Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.774
Filtrar
1.
Environ Pollut ; 351: 124115, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38718963

RESUMO

Composting has emerged as a suitable method to convert or transform organic waste including manure, green waste, and food waste into valuable products with several advantages, such as high efficiency, cost feasibility, and being environmentally friendly. However, volatile organic compounds (VOCs), mainly malodorous gases, are the major concern and challenges to overcome in facilitating composting. Ammonia (NH3) and volatile sulfur compounds (VSCs), including hydrogen sulfide (H2S), and methyl mercaptan (CH4S), primarily contributed to the malodorous gases emission during the entire composting process due to their low olfactory threshold. These compounds are mainly emitted at the thermophilic phase, accounting for over 70% of total gas emissions during the whole process, whereas methane (CH4) and nitrous oxide (N2O) are commonly detected during the mesophilic and cooling phases. Therefore, the human health risk assessment of malodorous gases using various indexes such as ECi (maximum exposure concentration for an individual volatile compound EC), HR (non-carcinogenic risk), and CR (carcinogenic risk) has been evaluated and discussed. Also, several strategies such as maintaining optimal operating conditions, and adding bulking agents and additives (e.g., biochar and zeolite) to reduce malodorous emissions have been pointed out and highlighted. Biochar has specific adsorption properties such as high surface area and high porosity and contains various functional groups that can adsorb up to 60%-70% of malodorous gases emitted from composting. Notably, biofiltration emerged as a resilient and cost-effective technique, achieving up to 90% reduction in malodorous gases at the end-of-pipe. This study offers a comprehensive insight into the characterization of malodorous emissions during composting. Additionally, it emphasizes the need to address these issues on a larger scale and provides a promising outlook for future research.

2.
Bioresour Technol ; 402: 130819, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38723728

RESUMO

This work investigated the effectiveness of free nitrous acid (FNA) in enhancing organic waste solubilization to improve biogas production in anaerobic digestion (AD). The results indicated that FNA pretreatment can enhance soluble organic content and control H2S odor in tested organic wastes, including food waste, sewage sludge, and their combination. However, a significant decrease (>50 %) in FNA concentration was found in the reactors, possibly due to denitrifier-driven NO2- consumption. Biochemical methane potential (BMP) tests showed a 25 ± 8 % enhancement in CH4 production in the reactors fed with mixed substrate pretreated with 2.9 mg FNA-N/L. However, the presence of NO2- (325.6-2368.0 mg N/L) in some BMP reactors, due to carryover from FNA pretreatment, adversely affected CH4 production (>55 %) and prolonged lag time (>4.2 times). These findings are valuable for researchers and practitioners in waste management, offering insights for implementing FNA pretreatment to enhance the biodegradability of organic wastes in AD.

3.
Biotechnol Adv ; : 108372, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38714276

RESUMO

Anaerobic digestion (AD) is an effective and applicable technology for treating organic wastes to recover bioenergy, but it is limited by various drawbacks, such as long start-up time for establishing a stable process, the toxicity of accumulated volatile fatty acids and ammonia nitrogen to methanogens resulting in extremely low biogas productivities, and a large amount of impurities in biogas for upgrading thereafter with high cost. Microbial electrolysis cell (MEC) is a device developed for electrosynthesis from organic wastes by electroactive microorganisms, but MEC alone is not practical for production at large scales. When AD is integrated with MEC, not only can biogas production be enhanced substantially, but also upgrading of the biogas product performed in situ. In this critical review, the state-of-the-art progress in developing AD-MEC systems is commented, and fundamentals underlying methanogenesis and bioelectrochemical reactions, technological innovations with electrode materials and configurations, designs and applications of AD-MEC systems, and strategies for their enhancement, such as driving the MEC device by electricity that is generated by burning the biogas to improve their energy efficiencies, are specifically addressed. Moreover, perspectives and challenges for the scale up of AD-MEC systems are highlighted for in-depth studies in the future to further improve their performance.

4.
Chempluschem ; : e202400190, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698501

RESUMO

Chemical recycling and upcycling offer promising approaches for the management of plastic wastes. Hydrodeoxygenation (HDO) is one of the appealing ways for conversion of oxygen-containing plastic wastes, including PET, PBT, PC, PPO, and PEEK, into cyclic alkanes and aromatics in high yields under mild reaction conditions. The challenge lies in achieving C-O activation while preserving C-C bonds. In this review, we highlight the recent advancements in catalytic strategies and catalysts for the conversion of these oxygen-containing plastic wastes into cycloalkanes and aromatics. The reaction systems, including multi-step routes, direct HDO and transfer HDO methods, are exemplified. The design and performance of HDO catalysts are systematically summarized and compared. We comprehensively discuss the functions of the catalysts' components, reaction pathway and mechanism to gain insights into the HDO process for efficient valorization of oxygen-containing plastic wastes. Finally, we provide perspectives for this field, with specific emphasis on the non-noble metal catalyst design, selectivity control, reaction network and mechanism studies, mixed plastic wastes management and product functionalization. We anticipate that this review will inspire innovations on the catalytic process development and rational catalyst design for the HDO of oxygen-containing aromatic plastics to establish a low-emission circular economy.

5.
Heliyon ; 10(8): e29618, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38699720

RESUMO

This study focused on characterizing sewage sludge, food waste, and livestock manure, representative of continuously generated organic wastes, along with their anaerobic digestion residues. Microwave assisted pyrolysis was employed to investigate the relationship between the properties of the raw organic wastes and the resulting pyrolysis products, utilizing the R-program for analysis. Evaluation of the pyrolysis products of these six organic wastes revealed that char yield was primarily influenced by ash and fixed carbon contents, with higher yields observed in residues from anaerobic digestion compared to the original organic waste. Liquid and gaseous product quantities were found to increase with volatile content, while high-fat content within the volatile fraction notably enhanced liquid product yields, impacting syngas production. Analysis of syngas composition indicated a negative correlation between high nitrogen content in the feedstock and H2 generation. Furthermore, examining the correlation between chemical properties of organic waste and pyrolysis products revealed a proportional increase in protein components with nitrogen content, suggesting potential improvements in pyrolysis efficiency through raw material pretreatment enhancements by the R program.

6.
Phytochem Anal ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693046

RESUMO

INTRODUCTION: Pectin-oligosaccharides (POS) serve diverse purposes as a food ingredient, antimicrobial and biostimulant in plants, and their functionality is linked to the degree of esterification. Grape and broccoli wastes emerge as environmentally friendly alternatives to obtaining pectin, serving as a sustainable source to producing POS. For example, microwaves have proven to be an effective and sustainable method to extract polysaccharides from plant matrices. OBJECTIVE: This work aims to use grape and broccoli wastes as alternative sources for obtaining pectin by microwave-assisted extraction and biotransformation into POS, which possess biological properties. MATERIAL AND METHODS: The extraction conditions were identified at a power of 400 W, 300 s for the extraction of pectin from grape pomace and broccoli waste. Biotransformation of pectins into POS, using commercial enzyme preparations (Viscozyme L and Pectinase). Characterisation was carried out by Fourier-transform infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy. RESULTS: Physicochemical analysis indicated grape pomace and broccoli waste pectins had galacturonic acid content of 63.81 ± 1.67 and 40.83 ± 2.85 mg 100 mg-1, low degree of esterification of 34.89% and 16.22%, respectively. Biotransformation of pectins into POS resulted in a 20% hydrolysis rate. The main enzymatic activity was polygalacturonase for the degradation of the main structure of the pectin. CONCLUSION: Production of POS from agro-industrial wastes by emerging technologies, such as the combined use of microwave-assisted extraction and enzymatic processes, represents an alternative method for the generation of bioactive compounds with distinctive properties suitable for different applications of interest.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38696017

RESUMO

Biodiesel serves as a viable alternative to traditional diesel due to its non-toxicity, biodegradability, and lower environmental footprint. Among the diverse edible and inedible feedstocks, waste frying oil emerges as a promising and affordable feedstock for biodiesel production. Commonly waste frying oils include those derived from palm, corn, sunflower, soybean, rapeseed, and canola. The primary challenge related to biodiesel production technologies is the high production cost, which poses a significant barrier to its widespread adoption. Thus, refining the production techniques is essential to enhance yield, reduce capital expenditure, and curtail raw material expenses. An examination of the research focusing on feedstock availability, production, hurdles, operational expenditures, and future potential is pivotal for identifying the most economically and technically viable solutions. This paper critically reviews such research by exploring feedstock availability, production techniques, challenges, and costs intrinsic to biodiesel synthesis. It also underscores the economic feasibility of biodiesel production, shedding light on the pivotal factors that influence profitability, especially when leveraging waste frying oils. Through an in-depth understanding of these considerations, optimal production and feedstock choices for biodiesel production can be identified. Addressing cost and production bottlenecks could potentially enhance the economic viability of waste frying oil-based biodiesel, thus fostering both environmental sustainability and more extensive adoption of biodiesel as an environmental-friendly fuel in the future.

8.
J Hazard Mater ; 472: 134493, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38696960

RESUMO

Environmental pollution caused by plastic waste has become global problem that needs to be considered urgently. In the pursuit of a circular plastic economy, biodegradation provides an attractive strategy for managing plastic wastes, whereas effective plastic-degrading microbes and enzymes are required. In this study, we report that Blastobotrys sp. G-9 isolated from discarded plastic in landfills is capable of depolymerizing polyurethanes (PU) and poly (butylene adipate-co-terephthalate) (PBAT). Strain G-9 degrades up to 60% of PU foam after 21 days of incubation at 28 â„ƒ by breaking down carbonyl groups via secretory hydrolase as confirmed by structural characterization of plastics and degradation products identification. Within the supernatant of strain G-9, we identify a novel cutinase BaCut1, belonging to the esterase family, that can reproduce the same effect. BaCut1 demonstrates efficient degradation toward commercial polyester plastics PU foam (0.5 mg enzyme/25 mg plastic) and agricultural film PBAT (0.5 mg enzyme/10 mg plastic) with 50% and 18% weight loss at 37 â„ƒ for 48 h, respectively. BaCut1 hydrolyzes PU into adipic acid as a major end-product with 42.9% recovery via ester bond cleavage, and visible biodegradation is also identified from PBAT, which is a beneficial feature for future recycling economy. Molecular docking, along with products distribution, elucidates a special substrate-binding modes of BaCut1 with plastic substrate analogue. BaCut1-mediated polyester plastic degradation offers an alternative approach for managing PU plastic wastes through possible bio-recycling.

9.
Chemosphere ; : 142313, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38735499

RESUMO

Electrospinning is a promising technique for the beneficial use and recycling of plastic waste polymers using simple methodologies. In this study, plastic bottles and Styrofoam wastes have been used to develop polyethylene terephthalate (PET) and polystyrene (PS) nanofibers using electrospinning technique separately without any further purification. The effect of the concentration onto the nanofiber's morphology was studied. The fabricated nanofibers were characterized using Field Emission Scanning Electron Microscope (FE-SEM), Fourier Transformed Infrared Spectroscopy (ATR-FTIR), N2 adsorption/desorption analysis, and water contact angle (WCA). Furthermore, the prepared nanofibers were applied for the adsorption of ibuprofen (IBU) from wastewater. Some parameters that can influence the adsorption efficiency of nanofibers such as solution pH, wt.% of prepared nanofibers, drug initial concentration, and contact time were studied and optimized. The results show that the equilibrium adsorption capacity was achieved after only 10 min for 12 wt.% PET nanofibers which is equivalent to 364.83 mg/g. For 12 wt.% PS nanofibers, an equilibrium adsorption capacity of 328.42 mg/g was achieved in 30 min. The experimental data was fitted to five isotherm and four kinetics models to understand the complicated interaction between the nanofibers and the drug. Langmuir-Freundlich isotherm model showed the best fit for experimental data for both PET and PS nanofibers. The adsorption process was characterized by predominantly physical reaction rather than chemical adsorption for both materials. The reusability study revealed that the synthesized nanofibers maintain their ability to adsorb/desorb IBU for up to five cycles. The results obtained demonstrated that fabricated nanofibers from plastic wastes could perform promising adsorbents for the management of IBU in wastewater. However, further research is needed for the scaling-up the fabrication which is required for real-world applications.

10.
Molecules ; 29(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38731546

RESUMO

Worldwide, a massive amount of agriculture and food waste is a major threat to the environment, the economy and public health. However, these wastes are important sources of phytochemicals (bioactive), such as polyphenols, carotenoids, carnitine, coenzymes, essential oils and tocopherols, which have antioxidant, antimicrobial and anticarcinogenic properties. Hence, it represents a promising opportunity for the food, agriculture, cosmetics, textiles, energy and pharmaceutical industries to develop cost effective strategies. The value of agri-food wastes has been extracted from various valuable bioactive compounds such as polyphenols, dietary fibre, proteins, lipids, vitamins, carotenoids, organic acids, essential oils and minerals, some of which are found in greater quantities in the discarded parts than in the parts accepted by the market used for different industrial sectors. The value of agri-food wastes and by-products could assure food security, maintain sustainability, efficiently reduce environmental pollution and provide an opportunity to earn additional income for industries. Furthermore, sustainable extraction methodologies like ultrasound-assisted extraction, pressurized liquid extraction, supercritical fluid extraction, microwave-assisted extraction, pulse electric field-assisted extraction, ultrasound microwave-assisted extraction and high hydrostatic pressure extraction are extensively used for the isolation, purification and recovery of various bioactive compounds from agri-food waste, according to a circular economy and sustainable approach. This review also includes some of the critical and sustainable challenges in the valorisation of agri-food wastes and explores innovative eco-friendly methods for extracting bioactive compounds from agri-food wastes, particularly for food applications. The highlights of this review are providing information on the valorisation techniques used for the extraction and recovery of different bioactive compounds from agricultural food wastes, innovative and promising approaches. Additionally, the potential use of these products presents an affordable alternative towards a circular economy and, consequently, sustainability. In this context, the encapsulation process considers the integral and sustainable use of agricultural food waste for bioactive compounds that enhance the properties and quality of functional food.


Assuntos
Compostos Fitoquímicos , Compostos Fitoquímicos/química , Agricultura/métodos , Resíduos/análise , Alimentos , Perda e Desperdício de Alimentos
11.
Gels ; 10(4)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38667673

RESUMO

The increasing global concern over plastic waste and its environmental impact has led to a growing interest in the development of sustainable packaging alternatives. This study focuses on the innovative use of expired dairy products as a potential resource for producing edible packaging materials. Expired milk and yogurt were selected as the primary raw materials due to their protein and carbohydrate content. The extracted casein was combined with various concentrations of chitosan, glycerol, and squid ink, leading to the studied samples. Chitosan was chosen due to its appealing characteristics, including biodegradability, and film-forming properties, and casein was utilized for its superior barrier and film-forming properties, as well as its biodegradability and non-toxic nature. Glycerol was used to further improve the flexibility of the materials. The prepared hydrogels were characterized using various instrumental methods, and the findings reveal that the expired dairy-based edible packaging materials exhibited promising mechanical properties comparable to conventional plastic packaging and improved barrier properties with zero-oxygen permeability of the hydrogel membranes, indicating that these materials have the potential to effectively protect food products from external factors that could compromise quality and shelf life.

12.
J Hazard Mater ; 470: 134234, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608584

RESUMO

Agricultural waste management poses a significant challenge in circular economy strategies. Olive mill wastes (OMW) contain valuable biomolecules, especially phenolic compounds, with significant agricultural potential. Our study evaluate the effects of phenolic extract (PE) derived from olive mill solid wastes (OMSW) on pomegranate agro-physiological and biochemical responses, as well as soil-related attributes. Pomegranate plants were treated with PE at doses of 100 ppm and 200 ppm via foliar spray (L100 and L200) and soil application (S100 and S200). Results showed increased biomass with PE treatments, especially with soil application (S100 and S200). Proline and soluble sugar accumulation in leaves suggested plant adaptation to PE with low-level stress. Additionally, PE application reduced malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents. Higher doses of PE (S200) significantly improved net photosynthesis (Pn), transpiration rate (E), water use efficiency (WUEi), and photosynthetic efficiency (fv/fm and PIabs). Furthermore, PE treatments enhanced levels of chlorophylls, carotenoids, polyphenols, flavonoids, and antioxidant activity. Soil application of PE also increased soil enzyme activities and microbial population. Our findings suggest the beneficial impact of PE application on pomegranate agro-physiological responses, laying the groundwork for further research across various plant species and soil types to introduce nutrient-enriched PE as an eco-friendly biostimulant.


Assuntos
Olea , Fenóis , Punica granatum , Punica granatum/química , Fenóis/análise , Olea/química , Solo/química , Resíduos Industriais , Resíduos Sólidos , Rizosfera , Fotossíntese/efeitos dos fármacos , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Microbiologia do Solo , Peróxido de Hidrogênio/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/química , Agricultura
13.
Microb Cell Fact ; 23(1): 109, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609920

RESUMO

BACKGROUND: Cellulase is considered a group member of the hydrolytic enzymes, responsible for catalyzing the hydrolysis of cellulose and has various industrial applications. Agricultural wastes are used as an inexpensive source for several utilizable products throughout the world. So, searching for cellulase enzymes from fungal strains capable of utilizing agricultural wastes to increase productivity, reduce costs and overcome waste accumulation in the environment is very important to evaluate its potency as a bio-additive to detergent agents. RESULTS: In the current study, the previously identified fungal strain Aspergillus terreus MN901491 was screened and selected for cellulase production. Medium parameters were optimized using one-factor-at-a-time (OFAT) and multi-factorial (Plackett-Burman and Box-Behnken) design methods. OFAT showed the ability of the fungal strain to utilize agricultural wastes (corn cob and rice straw) as a substrate. Also, yeast extract was the best nitrogen source for enhancing cellulase productivity. The most significant variables were determined by Plackett-Burman Design (PBD) and their concentrations were optimized by Response Surface Methodology (RSM) using Box-Behnken Design (BBD). Among eleven independent variables screened by PBD, malt extract, (NH4)2SO4, and KCl were the most significant ones followed by rice straw which affected cellulase production positively. The ANOVA results particularly the R2-value of PBD (0.9879) and BBD (0.9883) confirmed the model efficiency and provided a good interpretation of the experiments. PBD and BBD improved cellulase productivity by 6.1-fold greater than that obtained from OFAT. Medium optimization using OFAT and statistical models increased cellulase production from A. terreus MN901491 by 9.3-fold compared to the non-optimized medium. Moreover, the efficiency of cellulase activity on cotton fabrics as a bio-additive detergent was evaluated and estimated using whiteness and scanning electron microscope (SEM) that affirmed its potential effect and remarkable detergent ability to improve whiteness by 200% in comparison with non-washed fabric and by 190% in comparison with fabric washed by water. CONCLUSION: The presented work was stabilized as a multi-efficiency in which wastes were used to produce cellulase enzyme from the fungal strain, Aspergillus terreus MN901491 as a bio-additive to detergent applications that involved ecofriendly and green processes.


Assuntos
Celulase , Oryza , Detergentes , Aspergillus , Projetos de Pesquisa
14.
Materials (Basel) ; 17(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612157

RESUMO

Many countries banned asbestos due to its toxicity, but considering its colossal use, especially in the 1960s and 1970s, disposing of waste containing asbestos is the current problem. Today, many asbestos disposal technologies are known, but they usually involve colossal investment and operating expenses, and the end- and by-products of these methods negatively impact the environment. This paper identifies a unique modern direction in detoxifying asbestos minerals, which involves using microorganisms and plants and their metabolites. The work comprehensively focuses on the interactions between asbestos and plants, bacteria and fungi, including lichens and, for the first time, yeast. Biological treatment is a prospect for in situ land reclamation and under industrial conditions, which can be a viable alternative to landfilling and an environmentally friendly substitute or supplement to thermal, mechanical, and chemical methods, often characterized by high cost intensity. Plant and microbial metabolism products are part of the green chemistry trend, a central strategic pillar of global industrial and environmental development.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38676863

RESUMO

Black soldier fly larvae have been proven to reduce greenhouse gas emissions in the treatment of organic waste. However, the microbial mechanisms involved have not been fully understood. The current study mainly examined the dynamic changes of carbon and nitrogen, greenhouse gas emissions, the succession of microbial community structure, and changes in functional gene abundance in organic waste under larvae treatment and non-aeration composting. Thirty percent carbon and 55% nitrogen in the organic waste supplied were stored in larvae biomass. Compared to the non-aeration composting, the larvae bioreactor reduced the proportion of carbon and nitrogen converted into greenhouse gases (CO2, CH4, and N2O decreased by 62%, 87%, and 95%, respectively). 16S rRNA sequencing analysis indicated that the larvae bioreactor increased the relative abundance of Methanophaga, Marinobacter, and Campylobacter during the bioprocess, enhancing the consumption of CH4 and N2O. The metagenomic data showed that the intervention of larvae reduced the ratio of (nirK + nirS + nor)/nosZ in the residues, thereby reducing the emission of N2O. Larvae also increased the functional gene abundance of nirA, nirB, nirD, and nrfA in the residues, making nitrite more inclined to be reduced to ammonia instead of N2O. The larvae bioreactor mitigated greenhouse gas emissions by redistributing carbon and nitrogen and remodeling microbiomes during waste bioconversion, giving related enterprises a relative advantage in carbon trading.

16.
ChemSusChem ; : e202301449, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647354

RESUMO

Plastic wastes continuously accumulate, causing critical environmental issues. It is urgent to develop efficient strategies to convert them to valuable products. Very recently, two novel approaches for plastic recycling were reported by Huber et al. (Science, 2023, 381, 660-666) and Liu et al. (Science, 2023, 381, 666-671) , where polyethylene (PE) and polypropylene (PP) plastics were converted into potentially valuable products, such as alcohols, aldehydes, surfactants, and detergents. The two processes achieved complete degradation, high selectivity of target products, as well as high values of products, showing economic feasibility for industrial scale-up. These breakthroughs for plastic recycling are highlighted in this article.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38649599

RESUMO

Although calcined clay-blended cement offers higher performance and durability compared to neat Portland cement (PC), its extensive use of natural clay leads to the depletion of natural non-renewable resources. To address this concern, this study focuses on the utilization of supplementary cementitious materials-based waste products as a substitute for PC. The blended cement was optimized with a low replacement level of 10 wt.% calcined Fanja clay (FNJ) as a low-grade metakaolin (MK) and 90 wt.% PC. Various types of industrial solid wastes (ISWs) were incorporated into the PC-FNJ blend in place of PC. The ISWs utilized included silicate-rich wastes, such as silica fume (SF) and glass waste (GW) powder, as well as silicate-less waste, such as marble dust (MD). The results revealed that incorporating 10 wt.% SF into the PC-FNJ mixture resulted in a considerable decrease in the flow rate while improving its early mechanical strength. GW, as another silicate waste, also enhanced early mechanical properties but not as much as SF. However, the composite of PC-FNJ-GW exhibited higher workability than the neat PC, PC-FNJ, and PC-FNJ-SF. The mixtures of PC-FNJ-MD demonstrated the same trend. Embedding SF into PC-FNJ-GW and PC-FNJ-MD substantially decreased both their flowability and mechanical properties. Nonetheless, all composites containing ISWs showed higher flexural strength, higher resistivity to chloride diffusivity, and higher or comparable acid and salt resistivity.

18.
Drug Chem Toxicol ; : 1-18, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658397

RESUMO

Industrial expansion and inadequate environmental safety measures are major contributors to environmental contamination, with heavy metals (HMs) and pharmaceutical waste playing crucial roles. Their negative effects are most noticeable in aquatic species and vegetation, where they accumulate in tissues and cause harmful results. Interactions between HMs and pharmaceutical molecules result in the production of metal-drug complexes (MDCs), which have the potential to disturb diverse ecosystems and their interdependence. However, present studies frequently focus on individual pollutants and their effects on specific environmental parameters, leaving out the cumulative effects of pollutants and their processes across several environmental domains. To address this gap, this review emphasizes the environmental sources of HMs, elucidates their emission pathways during anthropogenic activities, investigates the interactions between HMs and pharmaceutical substances, and defines the mechanisms underlying the formation of MDCs across various ecosystems. Furthermore, this review underscores the simultaneous occurrence of HMs and pharmaceutical waste across diverse ecosystems, including the atmosphere, soil, and water resources, and their incorporation into biotic organisms across trophic levels. It is important to note that these complex compounds represent a higher risk than individual contaminants.

19.
Sci Total Environ ; 927: 171982, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575013

RESUMO

In this research, we developed a biochar-based fertilizer using biogas slurry and biochar derived from lignocellulosic agro-residues. Biogas slurry was obtained through the anaerobic digestion of the organic fraction of municipal solid waste (fresh vegetable biomass and/or prepared food), while biochars were derived from residues from quinoa, maize, rice, and sugarcane. The biochar-based fertilizers were prepared using an impregnation process, where the biogas slurry was mixed with each of the raw biochars. Subsequently, we characterized the N, P and K concentrations of the obtained biochar-based fertilizers. Additionally, we analyzed their surface properties using SEM/EDS and FTIR and conducted a slow-release test on these biochar-based fertilizers to assess their capability to gradually release nutrients. Lastly, a bioassay using cucumber plants was conducted to determine the N, P, and K bioavailability. Our findings revealed a significant correlation (r > 0.67) between the atomic O/C ratio, H/C ratio, cation exchange capacity, surface area, and the base cations concentration with N, P, and/or K adsorption on biochar. These properties, in turn, were linked to the capability of the biochar-based fertilizer to release nutrients in a controlled manner. The biochar-based fertilizer derived from corn residues showed <15 % release of N, P and K at 24 h. Utilization of these biochar-based fertilizers had a positive impact on the mineral nutrition of cucumber plants, resulting in an average increase of 61 % in N, 32 % in P, and 19 % in K concentrations. Our results underscore the potential of biochar-based fertilizers in controlled nutrient release and enhanced plant nutrition. Integration of biochar and biogas slurry offers a promising and sustainable approach for NPK recovery and fertilizer production in agriculture. This study presents an innovative and sustainable approach combining the use of biochar for NPK recovery from biogas slurry and its use as a biochar-based fertilizer in agriculture.


Assuntos
Carvão Vegetal , Fertilizantes , Fertilizantes/análise , Carvão Vegetal/química , Anaerobiose , Agricultura/métodos , Nitrogênio/análise , Potássio/análise , Fósforo/análise , Biocombustíveis
20.
Compr Rev Food Sci Food Saf ; 23(3): e13346, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38634193

RESUMO

Osmotic dehydration (OD) is an efficient preservation technology in that water is removed by immersing the food in a solution with a higher concentration of solutes. The application of OD in food processing offers more benefits than conventional drying technologies. Notably, OD can effectively remove a significant amount of water without a phase change, which reduces the energy demand associated with latent heat and high temperatures. A specific feature of OD is its ability to introduce solutes from the hypertonic solution into the food matrix, thereby influencing the attributes of the final product. This review comprehensively discusses the fundamental principles governing OD, emphasizing the role of chemical potential differences as the driving force behind the molecular diffusion occurring between the food and the osmotic solution. The kinetics of OD are described using mathematical models and the Biot number. The critical factors essential for optimizing OD efficiency are discussed, including product characteristics, osmotic solution properties, and process conditions. In addition, several promising technologies are introduced to enhance OD performance, such as coating, skin treatments, freeze-thawing, ultrasound, high hydrostatic pressure, centrifugation, and pulsed electric field. Reusing osmotic solutions to produce innovative products offers an opportunity to reduce food wastes. This review explores the prospects of valorizing food wastes from various food industries when formulating osmotic solutions for enhancing the quality and nutritional value of osmotically dehydrated foods while mitigating environmental impacts.


Assuntos
Desidratação , Conservação de Alimentos , Humanos , Dessecação , Água , Tecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...