Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 477
Filtrar
1.
Environ Sci Technol ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258328

RESUMO

As water reuse applications expand, there is a need for more comprehensive means to assess water quality. Microbiome analysis could provide the ability to supplement fecal indicators and pathogen profiling toward defining a "healthy" drinking water microbiota while also providing insight into the impact of treatment and distribution. Here, we utilized 16S rRNA gene amplicon sequencing to identify signature features in the composition of microbiota across a wide spectrum of water types (potable conventional, potable reuse, and nonpotable reuse). A clear distinction was found in the composition of microbiota as a function of intended water use (e.g., potable vs nonpotable) across a very broad range of U.S. water systems at both the point of compliance (Betadisper p > 0.01; ANOSIM p < 0.01, r-stat = 0.71) and point of use (Betadisper p > 0.01; ANOSIM p < 0.01, r-stat = 0.41). Core and discriminatory analysis further served in identifying distinct differences between potable and nonpotable water microbiomes. Taxa were identified at both the phylum (Desulfobacterota, Patescibacteria, and Myxococcota) and genus (Aeromonas and NS11.12_marine_group) levels that effectively discriminated between potable and nonpotable waters, with the most discriminatory taxa being core/abundant in nonpotable waters (with few exceptions, such as Ralstonia being abundant in potable conventional waters). The approach and findings open the door to the possibility of microbial community signature profiling as a water quality monitoring approach for assessing efficacy of treatments and suitability of water for intended use/reuse application.

2.
Water Res ; 267: 122429, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39303574

RESUMO

In this study, we evaluated the ability of various pilot-scale treatment train combinations to meet the microbial requirements of the new European non-potable water reuse regulation 2020/741. The study utilized non-disinfected secondary effluent from the wastewater treatment plant in Schweinfurt, Germany, as feedwater for two pilot-scale treatment trains. The first, a reference treatment train (Train A), consisted of filtration and UV disinfection as specified for reclaimed water class A in the EU regulation. The second, an advanced treatment train (Train B), included ceramic ultrafiltration (UF), ozonation, biological activated carbon filtration (BAC), and final UV disinfection. Based on a Monte Carlo simulation for Train A, the EU requirements for pathogen removal were not met when an average UV dose of 400-600 J m-2 was applied. This shortcoming was likely due to a moderate transmittance range (50-65 %), resulting in decreased UV fluence. These findings suggest that operational conditions for disinfection should be more clearly specified to ensure consistent pathogen inactivation both during validation and regular operation. In contrast, treatment train B successfully met the requirements of the EU regulations by reducing pathogens to below the detection limit. The UF membrane demonstrated a positive effect on the overall log reduction values (LRVs) throughout the water reclamation system. It also enhanced the efficiency of downstream processes, such as ozonation and UV disinfection, by lowering total suspended solids and turbidity. However, even without the UF membrane, treatment train B was still able to meet the pathogenic EU requirements for non-potable reuse applications. Furthermore, the study observed that the inclusion of biologically activated carbon (BAC) filtration requires a final disinfection step (e.g., UV disinfection) to prevent the potential occurrence of heterotrophic bacteria that proliferate in the BAC filter. For process validation it is recommended to use at least two different virus surrogates (MS2 and PhiX174), rather than just one or total coliphage as required in the EU regulation.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39298031

RESUMO

Water is a vital component of our existence. Many human activities, such as improper waste disposal from households, industries, hospitals, and synthetic processes, are major contributors to the contamination of water streams. It is the responsibility of every individual to safeguard water resources and reduce pollution. Among the various available wastewater treatment (WWT) methods, smart nanomaterials stand out for their effectiveness in pollutant removal through absorption and adsorption. This paper examines the application of valuable smart nanomaterials in treating wastewater. Various nanomaterials, including cellulose nanocrystals (CNC), cellulose nanofibrils (CNF), nanoadsorbents, nanometals, nanofilters, nanocatalysts, carbon nanotubes (CNTs), nanosilver, nanotitanium dioxide, magnetic nanoparticles, nanozero-valent metallic nanoparticles, nanocomposites, nanofibers, and quantum dots, are identified as promising candidates for WWT. These smart nanomaterials efficiently eliminate toxic substances, microplastics, nanoplastics, and polythene particulates from wastewater. Additionally, the paper discusses comparative studies on the purification efficiency of nanoscience technology versus conventional methods.

4.
Sci Total Environ ; 953: 176078, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39244046

RESUMO

Soil Aquifer Treatment (SAT) is a robust technology to increase groundwater recharge and to improve reclaimed water quality. SAT reduces dissolved organic carbon, contaminants of emerging concern, nutrients, and colloidal matter, including pathogen indicators, but little is known about its ability to reduce loads of antibiotic resistance genes (ARGs) from reclaimed waters. Here we test six pilot SAT systems to eliminate various biological hazards from the secondary effluents of a wastewater treatment plant (WWTP), equipped with reactive barriers (RBs) including different sorptive materials. Using flow cytometry, qPCR and 16S rRNA gene amplicon sequencing methods, we determined that all six SAT systems reduced total loads of bacteria by 80 to 95 % and of clinically relevant ARGs by 85 to 99.9 %. These efficiencies are similar to those reported for UV/oxidation or membrane-based tertiary treatments, which require much more energy and resources. The presence and composition of reactive barriers, the season of sampling (June 2020, October 2020, and September 2021), or the flow regime (continuous versus pulsating) did not affect ARG removal efficiency, although they did alter the microbial community composition. This suggests that an adequate design of the SAT reactive barriers may significantly increase their performance. Under a mechanistic point of view, we observed an ecological succession of bacterial groups, linked to the changing physical-chemical conditions along the SAT, and likely correlated to the removal of ARGs. We concluded that SAT is as cost-efficient technology able to dramatically reduce ARG loads and other biological hazards from WWTP secondary effluents.

5.
Sci Total Environ ; 954: 176192, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39299305

RESUMO

Wastewater from seafood processing is a significant source of pollution, containing many harmful organic and inorganic compounds such as proteins, lipids, carbohydrates, nitrogen and phosphorus. This study investigated the enhancement of organic and nutrient removal efficiencies in seafood processing wastewater by integrating an Anaerobic Membrane Bioreactor (AnMBR) with an anoxic/oxic (AO) processes. A pilot-scale system was constructed with a capacity of 0.5 m3/day directly at the factory operated continuously, featuring an AnMBR process with a 24-hour hydraulic retention time (HRT) and an AO process with HRT values and internal recycle changes. The AnMBR system exhibited consistent and high-performance biochemical oxygen demand (COD) elimination, approximately 80 ± 5 %. However, this system demonstrated low-efficiency removal of total nitrogen (TN) at about 20 ± 5 %, and total phosphorus (TP) 15 ± 5 %, under organic loading rates (OLR) of 0.6 to 1.3 kg-COD/(L·d). The AO process was then continually employed to improve the treatment efficacy (at HRT, 5 h in the anoxic phase, and 8.3 h in the oxic phase, at a recycling rate of 300 %) resulting in the final post-treatment concentrations of COD 27-41 mg/L (removal 98.3 ± 0.3 %), TN 12-25 mg/L (90 ± 2 %), and TP 18 ± 2 mg/L (35 ± 5 %). The performance of the integrated AnMBR-AO system met the established Vietnamese discharge standards for seafood processing wastewater, as outlined in QCVN 11-MT: 2015/BTNMT.

6.
Water Res ; 265: 122313, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39197389

RESUMO

N-nitrosodimethylamine (NDMA) is a carcinogenic disinfection byproduct formed from reactions between dichloramine and organic nitrogen-containing precursors. It is unclear if NDMA precursors in surface water intakes originate in anthropogenic (i.e., wastewater) or natural sources. The Truckee River has a single point source release of treated wastewater effluent, making it an ideal system to study the relative importance of precursor sources. Three Lagrangian sampling events were conducted. NDMA formation potential (FP, a measurement of precursors) above the wastewater outfall indicated that the natural background of NDMA precursors was 2-28 ng/L. NDMA FP increased to 18-31 ng/L immediately downstream of the wastewater outfall, but decreased rapidly in a first order manner, and were not statistically different from the upstream samples in only ∼6 km. This suggests that the dominant source of NDMA precursors may be wastewater derived only near wastewater outfalls and deviates from the previous belief that wastewater-derived precursors are responsible for NDMA formation in drinking water sources located further downstream. Additionally, given the rapid loss of the wastewater precursors in this study, precursors which are slow to biodegrade/photolyze/adsorb to sediment are likely to be poor surrogates for the overall wastewater NDMA precursor pool. To understand temporal changes in the wastewater impact on environmental NDMA precursor loading, two 24-hour sampling events were conducted near (<3 km) the wastewater outfall and demonstrated that temporal changes in the NDMA precursors directly downstream of the wastewater outfall are directly linked to the wastewater flow contribution.


Assuntos
Dimetilnitrosamina , Águas Residuárias , Poluentes Químicos da Água , Dimetilnitrosamina/análise , Poluentes Químicos da Água/análise , Águas Residuárias/química , Rios/química , Monitoramento Ambiental
7.
Chemosphere ; 364: 143128, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39159769

RESUMO

Reclaimed water poses environmental and human health risks due to residual organic micropollutants and pathogens. Ozonation of reclaimed water to control pathogens and trace organics is an important step in advanced water treatment systems for potable reuse of reclaimed water. Ensuring efficient pathogen reduction while controlling disinfection byproducts remains a significant challenge to implementing ozonation in reclaimed water reuse applications. This study aimed to investigate ozonation conditions using a plug flow reactor (PFR) to achieve effective pathogen removal/inactivation while minimizing bromate and N-Nitrosodimethylamine (NDMA) formation. The pilot scale study was conducted using three doses of ozone (0.7, 1.0 and 1.4 ozone/total organic carbon (O3/TOC) ratio) to determine the disinfection performance using actual reclaimed water. The disinfection efficiency was assessed by measuring total coliforms, Escherichia coli (E. coli), Pepper Mild Mottle Virus (PMMoV), Tomato Brown Rugose Fruit Virus (ToBRFV) and Norovirus (HNoV). The ozone CT values ranged from 1.60 to 13.62 mg min L-1, resulting in significant reductions in pathogens and indicators. Specifically, ozone treatment led to concentration reductions of 2.46-2.89, 2.03-2.18, 0.46-1.63, 2.23-2.64 and > 4 log for total coliforms, E. coli, PMMoV, ToBRFV, and HNoV, respectively. After ozonation, concentrations of bromate and NDMA increased, reaching levels between 2.8 and 12.0 µg L-1, and 28-40.0 ng L-1, respectively, for average feed water bromide levels of 86.7 ± 1.8 µg L-1 and TOC levels of 7.2 ± 0.1 mg L-1. The increases in DBP formation were pronounced with higher ozone dosages, possibly requiring removal/control in subsequent treatment steps in some potable reuse applications.

8.
Sci Total Environ ; 950: 175267, 2024 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-39102949

RESUMO

The red microalga Galdieria sulphuraria has emerged as a promising biotechnological platform for large-scale cultivation and production of high-value compounds, such as the blue pigment phycocyanin. However, a large amount of freshwater and a substantial supply of nutrients challenge both the environmental and the economic sustainability of algal cultivation. Additionally, the extremophilic nature of Galdieria sulphuraria requires cultivation in an acidic culture medium that directly leads to strongly acidic wastewater, which in turn generally exceeds legal limits for industrial wastewater discharge. This research aims to address these challenges, by investigating cultivation water reuse as a strategy to reduce the impacts of Galdieria sulphuraria management. The results indicated that a 25 % water reuse may be easily implemented and showed to be effective at the pilot scale, providing no significant changes in microalgae growth (biomass productivity ~0.21 g L-1 d-1) or in phycocyanin accumulation (~ 10.8 % w/w) after three consecutive cultivation cycles in reused water. Moreover, a single cultivation cycle with water reuse percentages of 71 and 98 %, achieved with membrane filtration and with centrifugation, respectively, was also successful (biomass productivity ~0.24 g L-1 d-1). These findings encourage freshwater reuse implementations in the microalgae sector and support further investigations focusing on coupling cultivation and harvesting in continuous, real-scale configurations. Centrifugation and membrane filtration required substantially different specific electrical energy consumption for water reuse and biomass concentration: in real applications, the former technique would roughly span from 1 to 10 kWh m-3 while the latter is expected to fall within the ample range 0.1-100 kWh m-3, strongly dependent on system size. For this reason, the most suitable separation train should be chosen on a case-by-case basis, considering the prevailing flow rate and the target biomass concentration factor targeted by the separation process.


Assuntos
Microalgas , Microalgas/crescimento & desenvolvimento , Rodófitas/crescimento & desenvolvimento , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Biomassa
9.
Water Res ; 264: 122216, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39146850

RESUMO

In light of increasingly diverse greywater reuse applications, this study proposes risk-based log-removal targets (LRTs) to aid the selection of treatment trains for greywater recycling at different collection scales, including appliance-scale reuse of individual greywater streams. An epidemiology-based model was used to simulate the concentrations of prevalent and treatment-resistant reference pathogens (protozoa: Giardia and Cryptosporidium spp., bacteria: Salmonella and Campylobacter spp., viruses: rotavirus, norovirus, adenovirus, and Coxsackievirus B5) in the greywater streams for collection scales of 5-, 100-, and a 1000-people. Using quantitative microbial risk assessment (QMRA), we calculated LRTs to meet a health benchmark of 10-4 infections per person per year over 10'000 Monte Carlo iterations. LRTs were highest for norovirus at the 5-people scale and for adenovirus at the 100- and 1000-people scales. Example treatment trains were designed to meet the 95 % quantiles of LRTs. Treatment trains consisted of an aerated membrane bioreactor, chlorination, and, if required, UV disinfection. In most cases, rotavirus, norovirus, adenovirus and Cryptosporidium spp. determined the overall treatment train requirements. Norovirus was most often critical to dimension the chlorination (concentration × time values) and adenovirus determined the required UV dose. Smaller collection scales did not generally allow for simpler treatment trains due to the high LRTs associated with viruses, with the exception of recirculating washing machines and handwashing stations. Similarly, treating greywater sources individually resulted in lower LRTs, but the lower required LRTs nevertheless did not generally allow for simpler treatment trains. For instance, LRTs for a recirculating washing machine were around 3-log units lower compared to LRTs for indoor reuse of combined greywater (1000-people scale), but both scenarios necessitated treatment with a membrane bioreactor, chlorination and UV disinfection. However, simpler treatment trains may be feasible for small-scale and application-scale reuse if: (i) less conservative health benchmarks are used for household-based systems, considering the reduced relative importance of treated greywater in pathogen transmission in households, and (ii) higher log-removal values (LRVs) can be validated for unit processes, enabling simpler treatment trains for a larger number of appliance-scale reuse systems.


Assuntos
Reciclagem , Purificação da Água , Microbiologia da Água , Eliminação de Resíduos Líquidos/métodos , Cryptosporidium/isolamento & purificação , Giardia/isolamento & purificação , Desinfecção/métodos
10.
Front Microbiol ; 15: 1436122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113842

RESUMO

Introduction: Constructed wetlands (CWs) are nature-based solutions for wastewater treatment where the root system microbiome plays a key role in terms of nutrient and pollutant removal. Nonetheless, little is known on plant-microbe interactions and bacterial population selection in CWs, which are mostly characterized in terms of engineering aspects. Methods: Here, cultivation-independent and cultivation-based analyses were applied to study the bacterial communities associated to the root systems of Phragmites australis and Typha domingensis co-occurring in the same cell of a CW receiving primary treated wastewaters. Results and discussion: Two endophytic bacteria collections (n = 156) were established aiming to find novel strains for microbial-assisted phytodepuration, however basing on their taxonomy the possible use of these strains was limited by their low degrading potential and/or for risks related to the One-Health concept. A sharp differentiation arose between the P. australis and T. domingensis collections, mainly represented by lactic acid bacteria (98%) and Enterobacteriaceae (69%), respectively. Hence, 16S rRNA amplicon sequencing was used to disentangle the microbiome composition in the root system fractions collected at increasing distance from the root surface. Both the fraction type and the plant species were recognized as drivers of the bacterial community structure. Moreover, differential abundance analysis revealed that, in all fractions, several bacteria families were significantly and differentially enriched in P. australis or in T. domingensis. CWs have been also reported as interesting options for the removal of emerging contaminants (e.g, antibiotic resistance genes, ARGs). In this study, ARGs were mostly present in the rhizosphere of both plant species, compared to the other analyzed fractions. Notably, qPCR data showed that ARGs (i.e., ermB, bla TEM, tetA) and intl1 gene (integrase gene of the class 1 integrons) were significantly higher in Phragmites than Typha rhizospheres, suggesting that macrophyte species growing in CWs can display a different ability to remove ARGs from wastewater. Overall, the results suggest the importance to consider the plant-microbiome interactions, besides engineering aspects, to select the most suitable species when designing phytodepuration systems.

11.
Huan Jing Ke Xue ; 45(8): 4520-4528, 2024 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-39168672

RESUMO

To deepen the recognition of changes in industrial water use with socio-economic development, a "double-layer nested" structural decomposition analysis has been proposed to decompose the influence of the drivers of industrial water use change by sectors in China from 2002 to 2020. The results showed that the scale expansion factors represented by consumption, investment, and export were the main factors for the growth of industrial water use in different sectors, among which the expansion effect of per capita consumption grew faster. Additionally, there were obvious differences in the major drivers of industrial scale expansion between different sectors, which directly drove the industrial structure change. The production process water use effect and water reuse effect were the main factors to curb the growth of industrial water use. The accumulation of both had completely offset the positive effect of industrial scale expansion during the period, reducing industrial water consumption by 11.2 billion m3. However, the production process water use changes in metal extraction, smelting, and processing and energy processing sectors such as electric power had a smaller negative effect, leading to the potential for improving industrial water efficiency solely through a relatively small improvement in water resource reuse. Therefore, it is necessary to strengthen industrial water conservation management based on the differences in the impact of various sectors to promote the transformation and upgradation of industrial production and consumption structures, and to avoid another increase in industrial water use in China.

12.
Heliyon ; 10(14): e34430, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39130400

RESUMO

In recent years, severe climate change leading to by water scarcity reduced water quality has increased the need for effective irrigation strategies for agricultural production. Among these, the reuse of reclaimed water represents a non-expensive and reliable solution. The effect of conventional or reclaimed water, applying convention or smart fertigation system, were investigated during two irrigation seasons on yield, qualitative and biochemical traits of pomegranates fruit (cv Wonderful One) at harvest, and after storage at 7 °C. The results of this study showed that using reclaimed waters with different fertigation systems did not affect the pH values, total soluble solids, and titratable acidity on pomegranates fruit showing slight decrease changes only during postharvest storage. On the other hand, the respiration rate was not affected by water quality. Furthermore, the antioxidant activity was also preserved during storage in pomegranates fruit from plants irrigated with reclaimed water by applying conventional or smart fertigation. The analysis also identified 52 compounds by UHPLC-MSn and HPLC-UV-Vis analyses. A slight decrease (about 17 %) at harvest and during storage in polyphenols content was shown in fruit grown using reclaimed water. The study demonstrates that using reclaimed water is a sustainable and effective way to limit the use of conventional water for irrigating pomegranate crops without significant reduction in yield, or in qualitative and nutritional values of the fruit at harvest and during storage.

13.
Water Environ Res ; 96(8): e11098, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39138812

RESUMO

Complete retention lagoons with wastewater reuse for agricultural purposes may offer sustainability advantages over alternative systems for small communities in semiarid regions. This study quantifies the environmental life cycle impact of adopting agriculture water reuse systems using case study data to estimate operating and building infrastructure impacts and spatial-temporal modeling to quantify resource trade-offs. Water reuse system benefits are highly dependent on supply-storage-demand dynamics. The relative size of irrigated agricultural land to the lagoon size was the most significant factor influencing site water application rates. The benefits are sensitive to changes in air emissions occurring from the agricultural land and further emphasize the importance of proper fertilizer management when adopting water reuse systems. Wastewater reuse from complete retention lagoons reduce life cycle GHG emissions, primarily through excavation reductions, offset fertilizer use, and especially from increased crop yields from wastewater reuse at previously rainfed sites. PRACTITIONER POINTS: Seven case studies and spatial-temporal modeling quantified resource trade-offs for water reuse to reduce lagoon size. Excavation reductions and offset fertilizer compensated for emissions from electricity and construction. Crop yield increases were the largest environmental benefit of adopting water reuse. System benefits are highly dependent on supply-storage-demand dynamics. Designers should use climatic data to help estimate potential variability in available water for reuse and associated energy and crop production.


Assuntos
Modelos Teóricos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Agricultura/métodos , Reciclagem , Conservação dos Recursos Naturais/métodos
14.
Water Res ; 262: 122091, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39047455

RESUMO

Treatment trains that couple ozone (O3) with biologically active carbon (BAC) filtration are of interest as a lower cost, more sustainable, membrane-free approach to water reuse. However, little is known about the microbial communities that are the fundamental drivers of O3-BAC treatment. The objective of this study was to demonstrate microbial community profiling as a diagnostic tool for assessing the functionality, biological stability, and resilience of coupled physical, chemical, advanced oxidative and biological processes employed in water reuse treatment. We utilized 16S rRNA gene amplicon sequencing to profile the bacterial microbiota over time throughout a potable reuse train employing coagulation, flocculation, sedimentation, ozonation, BAC filtration, granular activated carbon (GAC) adsorption, and UV disinfection. A distinct baseline microbiota was associated with each stage of treatment (ANOSIM, p < 0.05, r-stat = 0.52), each undergoing succession with time and operational shifts. Ozonation resulted in the sharpest shifts (i.e., 83.3 % average change in Genus level relative abundances, when adjusted O3:TOC ratio > 1), and also variance, in microbial community composition. Adjustment in O3:TOC ratios, temperature, filter-aid polymer, monochloramine quenching agent, and empty-bed contact time also resulted in measurable changes in the baseline microbial community composition of individual processes, but to a lesser degree. Of these, supplementation of nitrogen and phosphorus resulted in the strongest bifurcation, especially in the microbial communities inhabiting the BAC (ANOSIM: p < 0.05, BAC5 r-stat = 0.32; BAC10 r-stat = 0.54) and GAC (ANOSIM: p < 0.05, GAC10 r-stat = 0.54; GAC20 r-stat = 0.63) units. Additionally, we found that the BAC microbial community was responsive to an inoculation of microbially active media, which resulted in improved TOC removal. The findings of this study improve understanding of bacterial dynamics occurring in advanced water treatment trains and can inform improved system design and operation.


Assuntos
Filtração , Ozônio , Purificação da Água , Purificação da Água/métodos , Microbiota , Carvão Vegetal/química , RNA Ribossômico 16S/genética
15.
J Environ Manage ; 367: 121949, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39083949

RESUMO

When water supply restrictions increasingly escalate to water supply risks, developing strategies to minimize the water footprint of wet cooling systems becomes crucial. This study compares two water engineering approaches to minimize the water footprint of a recirculating evaporative cooling tower (CT): (1) reusing cooling tower blowdown and (2) producing demineralized water to increase the cycles of concentration (CoC) of the CT. Our techno-economic analysis across various scenarios and CT settings reveals that reusing blowdown (option 1) is the most feasible approach for an industrial cooling system currently operating at CoCs of > 3, discharging blowdown with a conductivity of 2 mS/cm and a total organic carbon (TOC) concentration of approximately 20 mg/L. Compared to enhanced make up treatment, blowdown reuse allows higher water savings (13 %) and involves lower implementation and operation costs. Pilot scale trials validated the feasibility of both approaches. Blowdown and enhanced make up treatment included biologically activated carbon filtration, ultrafiltration and reverse osmosis, producing high-quality permeate, suitable for (re)use as CT make up or within other processes. The blowdown treatment reached a product quality of 80 µS/cm conductivity and 70 µg/L TOC, make up treatment 20 µS/cm in conductivity and 60 µg/L TOC, respectively. The study's findings underscore the viability of blowdown reuse as a cost-effective and efficient strategy to minimize the water footprint of cooling systems under increasing water scarcity conditions.


Assuntos
Purificação da Água , Purificação da Água/métodos , Abastecimento de Água , Água
16.
Nanomaterials (Basel) ; 14(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38998722

RESUMO

The rapid expansion of urban areas and the increasing demand for water resources necessitate substantial investments in technologies that enable the reuse of municipal wastewater for various purposes. Nonetheless, numerous challenges remain, particularly regarding disinfection by-products (DBPs), especially carcinogenic compounds such as N-nitrosamines (NTRs). To tackle the ongoing issues associated with reverse osmosis (RO) membranes, this study investigated the rejection of NTRs across a range of commercially available RO membranes. In addition, the research aimed to improve rejection rates by integrating molecular plugs into the nanopores of the polyamide (PA) layer. Hexylamine (HEX) and hexamethylenediamine (HDMA), both linear chain amines, have proven to be effective as molecular plugs for enhancing the removal of NTRs. Given the environmental and human health concerns associated with linear amines, the study also aimed to assess the feasibility of diamine molecules as potential alternatives. The application of molecular plugs led to changes in pore size distribution (PSD) and effective pore number, resulting in a decrease in membrane permeability (from 5 to 33%), while maintaining levels suitable for RO processes. HEX and HDMA exhibited a positive effect on NTR rejection with ACM1, ACM5 and BW30LE membranes. In particular, NDMA rejection, the smallest molecule of the tested NTRs, with ACM1 was improved by 65.5% and 70.6% after treatment with HEX and HDMA, respectively.

17.
Sci Total Environ ; 946: 174351, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38960165

RESUMO

Irrigation with reclaimed water alleviates water supply shortages, but excess application often results in impairment of contiguous waterbodies. This project investigated the potential use of iohexol, an iodinated contrast media used in medical imaging, together with its bio- and phototransformation products as unique reconnaissance markers of reclaimed water irrigation intrusion at three golf courses within the state of Florida. Inter-facility iohexol concentrations measured in reclaimed waters ranged over ~2 orders of magnitude while observed intra-facility seasonal differences were ≤1 order of magnitude. A ~50 % reduction in iohexol was observed post-disinfection for reclaimed water facilities utilizing UV light while none was observed with use of chlorine. Iohexol biotransformation products were observed to decline or shift to lower molecular weight compounds when exposed to UV light but not during disinfection using chlorine. Iohexol biotransformation products were observed in most of the samples but were more prevalent in samples collected during the dry season. Much fewer iohexol phototransformation products were observed in chlorinated reclaimed water, and they were only observed in UV light irradiated reclaimed water when the pre-disinfectant iohexol concentration was ≥5000 ng/L or from solar exposure of reclaimed water spiked with 10 µM of iohexol. For the Hillsborough golf course overlaying an aquifer, the groundwater did not contain iohexol or phototransformation products but did contain biotransformation products. It is not known if these biotransformation products are from active or historical intrusion. The additional presence of sucralose in the aquifer suggests that intrusion has occurred within the past 3 years. This study demonstrates three crucial points in attempting to utilize iohexol to denote reclaimed water intrusion from irrigation overapplication: (1) interpretable results are obtained when iohexol concentrations in the reclaimed water employed for irrigation are ≥1000 ng/L, with higher concentrations in the range of ≥5000 ng/L better able to meet analytical sensitivity requirements after further dilution or degradation in the environment; (2) it is beneficial to assess iohexol transformation products in tandem with iohexol monitoring to account for environmental transformations of iohexol during storage and transport to the receiving water of concern; and (3) inclusion of monitoring for sucralose, an artificial sweetener ubiquitous in wastewater sources that is comparatively stable in the environment, can aid in interpretating whether reclaimed water intrusion based on identification of iohexol and transformation products in the receiving water is attributable to historic or ongoing irrigation overapplications.


Assuntos
Monitoramento Ambiental , Iohexol , Poluentes Químicos da Água , Iohexol/análise , Iohexol/análogos & derivados , Poluentes Químicos da Água/análise , Florida , Irrigação Agrícola , Meios de Contraste/análise , Eliminação de Resíduos Líquidos/métodos , Desinfecção
18.
J Environ Sci (China) ; 146: 237-240, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38969451

RESUMO

Exploring the vast extraterrestrial space is an inevitable trend with continuous human development. Water treatment and reuse are crucial in the limited and closed space that is available in spaceships or long-term use space bases that will be established in the foreseeable future. Dedicated water treatment technologies have experienced iterative development for more than 60 years since the first manned spaceflight was successfully launched. Herein, we briefly review the related wastewater characteristics and the history of water treatment in space stations, and we focus on future challenges and perspectives, aiming at providing insights for optimizing wastewater treatment technologies and closing the water cycle in future.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Purificação da Água , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Voo Espacial
19.
Water Res X ; 22: 100215, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38831972

RESUMO

A growing number of cities and regions are promoting or mandating on-site treatment and reuse of wastewater, which has resulted in the implementation of several thousand on-site water reuse systems on a global scale. However, there is only limited information on the (microbial) water quality from implemented systems. The focus of this study was on two best-in-class on-site water reuse systems in Bengaluru, India, which typically met the local water quality requirements during monthly compliance testing. This study aimed to (i) assess the microbial quality of the reclaimed water at a high temporal resolution (daily or every 15 min), and (ii) explore whether measurements from commercially available sensors can be used to improve the operation of such systems. The monitoring campaign revealed high variations in microbial water quality, even in these best-in-class systems, rendering the water inadequate for the intended reuse applications (toilet flushing and landscape irrigation). These variations were attributed to two key factors: (1) the low frequency of chlorination, and (2) fluctuations of the chlorine demand of the water, in particular of ammonium concentrations. Such fluctuations are likely inherent to on-site systems, which rely on a low level of process control. The monitoring campaign showed that the microbial water quality was most closely related to oxidation-reduction potential (ORP) and free chlorine sensors. Due to its relatively low cost and low need for maintenance, the ORP emerges as a compelling candidate for automating the chlorination to effectively manage variations in chlorine demand and ensure safe water reuse. Overall, this study underscores the necessity of integrating treatment trains, operation, and monitoring for safe on-site water reuse.

20.
Sci Total Environ ; 945: 174078, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38906279

RESUMO

This paper investigates the potential of graphene-coated sand (GCS) as an advanced filtration medium for improving water quality and mitigating chemicals of emerging concern (CECs) in treated municipal wastewater, aiming to enhance water reuse. The study utilizes three types of sand (Ottawa, masonry, and concrete) coated with graphene to assess the impact of surface morphology, particle shape, and chemical composition on coating and filtration efficiency. Additionally, sand coated with graphene and activated graphene coated sand were both tested to understand the effect of coating and activation on the filtration process. The materials were characterized using digital microscopy, Raman spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction analysis. The material's efficiency in removing turbidity, nutrients, chemical oxygen demand (COD), bacteria, and specific CECs (Aciclovir, Diatrizoic acid, Levodopa, Miconazole, Carbamazepine, Diphenhydramine, Irbesartan, Lidocaine, Losartan, and Sulfamethoxazole) was studied. Our findings indicate that GCS significantly improves water quality parameters, with notable efficiency in removing turbidity, COD (14.1 % and 69.1 % removal), and bacterial contaminants (64.9 % and 99.9 % removal). The study also highlights the material's capacity to remove challenging CECs like Sulfamethoxazole (up to 80 % removal) and Diphenhydramine (up to 90 % removal), showcasing its potential as a sustainable solution for water reuse applications. This research contributes to the field by providing a comprehensive evaluation of GCS in water treatment, suggesting its potential for removing CECs from treated municipal wastewater.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA