Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(24)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38139581

RESUMO

Current trends in neurobiological research focus on analyzing complex interactions within brain structures. To conduct relevant experiments, it is often essential to employ animals with unhampered mobility and utilize electrophysiological equipment capable of wirelessly transmitting data. In prior research, we introduced an open-source wireless electrophysiology system to surmount these challenges. Nonetheless, this prototype exhibited several limitations, such as a hefty weight for the wireless module, redundant system components, a diminished sampling rate, and limited battery longevity. In this study, we unveil an enhanced version of the open-source wireless electrophysiology system, tailored for in vivo monitoring of neural activity in rodent brains. This new system has been successfully tested in real-time recordings of in vivo neural activity. Consequently, our development offers researchers a cost-effective and proficient tool for studying complex brain functions.


Assuntos
Roedores , Tecnologia sem Fio , Animais , Eletrodos Implantados , Encéfalo/fisiologia , Eletrofisiologia , Desenho de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA