Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Nanomedicine ; 19: 7071-7097, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045343

RESUMO

Whiskers are nanoscale, high-strength fibrous crystals with a wide range of potential applications in dentistry owing to their unique mechanical, thermal, electrical, and biological properties. They possess high strength, a high modulus of elasticity and good biocompatibility. Hence, adding these crystals to dental composites as reinforcement can considerably improve the mechanical properties and durability of restorations. Additionally, whiskers are involved in inducing the value-added differentiation of osteoblasts, odontogenic osteocytes, and pulp stem cells, and promoting the regeneration of alveolar bone, periodontal tissue, and pulp tissue. They can also enhance the mucosal barrier function, inhibit the proliferation of tumor cells, control inflammation, and aid in cancer prevention. This review comprehensively summarizes the classification, properties, growth mechanisms and preparation methods of whiskers and focuses on their application in dentistry. Due to their unique physicochemical properties, excellent biological properties, and nanoscale characteristics, whiskers show great potential for application in bone, periodontal, and pulp tissue regeneration. Additionally, they can be used to prevent and treat oral cancer and improve medical devices, thus making them a promising new material in dentistry.


Assuntos
Odontologia , Humanos , Odontologia/métodos , Polpa Dentária , Materiais Biocompatíveis/química , Animais , Materiais Dentários/química , Regeneração Óssea
2.
Front Neurosci ; 18: 1344758, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38872944

RESUMO

Rodents rely on their whiskers as vital sensory tools for tactile perception, enabling them to distinguish textures and shapes. Ensuring the reliability and constancy of tactile perception under varying stimulus conditions remains a fascinating and fundamental inquiry. This study explores the impact of stimulus configurations, including whisker movement velocity and object spatial proximity, on texture discrimination and stability in rats. To address this issue, we employed three distinct approaches for our investigation. Stimulus configurations notably affected tactile inputs, altering whisker vibration's kinetic and kinematic aspects with consistent effects across various textures. Through a texture discrimination task, rats exhibited consistent discrimination performance irrespective of changes in stimulus configuration. However, alterations in stimulus configuration significantly affected the rats' ability to maintain stability in texture perception. Additionally, we investigated the influence of stimulus configurations on cortical neuronal responses by manipulating them experimentally. Notably, cortical neurons demonstrated substantial and intricate changes in firing rates without compromising the ability to discriminate between textures. Nevertheless, these changes resulted in a reduction in texture neuronal response stability. Stimulating multiple whiskers led to improved neuronal texture discrimination and maintained coding stability. These findings emphasize the importance of considering numerous factors and their interactions when studying the impact of stimulus configuration on neuronal responses and behavior.

3.
Clin Cosmet Investig Dermatol ; 17: 1071-1073, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745871

RESUMO

Becker's nevus (BN) is a kind of epidermal cutaneous hamartoma. A noticeable hyperpigmented patch with a big, unilateral, hyperpigmented macule and irregularly shaped borders is the manner in which BN often presents. In this case, a 16-year-old boy has asymptomatic dark brown colored follicular macule on the left side of the cheek shortly after birth. The lesions were initially inconspicuous but gradually became darker as time passed. The macules on some of them grew hair. This case of BN with apparent hypertrichosis on one side of the cheek, which made it challenging to make a differential diagnosis with whiskers. The primary point of differentiation is that the lesions of BN only appear unilaterally. On the other hand, the face has whiskers on both sides. Additionally, BN will show hyperpigmentation whereas whiskers do not. In conclusion, for its unusual clinical presentation, we believe that reporting this case may help dermatologists avoid misdiagnosing similar cases.

4.
Materials (Basel) ; 17(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612219

RESUMO

To study the effects of basalt fibers (BFs), calcium sulfate whiskers (CSWs), and modified calcium sulfate whiskers (MCSWs) on the compressive strength and dynamic modulus of elasticity of concrete, this paper utilizes Mercury Intrusion Porosimetry (MIP) to measure the microstructure of concrete and calculate the fractal dimension of pore surface area. The results indicate that both CSWs and BFs can increase the compressive strength of concrete. CSWs can enhance the dynamic modulus of elasticity of concrete, while the effect of BFs on the dynamic modulus of elasticity is not significant. The improvement in compressive strength and dynamic modulus of elasticity provided by MCSWs is significantly greater than that provided by CSWs. Both CSWs and BFs can effectively improve the pore structure of concrete and have a significant impact on the surface fractal dimension. CSWs inhibit the formation of ink-bottle pores, while BFs increase the number of ink-bottle pores. Due to the ink-bottle pore effect, the fractal dimension of the capillary pore surface is generally greater than three, lacking fractal characteristics. The compressive strength and dynamic modulus of elasticity of concrete have a good correlation with the fractal dimensions of large pores and transition pores.

5.
Vet Res Commun ; 48(3): 1907-1914, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38427268

RESUMO

OBJECTIVE: This preliminary study suggests a way to artificially extend vibrissae of blind dogs to assist ambulation and avoiding facial contact with obstacles. PROCEDURES: Fourteen irreversibly blind dogs had 5-6 mystacial vibrissae on each side of the face supplementally extended by attaching carefully chosen adult pig hairs to them and were subjected to a maze test before and after the procedure. In three of these dogs the test was repeated one more time after all the extensions had fallen off. Collision counts and course times with and without extensions were analyzed and compared. A p-value > 0.05 was considered significant. RESULTS: Median number of collisions was significantly higher post-extensions (5 IQR 2.25) and after extensions had fallen off (4 IQR 7.50) compared to pre-extensions (1 IQR 1), p = 0.021. Median times were significantly higher pre-extension (25.6 IQR 8.98) and after the extensions had fallen off, compared to the post-extension performance (22.8 IQR 8.55), p = 0.04. CONCLUSION: Vibrissae play an important role in the tactile perception of blind dogs, and our preliminary results suggest that extending this sensory organ possibly improves obstacle location and their quality of life.


Assuntos
Cegueira , Tato , Vibrissas , Animais , Cães/fisiologia , Cegueira/veterinária , Cegueira/fisiopatologia , Vibrissas/fisiologia , Tato/fisiologia , Masculino , Feminino , Doenças do Cão/fisiopatologia
6.
Small ; 20(31): e2312006, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38431945

RESUMO

A high soluble and stable ɛ-Zn(OH)2 precursor is synthesized at below room temperature to efficiently prepare ZnO whiskers. The experimental results indicate that the formation of ZnO whiskers is carried out mainly via two steps: the formation of ZnO seeds from ɛ-Zn(OH)2 via the in situ solid conversion, and the following growth of whiskers via dissolution-precipitation route. The decrease of temperature from 25 to 5 °C promotes the formation of ɛ-Zn(OH)2 with higher solubility and stability, which balances the conversion and dissolution rates of precursor. The Rietveld refinement, DFT calculations and MD simulations reveal that the primary reason for these characteristics is the expansion of ɛ-Zn(OH)2 lattice due to temperature, causing difficulties in the dehydration of adjacent ─OH. Simultaneously, the larger specific surface area favors the dissolution of ɛ-Zn(OH)2. Based on this precursor, well-dispersed ZnO whiskers with 9.82 µm in length, 242.38 nm in diameter, and an average aspect ratio of 41 are successfully synthesized through a SDSN-assisted hydrothermal process at 80 °C. The process has an extremely high solid content of 2.5% (mass ratio of ZnO to solution) and an overall yield of 92%, which offers a new approach for the scaled synthesis of high aspect ratio ZnO whiskers by liquid-phase method.

7.
Materials (Basel) ; 17(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38473609

RESUMO

In recent years, significant attention has been paid to the use of calcium sulfate whiskers (CSWs) to enhance the performance of cement-based materials (CBM). This technology has attracted widespread interest from researchers because it enhances the performance and sustainability of CBM by modifying the crystal structure of calcium sulfate. This article summarizes the fundamental properties and preparation methods of calcium sulfate whisker materials as well as their applications in cement, potential advantages and disadvantages, and practical applications and prospects. The introduction of CSWs has been demonstrated to enhance the strength, durability, and crack resistance of CBM while also addressing concerns related to permeability and shrinkage. The application of this technology is expected to improve the quality and lifespan of buildings, reduce maintenance costs, and positively impact the environment. The use of CSWs in CBM represents a promising material innovation that offers lasting and sustainable advancement in the construction industry.

8.
J Biomed Mater Res B Appl Biomater ; 112(3): e35400, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38456343

RESUMO

Lithium disilicate (Li2 Si2 O5 ) glass-ceramics are currently a more widely used all-ceramic restorative material due to their good mechanical properties and excellent aesthetic properties. However, they have a series of problems such as high brittleness and low fracture toughness, which has become the main bottleneck restricting its development. Therefore, in order to compensate for these shortcomings, we propose to prepare a reinforced glass-ceramics with better mechanical properties and to test the biosafety and chemical solubility of the material. Li2 Si2 O5 whiskers were synthesized by a one-step hydrothermal method, and multi-scale crystal-enhanced Li2 Si2 O5 glass-ceramics were prepared by reaction sintering. The biosafety of multi-scale crystal-reinforced Li2 Si2 O5 glass-ceramics was investigated by in vitro cytotoxicity test, rabbit pyrogen test, mice bone marrow micronucleus test, skin sensitization test, sub-chronic systemic toxicity test, and chronic systemic toxicity test. Additionally, the chemical solubility of multi-scale crystal-reinforced Li2 Si2 O5 glass-ceramics was investigated. The test results showed that the material was non-cytotoxic, non-thermogenic, non-mutagenic, non-sensitizing, and non-systemic. The chemical solubility, determined to be 377 ± 245 µg/cm2 , complied with the ISO 6872 standard for the maximum solubility of ceramic materials. Multi-scale crystal-reinforced Li2 Si2 O5 glass-ceramics' biosafety and chemical solubility met current normative criteria, and they can move on to mechanical property measurements (such as flexural strength test, fatigue life test, friction and wear property study, etc.) and bonding property optimization, which shows promise for future clinical applications.


Assuntos
Cerâmica , Contenção de Riscos Biológicos , Animais , Camundongos , Coelhos , Teste de Materiais , Solubilidade , Propriedades de Superfície , Cerâmica/química , Porcelana Dentária , Lítio
9.
Small Methods ; : e2301476, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38183383

RESUMO

In the ever-evolving landscape of complex electromagnetic (EM) environments, the demand for EM-attenuating materials with multiple functionalities has grown. 1D metals, known for their high conductivity and ability to form networks that facilitate electron migration, stand out as promising candidates for EM attenuation. Presently, they find primary use in electromagnetic interference (EMI) shielding, but achieving a dual-purpose application for EMI shielding and microwave absorption (MA) remains a challenge. In this context, Sn whiskers derived from the Ti2 SnC MAX phase exhibit exceptional EMI shielding and MA properties. A minimum reflection loss of -44.82 dB is achievable at lower loading ratios, while higher loading ratios yield efficient EMI shielding effectiveness of 42.78 dB. These qualities result from a delicate balance between impedance matching and EM energy attenuation via adjustable conductive networks; and the enhanced interfacial polarization effect at the cylindrical heterogeneous interface between Sn and SnO2 , visually characterized through off-axis electron holography, also contributes to the impressive performance. Considering the compositional diversity of MAX phases and the scalable fabrication approach with environmental friendliness, this study provides a valuable pathway to multifunctional EM attenuating materials based on 1D metals.

10.
Adv Sci (Weinh) ; 11(2): e2304304, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37847914

RESUMO

Seals are well-known for their remarkable hydrodynamic trail-following capabilities made possible by undulating flow-sensing whiskers that enable the seals to detect fish swimming as far as 180 m away. In this work, the form-function relationship in the undulating whiskers of two different phocid seal species, viz. harbor and gray seals, is studied. The geometry and material properties of excised harbor and grey seal whiskers are systematically characterized using blue light 3D scanning, optical and scanning electron microscopy, and nanoindentation. The effect of the undulating geometry on the whiskers' vibration in uniform water flow is studied using both experimental (piezoelectric MEMS and 3D-printed piezoresistive sensors developed in-house) and numerical (finite element method) techniques. The results indicate that the dimensionless ratio of undulation wavelength to mean whisker diameter (λ/Dm ) in phocid seals may have evolved to be in the optimal range of 4.4-4.6, enabling an order-of-magnitude reduction in vortex-induced vibrations (compared to a similarly-shaped circular cylinder) and, consequently, an enhanced flow sensing capability with minimal self-induced noise. The results highlight the importance of the dimensionless λ/Dm ratio in the biomimetic design of seal whisker-inspired vibration-resistant structures, such as marine risers and wake detection sensors for submarines.

11.
Macromol Rapid Commun ; 45(2): e2300462, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37800886

RESUMO

Avoiding collisions is a key necessity for any autonomous mobile robot, and obstacle mapping enables them to maneuver in an uncharted area. In this era of the Internet of Things, with the emerging need for a multitude of sensors, adopting self-powered technologies is more practically viable than batteries for powering the same. Herein, with the fabrication of a triboelectric artificial whisker (TAW), a self-powered obstacle detection is demonstrated via tactile perception. The mechanical contact with the obstacle gives rise to an electrical signal from the TAW owing to the embedded triboelectric sensor. In addition, the triboelectric nanogenerator (TENG) based on electrospun polyacrylonitrile (PAN) nanofibers and polydimethylsiloxane film, which facilitates this self-powered artificial sensation, generates an output voltage of 720 V and current density of 5 mA m-2 with 1.7 W m-2 of maximum power delivery from a force of 10 N. The electro-spinning aided enhancement in contact area of the PAN is responsible for the remarkable improvement in the performance of the TENG, 3.4 times enhancement in power density, when compared to the nonsurface-modified ones. In addition, the TENG is able to charge commercial capacitors up to appreciable values and demonstrates powering different electronic gadgets such as calculators and thermometers.


Assuntos
Nanofibras , Animais , Vibrissas , Resinas Acrílicas , Fontes de Energia Elétrica
12.
Cell Rep ; 42(12): 113532, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38064338

RESUMO

Sensory cortical areas are organized into topographic maps representing the sensory epithelium. Interareal projections typically connect topographically matched subregions across areas. Because matched subregions process the same stimulus, their interaction is central to many computations. Here, we ask how topographically matched subregions of primary and secondary vibrissal somatosensory cortices (vS1 and vS2) interact during active touch. Volumetric calcium imaging in mice palpating an object with two whiskers revealed a sparse population of highly responsive, broadly tuned touch neurons especially pronounced in layer 2 of both areas. These rare neurons exhibited elevated synchrony and carried most touch-evoked activity in both directions. Lesioning the subregion of either area responding to the spared whiskers degraded touch responses in the unlesioned area, with whisker-specific vS1 lesions degrading whisker-specific vS2 touch responses. Thus, a sparse population of broadly tuned touch neurons dominates vS1-vS2 communication in both directions, and topographically matched vS1 and vS2 subregions recurrently amplify whisker touch activity.


Assuntos
Percepção do Tato , Tato , Camundongos , Animais , Tato/fisiologia , Percepção do Tato/fisiologia , Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Vibrissas/fisiologia , Estimulação Física
13.
Materials (Basel) ; 16(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38138775

RESUMO

This paper presents an in-depth comparative study of the effects of different molten salt systems, catalyst additions, preparation temperatures, temperature rise rates, and holding times on the properties of mullite whiskers during their preparation process, as well as exploring the enhancement of the toughening effect of mullite whiskers on ceramics. The morphology, crystal structure, and composition of the whiskers were analyzed via SEM, XRD, TG, strength tests, etc. The results show that the best-performing mullite whisker was prepared with an aluminum sulfate molten salt system, with the addition of aluminum fluoride catalyst at 4%, a temperature increase rate of 5 °C, a temperature increase up to 850 °C, and a holding time of 5 h, and its aspect ratio reached 20.64. By adding different contents of mullite whiskers and comparing the toughness strengths and wear rates of the silicon carbide ceramics, it was found that the toughness strength of the ceramics was improved by more than 16.5% and the wear rate was lower than 0.4% when the addition of mullite whisker was more than 3%.

14.
Curr Biol ; 33(21): 4599-4610.e7, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37774708

RESUMO

How animals use tactile sensation to detect important objects and remember their location in a world-based coordinate system is unclear. Here, we hypothesized that the retrosplenial cortex (RSC), a key network for contextual memory and spatial navigation, represents the location of objects based on tactile sensation. We studied mice palpating objects with their whiskers while navigating in a tactile virtual reality in darkness. Using two-photon Ca2+ imaging, we discovered that a population of neurons in the agranular RSC signal the location of objects. Responses to objects do not simply reflect the sensory stimulus. Instead, they are highly position, task, and context dependent and often predict the upcoming object before it is within reach. In addition, a large fraction of neurons encoding object location maintain a memory trace of the object's location. These data show that the RSC encodes the location and arrangement of tactile objects in a spatial reference frame.


Assuntos
Giro do Cíngulo , Navegação Espacial , Camundongos , Animais , Giro do Cíngulo/fisiologia , Rememoração Mental/fisiologia , Navegação Espacial/fisiologia , Neurônios/fisiologia , Emoções , Percepção Espacial/fisiologia
15.
ACS Nano ; 17(18): 18456-18469, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37698581

RESUMO

The emerging technology of harvesting environmental energy using hydrovoltaic devices enriches the conversion forms of renewable energy. It provides more concepts for power supply in micro/nano systems, and hydrovoltaic technology with high performance, usability, and integration is essential for achieving sustainable green energy. Comparing the discovery of multiscale nanomaterials, working layers with innovative microstructures have gradually become the dominant trend in the construction of graphene-based hydrovoltaic devices. However, reports on promoting ion/electron redistribution at the solid-liquid interface through the substrate effect of graphene are accompanied by tedious procedures, nondiverse substrates, and monolithic regulation of enhancement mechanisms. Here, the electrophoretic deposition (EPD)-driven SiC whiskers (SiCw)-assisted graphene transfer process is adopted to alleviate the complexity of the device fabrication caused by graphene transfer. The resulting output performance of the graphene/SiCw (GS) mesh films is significantly boosted. The high integrity of graphene and prominent negative surface charge near the graphene-droplet interface are derived from the overlayer and underlayer inside the graphene-based mixed-dimensional van der Waals (vdW) heterostructures, respectively. Additionally, a self-powered desalination-monitoring system is designed based on integrated hydrovoltaic devices. Electricity harvested from the ionic solutions is reused for deionization, representing an efficient strategy for energy conversion and utilization.

16.
Int J Biol Macromol ; 251: 126314, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37586628

RESUMO

Nanomaterial-based wound dressings have been extensively studied for the treatment of both minor and life-threatening tissue injuries. These wound dressings must possess several crucial characteristics, such as tissue compatibility, non-toxicity, appropriate biodegradability to facilitate wound healing, effective antibacterial activity to prevent infection, and adequate physical and mechanical strength to withstand repetitive dynamic forces that could potentially disrupt the healing process. Nevertheless, the development of nanostructured wound dressings that incorporate various functional micro- and nanomaterials in distinct architectures, each serving specific purposes, presents significant challenges. In this study, we successfully developed a novel multifunctional wound dressing based on poly(lactic acid) (PLA) fibrous membranes produced by solution-blow spinning (SBS) and electrospinning. The PLA-based membranes underwent surface modifications aimed at tailoring their properties for utilization as effective wound dressing platforms. Initially, beta-chitin whiskers were deposited onto the membrane surface through filtration, imparting hydrophilic character. Afterward, silver nanoparticles (AgNPs) were incorporated onto the beta-chitin layer using a spray deposition method, resulting in platforms with antimicrobial properties against both Staphylococcus aureus and Escherichia coli. Cytotoxicity studies demonstrated the biocompatibility of the membranes with the neonatal human dermal fibroblast (HDFn) cell line. Moreover, bilayer membranes exhibited a high surface area and porosity (> 80%), remarkable stability in aqueous media, and favorable mechanical properties, making them promising candidates for application as multifunctional wound dressings.

17.
Materials (Basel) ; 16(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37569968

RESUMO

The grain size plays a pivotal role in determining the properties of the alloy. The grain size can be significantly decreased by adding inoculants. Aiming to address the shortcomings of existing inoculants, the Al3Ti-Al2O3/Al inoculant was successfully prepared using Al-Ti master alloy and Al2O3 whiskers as raw materials. With the aid of ultrasonic energy, the Al2O3 whiskers were uniformly dispersed within the inoculants. Under the combined action of ultrasonic and titanium, the Al2O3 whiskers were broken into small particles at high temperature. To enhance the morphology of Al3Ti and achieve even particle dispersion throughout the matrix, vacuum rapid quenching treatment was applied to the inoculant. The SEM test results indicated a significant reduction in particle size after vacuum rapid quenching. The Al3Ti-Al2O3/Al inoculants exhibited excellent grain refinement effects on the weldable Al-Cu-Mn alloy. Crystallographic calculations and HRTEM analysis revealed that Al2O3 and Al have orientation relationships, indicating their potential as effective heterogeneous nucleation sites. The mechanical properties of the Al-Cu-Mn alloy were obviously improved after the Al3Ti-Al2O3/Al inoculant was added.

18.
ACS Appl Mater Interfaces ; 15(33): 40042-40053, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37552858

RESUMO

We report on enhancing the mechanical and structural characteristics of polypropylene (PP) three-dimensional (3D)-printed structures fabricated via fused filament fabrication (FFF) by employing composite PP-based filament with subsequent microwave (MWV) treatment. The composite filament contained a minute (0.9 vol %) fraction of silicon carbide whiskers (SiCWs) and was prepared via melt blending of PP pellets with SiCW using an extruder. The surface of the whiskers was modified with trimethoxy(octadecyl) silane to improve compatibility between the polar SiCW and nonpolar PP matrix. We employed SiCWs in composite filament because of the whiskers' high thermal conductivity and ability to generate heat locally under MWV irradiation. Indeed, we were able to conduct the heating of printed parts by MWV without sacrificing the structural integrity and improving the overall adhesion between the 3D-printed polymer layers. Our modeling captures an extent of heating upon MWV irradiation observed in our experiments. In general, utilization of the composite PP/SiCW filament significantly improved the printed parts' mechanical characteristics and sintering level compared to those made from pure PP filament. Specifically, after the MWV treatment, the adjusted (for density) storage modulus of the PP/SiCW material was just ∼20% lower than that for the PP sample obtained by conventional compression molding. After the MWV irradiation, Young's modulus, yield stress, and toughness of the printed structures were increased by ∼65, 53, and 55%, respectively. We attribute the improvement of mechanical properties via MWV treatment to enhancing the entanglement level at the weld.

19.
Materials (Basel) ; 16(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37444900

RESUMO

Polymer nanocomposites, which combine the advantages of polymers and fillers, are widely used in the field of automobile and aviation. Polyimine (PI) is an emerging thermoset material with remarkable properties, such as malleability, recyclability, and self-healing. Silicon carbide nano-whiskers (SiCw), as a cheap and high-hardness filler material, are chosen to enhance the properties of polyimine matrix. Silicon carbide nano-whisker-reinforced polyimine (PI-SiCw) nanocomposites were successfully fabricated by heat pressing, which was confirmed by FTIR and XPS tests. According to the results of mechanical tests, the mechanical properties of PI-SiCw nanocomposites were obviously improved. For example, with the addition of 0.5% SiCw, bending strength and bending elongation at break can be simultaneously increased by 33% and 148%, respectively. Surprisingly, the impact strength of PI-SiCw nanocomposites with 2% SiCw was increased by 154% compared to the matrix. SEM and EDS tests showed that the evenly distributed SiCw in the polyimine matrix enhanced the mechanical properties of PI-SiCw nanocomposites according to the mechanism of whiskers pulling out and the bridging principle. According to the TGA test results, the PI composites with SiCw retain a higher weight percentage at 800 °C. The reason was the combined effect of the good thermal stability of SiCw and their strong interactions with the PI matrix. As a result, introducing SiCw into the PI matrix imparts a slight improvement in thermal stability. This article presents an avenue of cost-effective research to enhance the mechanical properties of polyimine composites.

20.
J Colloid Interface Sci ; 648: 834-845, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37327626

RESUMO

Incorporating high thermal conductivity fillers into the matrix material and optimizing their distribution offers a targeted approach to controlling heat flow conduction. However, the design of composite microstructure, particularly the precise orientation of fillers in the micro-nano domain, remains a formidable challenge to date. Here, we report a novel method for constructing directional/localized thermal conduction pathways based on silicon carbide whiskers (SiCWs) in the polyacrylamide (PAM) gel matrix using micro-structured electrodes. SiCWs are one-dimensional nanomaterials with ultra-high thermal conductivity, strength, and hardness. The outstanding properties of SiCWs can be maximized through ordered orientation. Under the conditions of 18 V voltage and 5 MHz frequency, SiCWs can achieve complete orientation in only about 3 s. In addition, the prepared SiCWs/PAM composite exhibits interesting properties, including enhanced thermal conductivity and localized conduction of heat flow. When the SiCWs concentration is 0.5 g·L-1, the thermal conductivity of SiCWs/PAM composite is about 0.7 W·m-1·K-1, which is 0.3 W·m-1·K-1 higher than that of PAM gel. This work achieved structural modulation of the thermal conductivity by constructing a specific spatial distribution of SiCWs units in the micro-nanoscale domain. The resulting SiCWs/PAM composite has unique localized heat conduction properties and is expected to become a new generation of composites with better characteristics and functions in thermal transmission and thermal management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA