Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.852
Filtrar
1.
Forensic Sci Int ; 361: 112072, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38838610

RESUMO

Aquatic decomposition, as a forensic discipline, has been largely under-investigated as a consequence of the highly complex and influential variability of the water environment. The limitation to the adaptability of scenario specific results justifies the necessity for experimental research to increase our understanding of the aquatic environment and the development of post-mortem submersion interval (PMSI) methods of estimation. This preliminary research aims to address this contextual gap by assessing the variation in the bacterial composition of aquatic biofilms as explained by water parameter measurements over time, associated with clothed and bare decomposing remains. As part of three field investigations, a total of 9 still-born piglets (n = 3, per trial) were used as human analogues and were submerged bare or clothed in either natural cotton or synthetic nylon. Changes in the bacterial community composition of the water surrounding the submerged remains were assessed at 4 discrete time points post submersion (7, 14, 21 and 28 days) by 16 S rRNA gene Next Generation Sequencing analysis and compared to coinciding water parameter measurements (i.e. conductivity, total dissolved solids (TDS), salinity, pH, and dissolved oxygen (DO)). Bacterial diversity was found to change over time and relative to clothing type, where significant variation was observed between synthetic nylon samples and bare/cotton samples. Seasonality was a major driver of bacterial diversity, where substantial variation was found between samples collected in early winter to those collected in mid - late winter. Water parameter measures of pH, salinity and DO were identified to best explain the global bacterial community composition and their corresponding dynamic trajectory patterns overtime. Further investigation into bacterial community dynamics in accordance with varying environmental conditions could potentially lead to the determination of influential extrinsic factors that may drive bacterial activity in aquatic decomposition. Together with the identification of potential bacterial markers that complement the different stages of decomposition, this may provide a future approach to PMSI estimations.

2.
Pak J Biol Sci ; 27(5): 256-267, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38840466

RESUMO

<b>Background and Objective:</b> The prioritisation of oil palm studies involves the exploration of novel bacterial isolates as possible agents for suppressing <i>Ganoderma boninense</i>. The objective of this study was to evaluate and characterise the potential of rhizospheric bacteria, obtained from the rhizosphere of oil palm plants, in terms of their ability to demonstrate anti-<i>Ganoderma </i>activity. <b>Materials and Methods:</b> The study began by employing a dual culture technique to select hostile bacteria. Qualitative detection was performed to assess the antifungal activity, as well as the synthesis of chitinase and glucanase, from certain isolates. The candidate strains were molecularly identified using 16S-rRNA ribosomal primers, specifically the 27F and 1492R primers. <b>Results:</b> The findings of the study indicated that the governmental plantation exhibited the highest ratio between diazotroph and indigenous bacterial populations in comparison to the other sites. Out of a pool of ninety bacterial isolates, a subset of twenty-one isolates demonstrated the ability to impede the development of <i>G. boninense</i>, as determined using a dual culture experiment. Twenty-one bacterial strains were found to exhibit antifungal activity. Nine possible bacteria were found based on the sequence analysis. These bacteria include <i>Burkholderia territorii</i> (RK2, RP2, RP3, RP5), <i>Burkholderia stagnalis</i> (RK3), <i>Burkholderia cenocepacia</i> (RP1), <i>Serratia marcescens</i> (RP13) and <i>Rhizobium multihospitium</i> (RU4). <b>Conclusion:</b> The findings of the study revealed that a significant proportion of the bacterial population exhibited the ability to perform nitrogen fixation, indole-3-acetic acid (IAA) production and phosphate solubilization. However, it is worth noting that <i>Rhizobium multihospitium</i> RU4 did not demonstrate the capacity for phosphate solubilization, while <i>B. territory</i> RK2 did not exhibit IAA production.


Assuntos
Ganoderma , Rizosfera , Ganoderma/metabolismo , Ganoderma/crescimento & desenvolvimento , Agentes de Controle Biológico , Bioprospecção/métodos , Microbiologia do Solo , Bactérias/metabolismo , Bactérias/crescimento & desenvolvimento , Bactérias/genética , Bactérias/isolamento & purificação , Arecaceae/microbiologia , Desenvolvimento Vegetal , Óleo de Palmeira/metabolismo , Antifúngicos/metabolismo , Antifúngicos/farmacologia
3.
J Anim Sci Biotechnol ; 15(1): 76, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38835065

RESUMO

BACKGROUND: As Holstein calves are susceptible to gastrointestinal disorders during the first week of life, understanding how intestinal immune function develops in neonatal calves is important to promote better intestinal health. Feeding probiotics in early life may contribute to host intestinal health by facilitating beneficial bacteria colonization and developing intestinal immune function. The objective of this study was to characterize the impact of early life yeast supplementation and growth on colon mucosa-attached bacteria and host immune function. RESULTS: Twenty Holstein bull calves received no supplementation (CON) or Saccharomyces cerevisiae boulardii (SCB) from birth to 5 d of life. Colon tissue biopsies were taken within 2 h of life (D0) before the first colostrum feeding and 3 h after the morning feeding at d 5 of age (D5) to analyze mucosa-attached bacteria and colon transcriptome. Metagenome sequencing showed that there was no difference in α and ß diversity of mucosa-attached bacteria between day and treatment, but bacteria related to diarrhea were more abundant in the colon mucosa on D0 compared to D5. In addition, qPCR indicated that the absolute abundance of Escherichia coli (E. coli) decreased in the colon mucosa on D5 compared to D0; however, that of Bifidobacterium, Lactobacillus, and Faecalibacterium prausnitzii, which could competitively exclude E. coli, increased in the colon mucosa on D5 compared to D0. RNA-sequencing showed that there were no differentially expressed genes between CON and SCB, but suggested that pathways related to viral infection such as "Interferon Signaling" were activated in the colon mucosa of D5 compared to D0. CONCLUSIONS: Growth affected mucosa-attached bacteria and host immune function in the colon mucosa during the first 5 d of life in dairy calves independently of SCB supplementation. During early life, opportunistic pathogens may decrease due to intestinal environmental changes by beneficial bacteria and/or host immune function. Predicted activation of immune function-related pathways may be the result of host immune function development or suggest other antigens in the intestine during early life. Further studies focusing on the other antigens and host immune function in the colon mucosa are required to better understand intestinal immune function development.

4.
J Oral Microbiol ; 16(1): 2362313, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835338

RESUMO

Background: Burning mouth syndrome (BMS) is a chronic idiopathic facial pain with intraoral burning or dysesthesia. BMS patients regularly suffer from anxiety/depression, and the association of psychiatric symptoms with BMS has received considerable attention in recent years. The aims of this study were to investigate the potential interplay between psychiatric symptoms and BMS. Methods: Using 16S rRNA sequencing and liquid chromatography-mass spectrometry (LC/MS) to evaluate the oral microbiota and saliva metabolism of 40 BMS patients [including 29 BMS patients with depression or anxiety symptoms (DBMS)] and 40 age matched healthy control (HC). Results: The oral microbiota composition in BMS exhibited no significant differences from HC, although DBMS manifested decreased α-diversity relative to HC. Noteworthy was the discernible elevation in the abundance of proinflammatory microorganisms within the oral microbiome of individuals with DBMS. Parallel findings in LC/MS analyses revealed discernible disparities in metabolites between DBMS and HC groups. Principal differential metabolites were notably enriched in amino acid metabolism and lipid metabolism, exhibiting associations with infectious and immunological diseases. Furthermore, the integrated analysis underscores a definitive association between the oral microbiome and metabolism in DBMS. Conclusions: This study suggests possible future modalities for better understanding the pathogenesis and personalized treatment plans of BMS.

5.
Front Vet Sci ; 11: 1390473, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835897

RESUMO

Objective: Guanyu Zhixie Granule (GYZXG) is a traditional Chinese medicine compound with definite efficacy in intervening in gastric ulcers (GUs). However, the effect mechanisms on GU are still unclear. This study aimed to explore its mechanism against GU based on amalgamated strategies. Methods: The comprehensive chemical characterization of the active compounds of GYZXG was conducted using UHPLC-Q/TOF-MS. Based on these results, key targets and action mechanisms were predicted through network pharmacology. GU was then induced in rats using anhydrous ethanol (1 mL/200 g). The intervention effects of GYZXG on GU were evaluated by measuring the inhibition rate of GU, conducting HE staining, and assessing the levels of IL-6, TNF-α, IL-10, IL-4, Pepsin (PP), and epidermal growth factor (EGF). Real-time quantitative PCR (RT-qPCR) was used to verify the mRNA levels of key targets and pathways. Metabolomics, combined with 16S rRNA sequencing, was used to investigate and confirm the action mechanism of GYZXG on GU. The correlation analysis between differential gut microbiota and differential metabolites was conducted using the spearman method. Results: For the first time, the results showed that nine active ingredients and sixteen targets were confirmed to intervene in GU when using GYZXG. Compared with the model group, GYZXG was found to increase the ulcer inhibition rate in the GYZXG-M group (p < 0.05), reduce the levels of IL-6, TNF-α, PP in gastric tissue, and increase the levels of IL-10, IL-4, and EGF. GYZXG could intervene in GU by regulating serum metabolites such as Glycocholic acid, Epinephrine, Ascorbic acid, and Linoleic acid, and by influencing bile secretion, the HIF-1 signaling pathway, and adipocyte catabolism. Additionally, GYZXG could intervene in GU by altering the gut microbiota diversity and modulating the relative abundance of Bacteroidetes, Bacteroides, Verrucomicrobia, Akkermansia, and Ruminococcus. The differential gut microbiota was strongly associated with serum differential metabolites. KEGG enrichment analysis indicated a significant role of the HIF-1 signaling pathway in GYZXG's intervention on GU. The changes in metabolites within metabolic pathways and the alterations in RELA, HIF1A, and EGF mRNA levels in RT-qPCR experiments provide further confirmation of this result. Conclusion: GYZXG can intervene in GU induced by anhydrous ethanol in rats by regulating gut microbiota and metabolic disorders, providing a theoretical basis for its use in GU intervention.

6.
Antonie Van Leeuwenhoek ; 117(1): 89, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861000

RESUMO

Strain MP-1014T, an obligate halophilic actinobacterium, was isolated from the mangrove soil of Thandavarayancholanganpettai, Tamil Nadu, India. A polyphasic approach was utilized to explore its phylogenetic position completely. The isolate was Gram-positive, filamentous, non-motile, and coccoid in older cultures. Ideal growth conditions were seen at 30 °C and pH 7.0, with 5% NaCl (W/V), and the DNA G + C content was 73.3%. The phylogenic analysis of this strain based upon 16S rRNA gene sequence revealed 97-99.8% similarity to the recognized species of the genus Isoptericola. Strain MP-1014T exhibits the highest similarity to I. sediminis JC619T (99.7%), I. chiayiensis KCTC19740T (98.9%), and subsequently to I. halotolerans KCTC19646T (98.6%), when compared with other members within the Isoptericola genus (< 98%). ANI scores of strain MP-1014T are 86.4%, 84.2%, and 81.5% and dDDH values are 59.7%, 53.6%, and 34.8% with I. sediminis JC619T, I. chiayiensis KCTC19740T and I. halotolerans KCTC19646T respectively. The major polar lipids of the strain MP-1014T were phosphatidylinositol, phosphatidylglycerol, diphosphotidylglycerol, two unknown phospholipids, and glycolipids. The predominant respiratory menaquinones were MK9 (H4) and MK9 (H2). The major fatty acids were anteiso-C15:0, anteiso-C17:0, iso-C14:0, C15:0, and C16:0. Also, initial genome analysis of the organism suggests it as a biostimulant for enhancing agriculture in saline environments. Based on phenotypic and genetic distinctiveness, the strain MP-1014 T represents the novel species of the genus Isoptericola assigned Isoptericola haloaureus sp. nov., is addressed by the strain MP-1014 T, given its phenotypic, phylogenetic, and hereditary uniqueness. The type strain is MP-1014T [(NCBI = OP672482.1 = GCA_036689775.1) ATCC = BAA 2646T; DSMZ = 29325T; MTCC = 13246T].


Assuntos
Composição de Bases , DNA Bacteriano , Fixação de Nitrogênio , Filogenia , RNA Ribossômico 16S , Tolerância ao Sal , Índia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Áreas Alagadas , Ácidos Graxos/metabolismo , Ácidos Graxos/análise , Sedimentos Geológicos/microbiologia , Técnicas de Tipagem Bacteriana , Microbiologia do Solo , Fosfolipídeos/análise , Análise de Sequência de DNA , Cloreto de Sódio/metabolismo , Actinobacteria/genética , Actinobacteria/classificação , Actinobacteria/isolamento & purificação , Actinobacteria/metabolismo , Actinobacteria/fisiologia
7.
Microbiol Spectr ; : e0344123, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864649

RESUMO

This study aimed to characterize the composition of intestinal and nasal microbiota in septic patients and identify potential microbial biomarkers for diagnosis. A total of 157 subjects, including 89 with sepsis, were enrolled from the affiliated hospital. Nasal swabs and fecal specimens were collected from septic and non-septic patients in the intensive care unit (ICU) and Department of Respiratory and Critical Care Medicine. DNA was extracted, and the V4 region of the 16S rRNA gene was amplified and sequenced using Illumina technology. Bioinformatics analysis, statistical processing, and machine learning techniques were employed to differentiate between septic and non-septic patients. The nasal microbiota of septic patients exhibited significantly lower community richness (P = 0.002) and distinct compositions (P = 0.001) compared to non-septic patients. Corynebacterium, Staphylococcus, Acinetobacter, and Pseudomonas were identified as enriched genera in the nasal microbiota of septic patients. The constructed machine learning model achieved an area under the curve (AUC) of 89.08, indicating its efficacy in differentiating septic and non-septic patients. Importantly, model validation demonstrated the effectiveness of the nasal microecological diagnosis prediction model with an AUC of 84.79, while the gut microecological diagnosis prediction model had poor predictive performance (AUC = 49.24). The nasal microbiota of ICU patients effectively distinguishes sepsis from non-septic cases and outperforms the gut microbiota. These findings have implications for the development of diagnostic strategies and advancements in critical care medicine.IMPORTANCEThe important clinical significance of this study is that it compared the intestinal and nasal microbiota of sepsis with non-sepsis patients and determined that the nasal microbiota is more effective than the intestinal microbiota in distinguishing patients with sepsis from those without sepsis, based on the difference in the lines of nasal specimens collected.

8.
PeerJ ; 12: e17450, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38860210

RESUMO

Background: Spodoptera frugiperda, the fall armyworm is a destructive invasive pest, and S. litura the tobacco cutworm, is a native species closely related to S. frugiperda. The gut microbiota plays a vital role in insect growth, development, metabolism and immune system. Research on the competition between invasive species and closely related native species has focused on differences in the adaptability of insects to the environment. Little is known about gut symbiotic microbe composition and its role in influencing competitive differences between these two insects. Methods: We used a culture-independent approach targeting the 16S rRNA gene of gut bacteria of 5th instar larvae of S. frugiperda and S. litura. Larvae were reared continuously on maize leaves for five generations. We analyzed the composition, abundance, diversity, and metabolic function of gut microbiomes of S. frugiperda and S. litura larvae. Results: Firmicutes, Proteobacteria, and Bacteroidetes were the dominant bacterial phyla in both species. Enterococcus, ZOR0006, Escherichia, Bacteroides, and Lactobacillus were the genera with the highest abundance in S. frugiperda. Enterococcus, Erysipelatoclostridium, ZOR0006, Enterobacter, and Bacteroides had the highest abundance in S. litura. According to α-diversity analysis, the gut bacterial diversity of S. frugiperda was significantly higher than that of S. litura. KEGG analysis showed 15 significant differences in metabolic pathways between S. frugiperda and S. litura gut bacteria, including transcription, cell growth and death, excretory system and circulatory system pathways. Conclusion: In the same habitat, the larvae of S. frugiperda and S. litura showed significant differences in gut bacterial diversity and community composition. Regarding the composition and function of gut bacteria, the invasive species S. frugiperda may have a competitive advantage over S. litura. This study provides a foundation for developing control strategies for S. frugiperda and S. litura.


Assuntos
Microbioma Gastrointestinal , Larva , RNA Ribossômico 16S , Spodoptera , Animais , Microbioma Gastrointestinal/genética , Spodoptera/microbiologia , Spodoptera/genética , Larva/microbiologia , RNA Ribossômico 16S/genética , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Firmicutes/genética , Firmicutes/isolamento & purificação , Bactérias/genética , Bactérias/classificação , Lactobacillus/genética , Lactobacillus/isolamento & purificação , Enterococcus/genética , Bacteroides/genética , Simbiose
9.
Front Microbiol ; 15: 1269558, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38860221

RESUMO

Background: The relationship between gut microbiota and breast cancer has been extensively studied; however, changes in gut microbiota after breast cancer surgery are still largely unknown. Materials and methods: A total of 20 patients with breast cancer underwent routine open surgery at the First Affiliated Hospital of Hainan Medical College from 1 June 2022 to 1 December 2022. Stool samples were collected from the patients undergoing mastectomy for breast cancer preoperatively, 3 days later, and 7 days later postoperatively. The stool samples were subjected to 16s rRNA sequencing. Results: Surgery did not affect the α-diversity of gut microbiota. The ß-diversity and composition of gut microorganisms were significantly affected by surgery in breast cancer patients. Both linear discriminant analysis effect size (LEfSe) analysis and between-group differences analysis showed that surgery led to a decrease in the abundance of Firmicutes and Lachnospiraceae and an increase in the abundance of Proteobacteria and Enterobacteriaceae. Moreover, 127 differential metabolites were screened and classified into 5 categories based on their changing trends. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed significant changes in the phenylalanine metabolic pathway and exogenous substance metabolic pathway. Eight characterized metabolites were screened using ROC analysis. Conclusion: Our study found that breast cancer surgery significantly altered gut microbiota composition and metabolites, with a decrease in beneficial bacteria and an increase in potentially harmful bacteria. This underscores the importance of enhanced postoperative management to optimize gut microbiota.

10.
J Obstet Gynaecol ; 44(1): 2361847, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38861397

RESUMO

OBJECTIVE: The vaginal flora has been reported to be associated with human papillomavirus (HPV) infection. The purpose of this study was to investigate the characteristics of the cervical microbiota in patients with HPV infection and to analyse the changes in the vaginal flora and enzyme profiles in females with HPV infection. METHODS: We conducted a cross-sectional study involving 206 participants who underwent HPV genotyping, sexually transmitted diseases pathogen testing, cytology examination, and microbiome analysis. Additionally, we collected 115 HPV-negative samples and 48 HPV-positive samples for 16S rRNA amplicon sequencing. The vaginal microbial communities of both groups were analysed for diversity and differences to explore their association with HPV infection. RESULTS: The abundance of Lactobacillus was found to be reduced, while Gardnerella vaginalis was significantly more prevalent in the HPV + group. In terms of alpha diversity indices, the Shannon index (P = .0036) and Simpson index (P = .02) were higher in the HPV + group compared to the HPV - group, indicating greater community diversity in the HPV + group. Among the 10 sexually transmitted diseases pathogens analysed, Uup3 and Uup6 were significantly associated with HPV infection. Statistically significant differences were observed in Nugent scores and bacterial vaginosis between the two groups (P < .05). In functional analysis, 11 proteins and 13 enzymes were found to be significantly altered in the HPV + group. CONCLUSION: Our study demonstrates that disruptions in the vaginal flora are associated with HPV infection. Reduced levels of Lactobacillus, increased prevalence of Gardnerella, and abnormal enzyme profiles are closely linked to HPV infection.


The purpose of this study was to investigate the characteristics of the cervical microbiota in patients with human papillomavirus infection and to analyse the changes in the vaginal flora and enzyme profiles in females with human papillomavirus infection. We conducted a cross-sectional study involving 206 participants who underwent human papillomavirus genotyping, sexually transmitted diseases pathogen testing, cytology examination, and microbiome analysis. Additionally, we collected 115 HPV-negative samples and 48 HPV-positive samples for 16S rRNA amplicon sequencing. The abundance of Lactobacillus was found to be reduced, while Gardnerella vaginalis was significantly more prevalent in the HPV + group. In functional analysis, 11 proteins and 13 enzymes were found to be significantly altered in the HPV + group. Our study demonstrates that disruptions in the vaginal flora are associated with HPV infection. Reduced levels of Lactobacillus, increased prevalence of Gardnerella, and abnormal enzyme profiles are closely linked to HPV infection.


Assuntos
Gardnerella vaginalis , Lactobacillus , Microbiota , Infecções por Papillomavirus , Vagina , Humanos , Feminino , Infecções por Papillomavirus/virologia , Estudos Transversais , Vagina/microbiologia , Vagina/virologia , Adulto , Lactobacillus/isolamento & purificação , Gardnerella vaginalis/isolamento & purificação , Vaginose Bacteriana/microbiologia , Vaginose Bacteriana/epidemiologia , Pessoa de Meia-Idade , RNA Ribossômico 16S/análise , Papillomaviridae/isolamento & purificação , Papillomaviridae/genética , Adulto Jovem , Colo do Útero/microbiologia , Colo do Útero/virologia
11.
Appl Microbiol Biotechnol ; 108(1): 356, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822843

RESUMO

The gastrointestinal tract (GIT) is stationed by a dynamic and complex microbial community with functions in digestion, metabolism, immunomodulation, and reproduction. However, there is relatively little research on the composition and function of microorganisms in different GIT segments in dairy goats. Herein, 80 chyme samples were taken from ten GIT sites of eight Xinong Saanen dairy goats and then analyzed and identified the microbial composition via 16S rRNA V1-V9 amplicon sequencing. A total of 6669 different operational taxonomic units (OTUs) were clustered, and 187 OTUs were shared by ten GIT segments. We observed 264 species belonging to 23 different phyla scattered across ten GITs, with Firmicutes (52.42%) and Bacteroidetes (22.88%) predominating. The results revealed obvious location differences in the composition, diversity, and function of the GIT microbiota. In LEfSe analysis, unidentified_Lachnospiraceae and unidentified_Succinniclassicum were significantly enriched in the four chambers of stomach, with functions in carbohydrate fermentation to compose short-chain fatty acids. Aeriscardovia, Candidatus_Saccharimonas, and Romboutsia were significantly higher in the foregut, playing an important role in synthesizing enzymes, amino acids, and vitamins and immunomodulation. Akkermansia, Bacteroides, and Alistipes were significantly abundant in the hindgut to degrade polysaccharides and oligosaccharides, etc. From rumen to rectum, α-diversity decreased first and then increased, while ß-diversity showed the opposite trend. Metabolism was the major function of the GIT microbiome predicted by PICRUSt2, but with variation in target substrates along the regions. In summary, GIT segments play a decisive role in the composition and functions of microorganisms. KEY POINTS: • The jejunum and ileum were harsh for microorganisms to colonize due to the presence of bile acids, enzymes, faster chyme circulation, etc., exhibiting the lowest α-diversity and the highest ß-diversity. • Variability in microbial profiles between the three foregut segments was greater than four chambers of stomach and hindgut, with a higher abundance of Firmicutes dominating than others. • Dairy goats dominated a higher abundance of Kiritimatiellaeota than cows, which was reported to be associated with fatty acid synthesis.


Assuntos
Bactérias , Microbioma Gastrointestinal , Trato Gastrointestinal , Cabras , RNA Ribossômico 16S , Animais , Cabras/microbiologia , Trato Gastrointestinal/microbiologia , RNA Ribossômico 16S/genética , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Filogenia , DNA Bacteriano/genética , Biodiversidade , Feminino
12.
Harmful Algae ; 135: 102646, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38830712

RESUMO

Toxic cyanobacterial blooms present a substantial risk to public health due to the production of secondary metabolites, notably microcystins (MCs). Microcystin-LR (MC-LR) is the most prevalent and toxic variant in freshwater. MCs resist conventional water treatment methods, persistently impacting water quality. This study focused on an oligohaline shallow lagoon historically affected by MC-producing cyanobacteria, aiming to identify bacteria capable of degrading MC and investigating the influence of environmental factors on this process. While isolated strains did not exhibit MC degradation, microbial assemblages directly sourced from lagoon water removed MC-LR within seven days at 25 ºC and pH 8.0. The associated bacterial community demonstrated an increased abundance of bacterial taxa assigned to Methylophilales, and also Rhodospirillales and Rhodocyclales to a lesser extent. However, elevated atmospheric temperatures (45 ºC) and acidification (pH 5.0 and 3.0) hindered MC-LR removal, indicating that extreme environmental changes could contribute to prolonged MC persistence in the water column. This study highlights the importance of considering environmental conditions in order to develop strategies to mitigate cyanotoxin contamination in aquatic ecosystems.


Assuntos
Microcistinas , Microcistinas/metabolismo , Microcistinas/análise , Bactérias/metabolismo , Cianobactérias/metabolismo , Cianobactérias/fisiologia , Microbiota , Água do Mar/microbiologia , Água do Mar/química , Plâncton , Concentração de Íons de Hidrogênio
13.
Front Vet Sci ; 11: 1394290, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846790

RESUMO

There is a gradual transition from water to dryland rearing of geese. In this study, we performed 16S rRNA sequencing (16S rRNA-seq) and transcriptome sequencing (RNA-seq) to reveal the effects of cage rearing (CR) and floor rearing (FR) systems on the microbial composition and transcriptome of the goose ileum. Through 16S rRNA-seq, Linear Discriminant Analysis Effect Size (LEfSe) analysis identified 2 (hgcI_clade and Faecalibacterium) and 14 (Bacteroides, Proteiniphilum, Proteiniclasticum, etc.) differential microbiota in CR and FR, respectively. The rearing system influenced 4 pathways including biosynthesis of amino acids in ileal microbiota. Moreover, we identified 1,198 differentially expressed genes (DEGs) in the ileum mucosa, with 957 genes up-regulated in CR and 241 genes up-regulated in FR. In CR, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed the significant enrichment (p < 0.05) of 28 KEGG pathways, most of which were associated with amino acid metabolism. In FR, up-regulated DEGs were mainly enriched in KEGG pathways associated with cellular processes, including apoptosis, necroptosis, and cellular senescence. Spearman correlation analysis of differential microbiota and amino acid metabolism-related DEGs in CR showed a significant positive correlation. Additionally, differential microbiota of FR, Phascolarctobacterium and Sutterella, were positively correlated with FGF10 (p < 0.05) and PIK3R1 (p < 0.01), respectively. In conclusion, there might be differences in ileal amino acid metabolism levels between CR and FR geese, and the observed increase in harmful bacterial species in FR might impact the activity of ileal cells.

14.
Infection ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856807

RESUMO

PURPOSE: Ureaplasma urealyticum is a rare pathogen associated with septic arthritis that predominantly affects patients with hypogammaglobulinemia. Bacterial identification of fastidious organisms is challenging because they are undetectable by routine culture testing. To the best of our knowledge, this is the first report of septic arthritis induced by U. urealyticum infection in Japan. CASE DESCRIPTION: We describe the case of a 23-year-old Japanese female with secondary hypogammaglobulinemia (serum immunoglobulin level < 500 mg/dL), identified 8 years after treatment with rituximab. The patient presented with persistent fever and polyarthritis that were unresponsive to ceftriaxone and prednisolone. Contrast-enhanced computed tomography and gallium-67 scintigraphy revealed effusion and inflammation in the left sternoclavicular, hip, wrist, knee, and ankle joints. Although Gram staining and bacterial culture of the drainage fluid from the left hip joint were negative, the condition exhibited characteristics of purulent bacterial infection. The patient underwent empirical treatment with doxycycline, and her symptoms promptly resolved. Subsequent 16S ribosomal RNA (rRNA) gene sequencing of the joint fluid confirmed the presence of U. urealyticum, leading to the diagnosis of septic arthritis. Combination therapy with doxycycline and azithromycin yielded a favorable recovery from the inflammatory status and severe arthritic pain. CONCLUSION: This case highlights U. urealyticum as a potential causative agent of disseminated septic arthritis, particularly in patients with hypogammaglobulinaemia. The 16S rRNA gene analysis proved beneficial for identifying pathogens in culture-negative specimens, such as synovial fluid, in suspected bacterial infections.

15.
Sci Rep ; 14(1): 13516, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866797

RESUMO

Diarrhea and constipation are common health concerns in children. Numerous studies have identified strong association between gut microbiota and digestive-related diseases. But little is known about the gut microbiota that simultaneously affects both diarrhea and constipation or their potential regulatory mechanisms. Stool samples from 618 children (66 diarrhea, 138 constipation, 414 healthy controls) aged 0-3 years were collected to investigate gut microbiota changes using 16S rRNA sequencing. Compared with healthy, children with diarrhea exhibited a significant decrease in microbial diversity, while those with constipation showed a marked increase (p < 0.05). Significantly, our results firstly Ruminococcus increased in constipation (p = 0.03) and decreased in diarrhea (p < 0.01) compared to healthy controls. Pathway analysis revealed that Ruminococcus highly involved in the regulation of five common pathways (membrane transport, nervous system, energy metabolism, signal transduction and endocrine system pathways) between diarrhea and constipation, suggesting a potential shared regulatory mechanism. Our finding firstly reveals one core microorganisms that may affect the steady balance of the gut in children with diarrhea or constipation, providing an important reference for potential diagnosis and treatment of constipation and diarrhea.


Assuntos
Constipação Intestinal , Diarreia , Microbioma Gastrointestinal , RNA Ribossômico 16S , Humanos , Constipação Intestinal/microbiologia , Diarreia/microbiologia , Pré-Escolar , Lactente , Masculino , Feminino , RNA Ribossômico 16S/genética , Fezes/microbiologia , Recém-Nascido , China , Estudos de Casos e Controles , População do Leste Asiático
16.
Chemosphere ; : 142587, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38871193

RESUMO

Ciprofloxacin (CIP) and levofloxacin (LEV) are broad-spectrum antibiotics with potent antibacterial activity. Although many studies have shown that antibiotics can lead to gut microbiota disruption, the effects of CIP and LEV on gut microbial colonization at the embryonic stage remain poorly characterized. Here, we evaluated the response of Bufo gargarizans embryos in terms of gut microbiota colonization, growth and developmental stages to CIP and LEV exposure. Embryos treated with 100 µg /L CIP and LEV exhibited significantly reduced diversity and richness of the gut microbiota, as well as altered community structure. Both CIP and LEV treatments resulted in an increase in the pathogenic bacteria Bosea and Aeromonas, and they appeared to be more resistant to CIP than LEV. Additionally, CIP exposure caused reduced total length and delayed the development in B. gargarizans embryos, while LEV increased the total length and promoted embryonic development. The present study revealed the adverse effects of CIP and LEV exposure on host gut microbiota, growth and development during the embryonic stage, and contributed new perspectives to the evaluation of early aquatic ecological risk under CIP and LEV exposure.

17.
Sci Total Environ ; : 173846, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38871316

RESUMO

Soil bacterial communities play a critical role in shaping soil stability and formation, exhibiting a dynamic interaction with local climate and soil depth. We employed an innovative DNA separation method to characterize microbial assemblages in low-biomass environments such as deserts and distinguish between intracellular DNA (iDNA) and extracellular DNA (eDNA) in soils. This approach, combined with analyses of physicochemical properties and co-occurrence networks, investigated soil bacterial communities across four sites representing diverse climatic gradients (i.e., arid, semi-arid, Mediterranean, and humid) along the Chilean Coastal Cordillera. The separation method yielded a distinctive unimodal pattern in the iDNA pool alpha diversity, increasing from arid to semi-arid climates and decreasing in humid environments, highlighting the rapid feedback of the iDNA community to increasing soil moisture. In the arid region, harsh surface conditions restrict bacterial growth, leading to peak iDNA abundance and diversity occurring in slightly deeper layers than the other sites. Our findings confirmed the association between specialist bacteria and ecosystem-functional traits. We observed transitions from Halomonas and Delftia, resistant to extreme arid environments, to Class AD3 and the genus Bradyrhizobium, associated with plants and organic matter in humid environments. The distance-based redundancy analysis (dbRDA) analysis revealed that soil pH and moisture were the key parameters that influenced bacterial community variation. The eDNA community correlated slightly better with the environment than the iDNA community, whereas the iDNA community was more sensitive to changes in soil physicochemical parameters. Soil depth was found to influence the iDNA community significantly but not the eDNA community, which might be related to depth-related metabolic activity. Our investigation into iDNA communities uncovered deterministic community assembly and distinct co-occurrence modules correlated with unique bacterial taxa, thereby showing connections with sites and key environmental factors. The study additionally revealed the effects of climatic gradients and soil depth on living and dead bacterial communities, emphasizing the need to distinguish between iDNA and eDNA pools.

18.
Heliyon ; 10(11): e31896, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38868067

RESUMO

The Gulf of Thailand provides many services to the Thai population, and human activities may influence the diversity of microorganisms in the seawater. Information of the microorganisms' profile which inhabit the coastline can be used to monitor the water quality. This study aimed to investigate the bacterial community in the waters along the coastline provinces, including Rayong, Chonburi, Prachuap Kiri Khan, and Nakhon Sri Thammarat. Seawater samples were collected at each site, and the conductivity, pH, salinity, temperature, and turbidity were measured. The samples were subjected to whole DNA extraction, 16S rRNA amplification, next-generation sequencing, and statistical analysis to identify the bacterial diversity and analyse the effects of water parameters on the bacterial community. The dominant bacterial phyla found were Proteobacteria, Bacteroidota, and Cyanobacteria. Spearman rank correlation analysis revealed a high correlation of Pseudoalteromonas, the NS5 marine group, Lachnospiraceae, Marinobacterium, Mariviven, and Vibrio with the seawater parameters. The predatory bacteria Peredibacter and Halobacteriovorax were reported among these bacterial communities for the first time in the Gulf of Thailand. Interestingly, Akkermansia, a novel candidate for next-generation probiotics to improve human health, was also found in the sample from Nakhon Sri Thammarat Province. Although the rich-ness and diversity of the bacterial communities differed among sampling sites, it is a possible source of many valuable bacteria for future use.

19.
Heliyon ; 10(11): e31897, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38882314

RESUMO

The accurate estimation of the postmortem interval has been one of the crucial issues to be solved in forensic research, and it is influenced by various factors in the process of decay. With the development of high-throughput sequencing technology, forensic microbiology has become the major hot topic in forensic science, which provides new research options for postmortem interval estimation. The oral microbial community is one of the most diverse of microbiomes, ranking as the second most abundant microbiota following the gastrointestinal tract. It is remarkable that oral microorganisms have a significant function in the decay process of cadavers. Therefore, we collected outdoor soil to simulate the death environment and focused on the relationship between oral microbial community succession and PMI in rats above the soil. In addition, linear regression models and random forest regression models were developed for the relationship between the relative abundance of oral microbes and PMI. We also identified a number of microorganisms that may be important to estimate PMI, including: Ignatzschineria, Morganella, Proteus, Lysinibacillus, Pseudomonas, Globicatella, Corynebacterium, Streptococcus, Rothia, Aerococcus, Staphylococcus, and so on.

20.
PeerJ ; 12: e17416, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38832037

RESUMO

Background: The importance of the gut microbiota in maintaining bone homeostasis has been increasingly emphasized by recent research. This study aimed to identify whether and how the gut microbiome of postmenopausal women with osteoporosis and osteopenia may differ from that of healthy individuals. Methods: Fecal samples were collected from 27 individuals with osteoporosis (OP), 44 individuals with osteopenia (ON), and 23 normal controls (NC). The composition of the gut microbial community was analyzed by 16S rRNA gene sequencing. Results: No significant difference was found in the microbial composition between the three groups according to alpha and beta diversity. At the phylum level, Proteobacteria and Fusobacteriota were significantly higher and Synergistota was significantly lower in the ON group than in the NC group. At the genus level, Roseburia, Clostridia_UCG.014, Agathobacter, Dialister and Lactobacillus differed between the OP and NC groups as well as between the ON and NC groups (p < 0.05). Linear discriminant effect size (LEfSe) analysis results showed that one phylum community and eighteen genus communities were enriched in the NC, ON and OP groups, respectively. Spearman correlation analysis showed that the abundance of the Dialister genus was positively correlated with BMD and T score at the lumbar spine (p < 0.05). Functional predictions revealed that pathways relevant to amino acid biosynthesis, vitamin biosynthesis, and nucleotide metabolism were enriched in the NC group. On the other hand, pathways relevant to metabolites degradation and carbohydrate metabolism were mainly enriched in the ON and OP groups respectively. Conclusions: Our findings provide new epidemiologic evidence regarding the relationship between the gut microbiota and postmenopausal bone loss, laying a foundation for further exploration of therapeutic targets for the prevention and treatment of postmenopausal osteoporosis (PMO).


Assuntos
Doenças Ósseas Metabólicas , Fezes , Microbioma Gastrointestinal , Osteoporose Pós-Menopausa , Humanos , Feminino , China/epidemiologia , Doenças Ósseas Metabólicas/microbiologia , Doenças Ósseas Metabólicas/epidemiologia , Pessoa de Meia-Idade , Idoso , Fezes/microbiologia , Osteoporose Pós-Menopausa/microbiologia , Osteoporose Pós-Menopausa/epidemiologia , RNA Ribossômico 16S/genética , Pós-Menopausa , Estudos de Casos e Controles , Densidade Óssea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...