Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Hyperthermia ; 40(1): 2244208, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37592457

RESUMO

PURPOSE: The heating characteristics of water-filtered infrared-A (wIRA) radiation were investigated in vivo in two body regions of healthy humans according to the quality standards of the European Society for Hyperthermic Oncology (ESHO) using an irradiance (infrared-A) of 146 W m-2 as recommended for clinical superficial hyperthermia (HT). METHODS: wIRA was applied to the abdominal wall and lumbar region for 60 min. Skin surface temperature was limited to ≤43 °C. Tissue temperatures were measured invasively at 1-min intervals before, during and after wIRA exposure using five fiber-optical probes at depths of 1-20 mm. RESULTS: Significant differences between body regions occurred during the heating-up phase at depths of 5-15 mm. Thermal steady states were reached at depths ≤5 mm after exposures of 5-6 min, and ≤20 mm after 20 min. On average, the minimum requirements of ESHO were exceeded in both regions by the following factors: ≈3 for the heating rate, ≈2 for the specific absorption rate and ≈1.4 for the temperature rise. Tissue depths with T90 ≥ 40 °C and T50 > 41 °C were ≤10 mm, and ≤20 mm for Tmax ≤ 43 °C. The temperature decay time after termination of irradiation was 1-5 min. Corresponding temperatures were ≤42.2 °C for CEM43 and ≤41.8 °C for CEM43T90, i.e., they are inadequate for direct thermal cell killing. CONCLUSIONS: Thermography-controlled wIRA-HT complies with the ESHO criteria for superficial HT as a radiosensitizer and avoids the risk of thermal skin toxicity.


Assuntos
Parede Abdominal , Hipertermia Induzida , Humanos , Calefação , Hipertermia
2.
Adv Exp Med Biol ; 1395: 255-261, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36527646

RESUMO

Clinical trials have shown that mild hyperthermia (HT) serves as an adjunct to cancer treatments such as chemo- and radiotherapy. Recently, a high efficacy of mild HT immediately followed by hypofractionated radiotherapy (RT) in treatment of recurrent breast cancer has been documented if temperatures of 39-43 °C are achieved for 40-60 min. In the present study, temperature and oxygenation profiles were measured in superficial tissues of healthy volunteers exposed to water-filtered infrared-A- (wIRA)- irradiation, to verify that adequate thermal doses together with the improved tumor oxygenation necessary for radiosensitisation are obtained. Experiments were performed using a wIRA-system equipped with two wIRA-radiators, each with a thermography camera for real-time monitoring of the skin surface temperature. Temperatures within the abdominal wall were measured with fibre optic sensors at defined tissue depths (subepidermal, and 1-20 mm inside the tissue). The corresponding tissue pO2 values were assessed with fluorometric microsensors. In selected situations, hyperspectral tissue imaging was used to visualise the oxygenation status of normal skin and superficial tumours in patients. Pre-treatment skin surface temperature was 34.6 °C. Upon wIRA exposure, average skin surface temperatures reached 41.6 °C within 5-12 min. Maximum tissue temperatures of 41.8 °C were found at a tissue depth of 1 mm, with a steady decline in deeper tissue layers (41.6 °C @ 5 mm, 40.8 °C @ 10 mm, 40.6 °C @ 15 mm, and 40.1 °C @ 20 mm). Effective HT levels ≥39 °C were established in tissue depths up to 25 mm. Tissue heating was accompanied by a significant increase in tissue pO2 values [e.g., at a tissue depth of 13 mm mean pO2 rose from 46 mmHg to 81 mmHg (@ T = 40.5 °C). In the post-heating phase (+ 5 min), pO2 was 79 mmHg (@ T = 38 °C) and 15 min post-heat pO2 was 72 mmHg (@ T = 36.8 °C)]. pO2 values remained elevated for 30-60 min post-heat. Non-invasive monitoring of normal skin and of recurrent breast cancers confirmed the improved O2 status by wIRA-HT. In conclusion, wIRA-irradiation enables effective tissue heating (T = 39-43 °C) associated with distinct increases in blood flow and pO2. These adjustments unequivocally meet the requirement for effective radiosensitisation.


Assuntos
Neoplasias da Mama , Hipertermia Induzida , Humanos , Feminino , Hipertermia Induzida/métodos , Recidiva Local de Neoplasia , Pele , Tela Subcutânea , Temperatura Cutânea , Neoplasias da Mama/radioterapia
3.
Front Microbiol ; 10: 1053, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31134043

RESUMO

Water-filtered infrared-A-radiation (wIRA) is a promising therapeutic method, which is particularly used as supportive treatment for wound closure, and wound infection treatment and prevention. High penetration properties of the heat field and beneficial effects on wound healing processes predispose wIRA irradiation to be a non-invasive treatment method for bacterial infections in superficial tissues. Since Chlamydia trachomatis still represents the leading cause of infectious blindness in third world countries (WHO http://www.who.int/topics/trachoma/en/) and wIRA displays beneficial effects on chlamydial infections in vitro without inducing cellular damage in ex vivo eye models and also shows beneficial effects on wound healing, this irradiation technique might represent a promising future treatment for trachoma patients. To this end, further studies investigating shorter irradiation times or irradiation of Chlamydia in chronic infections [the chlamydial stress response (Bavoil, 2014)] as well as safety studies in animal models should clearly be performed.

4.
Front Microbiol ; 9: 2757, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524392

RESUMO

Chlamydia trachomatis is the major cause of infectious blindness and represents the most common bacterial sexually transmitted infection worldwide. Considering the potential side effects of antibiotic therapy and increasing threat of antibiotic resistance, alternative therapeutic strategies are needed. Previous studies showed that water filtered infrared A alone (wIRA) or in combination with visible light (wIRA/VIS) reduced C. trachomatis infectivity. Furthermore, wIRA/VIS irradiation led to secretion of pro-inflammatory cytokines similar to that observed upon C. trachomatis infection. We confirmed the results of previous studies, namely that cytokine secretion (IL-6, IL-8, and RANTES/CCL5) upon wIRA/VIS treatment, and the subsequent reduction of chlamydial infectivity, are independent of the addition of cycloheximide, a host protein synthesis inhibitor. Reproducible cytokine release upon irradiation indicated that cytokines might be involved in the anti-chlamydial mechanism of wIRA/VIS. This hypothesis was tested by inhibiting IL-6, IL-8, and RANTES secretion in C. trachomatis or mock-infected cells by gene silencing or pharmaceutical inhibition. Celastrol, a substance derived from Trypterygium wilfordii, used in traditional Chinese medicine and known for anti-cancer and anti-inflammatory effects, was used for IL-6 and IL-8 inhibition, while Maraviroc, a competitive CCR5 antagonist and anti-HIV drug, served as a RANTES/CCL5 inhibitor. HeLa cell cytotoxicity and impact on chlamydial morphology, size and inclusion number was evaluated upon increasing inhibitor concentration, and concentrations of 0.1 and 1 µM Celastrol and 10 and 20 µM Maraviroc were subsequently selected for irradiation experiments. Celastrol at any concentration reduced chlamydial infectivity, an effect only observed for 20 µM Maraviroc. Triple dose irradiation (24, 36, 40 hpi) significantly reduced chlamydial infectivity regardless of IL-6, IL-8, or RANTES/CCL5 gene silencing, Celastrol or Maraviroc treatment. Neither gene silencing nor pharmaceutical cytokine inhibition provoked the chlamydial stress response. The anti-chlamydial effect of wIRA/VIS is independent of cytokine inhibition under all conditions evaluated. Thus, factors other than host cell cytokines must be involved in the working mechanism of wIRA/VIS. This study gives a first insight into the working mechanism of wIRA/VIS in relation to an integral component of the host immune system and supports the potential of wIRA/VIS as a promising new tool for treatment in trachoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA