Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(14): 17607-17616, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557000

RESUMO

Perovskite solar cells (PSCs) offer impressive performance and flexibility, thanks to their simple, low-temperature deposition methods. Their band gap tunability allows for a wide range of applications, transitioning from opaque to transparent devices. This study introduces the first flexible, bifacial PSCs using the FAPbBr3 perovskite. We investigated the impact of optimizing electron and hole transport layers on the cells' bifaciality, transparency, and stability. PSCs achieved a maximum power conversion efficiency (PCE) of 6.8 and 18.7% under 1 sun and indoor light conditions (1200 lx), respectively, showing up to 98% bifaciality factor and an average visible transmittance (AVT) of 55%. Additionally, a P1-P2-P3 laser ablation scheme has been developed on the flexible poly(ethylene terephthalate) (PET) substrate for perovskite solar modules showing a PCE of 4.8% and high geometrical fill factor (97.8%). These findings highlight the potential of flexible, bifacial PSCs for diverse applications such as building-integrated photovoltaics (BIPV), agrivoltaics, automotive technology, wearable sensors, and Internet of things (IoT).

2.
Small ; 18(31): e2202144, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35802913

RESUMO

Perovskite materials offer a great potential in the application of semitransparent solar cells, owing to the tunable bandgap, ease of preparation and excellent photovoltaic property. A majority of works exhibit high average visible-light transmittance (AVT) for semitransparent perovskite solar cells (ST-PSCs) through decreasing perovskite thickness, leading to sacrificing the power conversion efficiency (PCE) of the device. Herein, a wide-bandgap (WBG) perovskite of Cs0.2 FA0.8 Pb(I0.6 Br0.4 )3 is applied as absorber in ST-PSCs, which is a tremendous progress to balance both large PCE and high AVT. Moreover, a strategy of simultaneous interfacial modification and defect passivation is provided to enhance the performance of WBG ST-PSCs. Consequently, an inverted planar structure WBG perovskite solar cell (PSC) achieves 15.06% of PCE with excellent stability by restraining the interfacial energy loss and suppressing the nonradiative recombination. Furthermore, the ST-PSC obtains high PCE of 14.40% with an AVT of 38% by means of optimizing the transparent electrode. This work provides an efficient and simple method to improve the performance and AVT of ST-PSCs for the application in building-integrated photovoltaics.


Assuntos
Compostos de Cálcio , Óxidos , Compostos de Cálcio/química , Eletrodos , Óxidos/química , Titânio/química
3.
Adv Mater ; 34(31): e2203796, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35703912

RESUMO

The charge generation-recombination dynamics in three narrow-bandgap near-IR absorbing nonfullerene (NFA) based organic photovoltaic (OPV) systems with varied donor concentrations of 40%, 30%, and 20% are investigated. The dilution of the polymer donor with visible-range absorption leads to highly transparent active layers with blend average visible transmittance (AVT) values of 64%, 70%, and 77%, respectively. Opaque devices in the optimized highly reproducible device configuration comprising these transparent active layers lead to photoconversion efficiencies (PCEs) of 7.0%, 6.5%, and 4.1%. The investigation of these structures yields quantitative insights into changes in the charge generation, non-geminate charge recombination, and extraction dynamics upon dilution of the donor. Lastly, this study gives an outlook for employing the highly transparent active layers in semitransparent organic photovoltaics (ST-OPVs).

4.
Materials (Basel) ; 15(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35744188

RESUMO

The fabrication and applications of VO2 film continue to be of considerable interest due to their good thermochromic performance for smart windows. However, low visible transmittance (Tlum) and solar modulation efficiency (∆Tsol) impede the application of VO2 film, and they are difficult to improve simultaneously. Here, a facile zinc solution process was employed to control the surface structure of dense VO2 film and the processed VO2 film showed enhanced visible transmittance and solar modulation efficiency, which were increased by 7.5% and 9.5%, respectively, compared with unprocessed VO2 film. This process facilitated the growth of layered basic zinc acetate (LBZA) nanosheets to form mesh morphology on the surface of VO2 film, where LBZA nanosheets enhance the visible transmittance as an anti-reflection film. The mesh morphology also strengthened the solar modulation efficiency with small caves between nanosheets by multiplying the times of reflection. By increasing the zinc concentration from 0.05 mol/L to 0.20 mol/L, there were more LBZA nanosheets on the surface of the VO2 film, leading to an increase in the solar/near-infrared modulation efficiency. Therefore, this work revealed the relationship between the solution process, surface structure, and optical properties, and thus can provide a new method to prepare VO2 composite film with desirable performance for applications in smart windows.

5.
Macromol Rapid Commun ; 43(22): e2200199, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35380177

RESUMO

Although optical engineering strategy has been utilized to optimize average visible transmittance (AVT) of semi-transparent organic solar cells (ST-OSCs), judicious selection of active layer materials should be more direct and basic. Herein, an efficient ternary active layer is constructed with a wide bandgap (3.0 eV) fluorescent polymer FC-S1 as host donor, a middle bandgap polymer PM6 as guest donor, and a narrow bandgap non-fullerene Y6-BO as acceptor. Using FC-S1 as the host donor can allow more visible photons to penetrate the device. In the absence of optical engineering, the ternary ST-OSC with FC-S1:PM6:Y6-BO = 1:0.3:1.5 active layer of 30 nm thickness displays a much higher AVT of 49.28% than that of 32.34% for a PM6:Y6-BO = 1.3:1.5 based binary ST-OSC. The ternary ST-OSC provides a good power conversion efficiency of 6.01%, only slightly lower than 7.15% for the binary ST-OSC. The ternary ST-OSC also demonstrates a color rendering index (CRI) of 87 and a correlated color temperature (CCT) of 6916 K, all better than CRI of 80 and CCT of 9022 K for the binary ST-OSC. Moreover, the backbone of FC-S1 is mainly composed by fluorene and carbazole, two easily-accessible aromatic rings, which would meet low-cost concern of ST-OSCs.


Assuntos
Corantes , Polímeros , Temperatura , Engenharia
6.
ACS Appl Mater Interfaces ; 13(31): 37223-37230, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34319690

RESUMO

Solvent engineering and antisolvent methods have been used extensively to achieve high-quality, homogeneous, and crystalline perovskite thin films. Usually, highly concentrated (>1.1 M) precursor solutions are used to achieve the maximum power conversion efficiency (PCE), and most fabrication studies focus on iodide-based metal halide perovskites (MHPs). However, high concentrations of precursors are not suitable for semitransparent (ST) MHP solar cells (STPSCs), which require thinner films to achieve a high average visible transmittance (AVT). The deposition of high-quality perovskites with variable concentrations in a one-step method is challenging due to the complexity of the antisolvent crystallization process. Here, we have developed an in situ technique based on photoluminescence (PL) measurements to identify the optimum delay time for antisolvent crystallization in formamidinium lead bromide (FAPbBr3). By monitoring the in situ PL, the nucleation, crystal growth, and early perovskite formation phases are easily identified for a range of concentrations. Subsequently, we fabricated opaque and ST solar cells with optically clear, ST perovskite films formed from precursors with varying concentrations. These all-solution-processed STPSCs achieved AVTs of up to 35.6, 42.5, and 49.2%, with the corresponding PCEs of 5.71, 3.25, and 1.86% in p-i-n type, FAPbBr3 perovskite solar cells with transparent Ag nanowire electrodes. These devices show good stability over several weeks and an impressive Voc as high as 1.24 V for STPSCs and 1.38 V for opaque cells produced with a thick Ag electrode. This work demonstrates the potential use of in situ spectroscopy to tailor the film growth of halide perovskites with varying concentrations and the feasibility of using wide-band-gap perovskites for ST solar cells with exceptional clarity and higher Voc.

7.
Sci Bull (Beijing) ; 65(2): 131-137, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36659076

RESUMO

A series of opaque and semitransparent polymer solar cells (PSCs) were fabricated with PM6:Y6 as active layers, and 100 nm Al or 1 nm Au/(20, 15, 10 nm) Ag layer as electrode, respectively. The power conversion efficiency (PCE) of opaque PSCs arrives to 15.83% based on the optimized active layer with a thickness of 100 nm, resulting from the well-balanced photon harvesting and charge collection. Meanwhile, the 100 nm PM6:Y6 blend film exhibits a 50.5% average visible transmittance (AVT), which has great potential in preparing efficient semitransparent PSCs. The semitransparent electrodes were fabricated with 1 nm Au and different thick Ag layers, exhibiting a relatively high transmittance in visible light range and relatively low transmittance in near infrared range. The PCE and AVT of the semitransparent PSCs can be adjusted from 14.20% to 12.37% and from 8.9% to 18.6% along with Ag layer thickness decreasing from 20 to 10 nm, respectively, which are impressive values among the reported semitransparent PSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA