varies globally. High-income countries generally show lower prevalence rates than low-income countries. In Egypt, the estimated prevalence rates for HIV, HBV, HCV, and syphilis markers among the donors are 0.23 %, 0.76 %, 2.33 %, and 0.24 %, respectively. In Egypt, specific residual risk estimates are scarce, but prevalence rates for key infections highlight existing challenges. The World Health Organization promotes a global blood safety strategy, advocating for national blood systems, voluntary non-remunerated donors, and quality-assured testing. Despite these measures, the establishment of a haemovigilance system which is critical for monitoring and preventing adverse events, including TTIs, is reported as lacking in Egypt. This highlights the importance of comprehensive surveillance and safety measures in the blood donation process to ensure universal access to safe blood. Primary health care can play a pivotal role in preventing TTIs.

19.
Microbiol Spectr ; : e0067524, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990026

RESUMO

Bats are natural hosts of multiple viruses, many of which have clear zoonotic potential. The search for emerging viruses has been aided by the implementation of metagenomic tools, which have also enabled the detection of unprecedented viral diversity. Currently, this search is mainly focused on RNA viruses, which are largely over-represented in databases. To compensate for this research bias, we analyzed fecal samples from 189 Spanish bats belonging to 22 different species using viral metagenomics. This allowed us to identify 52 complete or near-complete viral genomes belonging to the families Adenoviridae, Circoviridae, Genomoviridae, Papillomaviridae, Parvoviridae, Polyomaviridae and Smacoviridae. Of these, 30 could constitute new species, doubling the number of viruses currently described in Europe. These findings open the door to a more thorough analysis of bat DNA viruses and their zoonotic potential. IMPORTANCE: Metagenomics has become a fundamental tool to characterize the global virosphere, allowing us not only to understand the existing viral diversity and its ecological implications but also to identify new and emerging viruses. RNA viruses have a higher zoonotic potential, but this risk is also present for some DNA virus families. In our study, we analyzed the DNA fraction of fecal samples from 22 Spanish bat species, identifying 52 complete or near-complete genomes of different viral families with zoonotic potential. This doubles the number of genomes currently described in Europe. Metagenomic data often produce partial genomes that can be difficult to analyze. Our work, however, has characterized a large number of complete genomes, thus facilitating their taxonomic classification and enabling different analyses to be carried out to evaluate their zoonotic potential. For example, recombination studies are relevant since this phenomenon could play a major role in cross-species transmission.

20.
Vopr Virusol ; 69(3): 203-218, 2024 Jul 05.
Artigo em Russo | MEDLINE | ID: mdl-38996370

RESUMO

The basis for criteria of the taxonomic classification of DNA and RNA viruses based on data of the genomic sequencing are viewed in this review. The genomic sequences of viruses, which have genome represented by double-stranded DNA (orthopoxviruses as example), positive-sense single-stranded RNA (alphaviruses and flaviviruses as example), non-segmented negative-sense single-stranded RNA (filoviruses as example), segmented negative-sense single-stranded RNA (arenaviruses and phleboviruses as example) are analyzed. The levels of genetic variability that determine the assignment of compared viruses to taxa of various orders are established for each group of viruses.


Assuntos
Vírus de DNA , Genoma Viral , Vírus de RNA , Vírus de RNA/genética , Vírus de RNA/classificação , Vírus de DNA/genética , Vírus de DNA/classificação , Filogenia , Humanos , Animais , Genômica/métodos , RNA Viral/genética , Variação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...