Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38932014

RESUMO

Globally, the demand for single-use plastics has increased due to the rising demand for food delivery and household goods. This has led to environmental challenges caused by indiscriminate dumping and disposal. To address this issue, non-degradable plastics are being replaced with biodegradable alternatives. Polylactic acid (PLA) is a type of biodegradable plastic that has excellent mechanical properties. However, its applications are limited due to its low crystallinity and brittleness. Studies have been conducted to combat these limitations using carbon or inorganic nucleating agents. In this study, waste cement and PLA were mixed to investigate the effect of the hybrid inorganic nucleating agent on the crystallinity and mechanical properties of PLA. Waste cement accelerated the lamellar growth of PLA and improved its crystallinity. The results indicate that the flexural and impact strengths increased by approximately 3.63% and 76.18%, respectively.

2.
Artigo em Inglês | MEDLINE | ID: mdl-34444633

RESUMO

Waste cement is a construction and demolition waste produced from old buildings' demolition and transformation. In recent years, the recycling of recycled concrete is limited to the use of recycled aggregate, and the research on the utilization of waste cement in waste concrete is scarce. This study explored the effective application of waste cement for the adsorption of cadmium (Cd2+) from an aqueous solution and the bioavailability and immobility of Cd2+ in soil. Results showed that the maximum adsorption capacities of ordinary Portland cement(OPC) paste, fly ash cement (FAC) paste, and zeolite cement (ZEC) paste for Cd2+ were calculated to be 10.97, 9.47, 4.63 mg·g-1, respectively. The possible mechanisms for Cd2+ adsorption in the solution by waste cement mainly involve precipitation by forming insoluble Cd2+ compounds in alkaline conditions, and ion exchange for Cd2+ with the exchangeable calcium ions in waste cement, which were confirmed by XRD and SEM. Results from diethylene triaminepentaacetic acid (DTPA) extraction and toxicity characteristic leaching procedure (TCLP) implied reduction of the Cd2+ mobility. DTPA-extractable Cd2+ decreased by 52, 48 and 46%, respectively, by adding 1% OPC, FAC and ZEC. TCLP-extractable Cd2+ decreased by 89.0, 80.3, and 56.0% after 1% OPC, FAC, and ZEC treatment, respectively. BCR analyses indicate that OPC, FAC, and ZEC applications increased the percentage of Cd2+ in residual fraction and induced a high reduction in the acid-soluble Cd2+ proportion. The leaching column test further confirmed a reduction in Cd2+ mobility by waste cement treated under continuous leaching of simulated acid rain (SAR). Therefore, waste cement exhibited a significant enhancement in the immobilization of Cd2+ under simulated acid rain (SAR) leaching. In summary, the application of alkaline waste cement could substantially remove Cd2+ from wastewater and reduce Cd2+ mobility and bioavailability in contaminated soil.


Assuntos
Cádmio , Poluentes do Solo , Disponibilidade Biológica , Cádmio/análise , Cinza de Carvão , Solo , Poluentes do Solo/análise
3.
Waste Manag ; 34(10): 1829-35, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24472713

RESUMO

Solid adsorbent materials, prepared from waste cement powder and concrete sludge were assessed for removal of arsenic in the form of arsenic (As(V)) from water. All the materials exhibited arsenic removal capacity when added to distilled water containing 10-700 mg/L arsenic. The arsenic removal isotherms were expressed by the Langmuir type equations, and the highest removal capacity was observed for the adsorbent prepared from concrete sludge with heat treatment at 105°C, the maximum removal capacity being 175 mg-As(V)/g. Based on changes in arsenic and calcium ion concentrations, and solution pH, the removal mechanism for arsenic was considered to involve the precipitation of calcium arsenate, Ca3(AsO4)2. The enhanced removal of arsenic for the adsorbent prepared from concrete sludge with heat treatment was thought to reflect ion exchange by ettringite. The prepared adsorbents, derived from waste cement and concrete using simple procedures, may offer a cost effective approach for arsenic removal and clean-up of contaminated waters, especially in developing countries.


Assuntos
Arseniatos/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Arsênio/química , Compostos de Cálcio/química , Resíduos Industriais/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA