Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.354
Filtrar
1.
World J Gastroenterol ; 30(22): 2866-2880, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38947288

RESUMO

Coronavirus disease 2019 (COVID-19), caused by the highly pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), primarily impacts the respiratory tract and can lead to severe outcomes such as acute respiratory distress syndrome, multiple organ failure, and death. Despite extensive studies on the pathogenicity of SARS-CoV-2, its impact on the hepatobiliary system remains unclear. While liver injury is commonly indicated by reduced albumin and elevated bilirubin and transaminase levels, the exact source of this damage is not fully understood. Proposed mechanisms for injury include direct cytotoxicity, collateral damage from inflammation, drug-induced liver injury, and ischemia/hypoxia. However, evidence often relies on blood tests with liver enzyme abnormalities. In this comprehensive review, we focused solely on the different histopathological manifestations of liver injury in COVID-19 patients, drawing from liver biopsies, complete autopsies, and in vitro liver analyses. We present evidence of the direct impact of SARS-CoV-2 on the liver, substantiated by in vitro observations of viral entry mechanisms and the actual presence of viral particles in liver samples resulting in a variety of cellular changes, including mitochondrial swelling, endoplasmic reticulum dilatation, and hepatocyte apoptosis. Additionally, we describe the diverse liver pathology observed during COVID-19 infection, encompassing necrosis, steatosis, cholestasis, and lobular inflammation. We also discuss the emergence of long-term complications, notably COVID-19-related secondary sclerosing cholangitis. Recognizing the histopathological liver changes occurring during COVID-19 infection is pivotal for improving patient recovery and guiding decision-making.


Assuntos
COVID-19 , Fígado , SARS-CoV-2 , Humanos , COVID-19/complicações , COVID-19/patologia , COVID-19/virologia , Fígado/patologia , Fígado/virologia , SARS-CoV-2/patogenicidade , Hepatopatias/patologia , Hepatopatias/virologia , Hepatopatias/etiologia , Hepatócitos/patologia , Hepatócitos/virologia
2.
BMC Infect Dis ; 24(1): 663, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38956476

RESUMO

BACKGROUND: Severe COVID-19 is uncommon, restricted to 19% of the total population. In response to the first virus wave (alpha variant of SARS-CoV-2), we investigated whether a biomarker indicated severity of disease and, in particular, if variable expression of angiotensin converting enzyme 2 (ACE2) in blood might clarify this difference in risk and of post COVID -19 conditions (PCC). METHODS: The IRB-approved study compared patients hospitalized with severe COVID-19 to healthy controls. Severe infection was defined requiring oxygen or increased oxygen need from baseline at admission with positive COVID-19 PCR. A single blood sample was obtained from patients within a day of admission. ACE2 RNA expression in blood cells was measured by an RT-PCR assay. Plasma ACE1 and ACE2 enzyme activities were quantified by fluorescent peptides. Plasma TIMP-1, PIIINP and MMP-9 antigens were quantified by ELISA. Data were entered into REDCap and analyzed using STATA v 14 and GraphPad Prism v 10. RESULTS: Forty-eight patients and 72 healthy controls were recruited during the pandemic. ACE2 RNA expression in peripheral blood mononuclear cells (PBMC) was rarely detected acutely during severe COVID-19 but common in controls (OR for undetected ACE2: 12.4 [95% CI: 2.62-76.1]). ACE2 RNA expression in PBMC did not determine plasma ACE1 and ACE2 activity, suggesting alternative cell-signaling pathways. Markers of fibrosis (TIMP-1 and PIIINP) and vasculopathy (MMP-9) were additionally elevated. ACE2 RNA expression during severe COVID-19 often responded within hours to convalescent plasma. Analogous to oncogenesis, we speculate that potent, persistent, cryptic processes following COVID-19 (the renin-angiotensin system (RAS), fibrosis and vasculopathy) initiate or promote post-COVID-19 conditions (PCC) in susceptible individuals. CONCLUSIONS: This work elucidates biological and temporal plausibility for ACE2, TIMP1, PIIINP and MMP-9 in the pathogenesis of PCC. Intersection of these independent systems is uncommon and may in part explain the rarity of PCC.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Leucócitos Mononucleares , SARS-CoV-2 , Humanos , COVID-19/sangue , Enzima de Conversão de Angiotensina 2/sangue , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/virologia , Idoso , Adulto , Biomarcadores/sangue , Inibidor Tecidual de Metaloproteinase-1/sangue , Inibidor Tecidual de Metaloproteinase-1/genética , Metaloproteinase 9 da Matriz/sangue , Metaloproteinase 9 da Matriz/genética , Índice de Gravidade de Doença , Estudos de Casos e Controles , Peptidil Dipeptidase A/sangue , Peptidil Dipeptidase A/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-38967213

RESUMO

BACKGROUND AND AIM: Inflammatory bowel disease is challenging to diagnose. Fecal biomarkers offer noninvasive solutions. The renin-angiotensin-aldosterone system is implicated in intestinal inflammation. Angiotensin-converting enzyme (ACE) and angiotensin-converting enzyme 2 (ACE2) regulate its activity, but conflicting findings on these enzymes in colitis require further investigation. We aimed to assess ACE and ACE2 presence and activities in the feces, serum, and colon of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced rats. METHODS: Colitis was induced in male rats by rectal instillation of a 21% ethanolic TNBS solution. After rats' sacrifice, colonic portions, serum, and feces were collected. ACE and ACE2 presence in the feces was analyzed by western Blot, and colonic and serum enzymes' concentrations were quantified using ELISA kits. ACE activity was assessed using Hippuryl-His-Leu and Z-Phe-His-Leu as substrates. ACE2 activity was assessed using Mca-APK (Dnp) as a substrate in the presence and absence of DX600 (ACE2 inhibitor). RESULTS: An ACE isoform of ~70 kDa was found only in the feces of TNBS-induced rats. ACE concentration was higher than that of ACE2 in the serum and the inflamed colon. ACE N-domain activity was higher than that of the C-domain in all matrices. ACE2 activity was higher in the feces of TNBS-induced animals compared to controls. CONCLUSION: A 70 kDa ACE isoform only detected in the feces of TNBS-induced rats may have translational relevance. ACE N-domain seems to play a significant role in regulating colonic lesions. Further research using human samples is necessary to validate these findings.

4.
Int Immunopharmacol ; 139: 112654, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38996777

RESUMO

Hypertension causes platelet activation and adhesion in the brain resulting in glial activation and neuroinflammation. Further, activation of Angiotensin-Converting Enzyme 2/Angiotensin (1-7)/Mas Receptor (ACE2/Ang (1-7)/MasR) axis of central Renin-Angiotensin System (RAS), is known to reduce glial activation and neuroinflammation, thereby exhibiting anti-hypertensive and anti-neuroinflammatory properties. Therefore, in the present study, the role of ACE2/Ang (1-7)/MasR axis was studied on platelet-induced glial activation and neuroinflammation using Diminazene Aceturate (DIZE), an ACE2 activator, in astrocytes and microglial cells as well as in rat model of hypertension. We found that the ACE2 activator DIZE, independently of its BP-lowering properties, efficiently prevented hypertension-induced glial activation, neuroinflammation, and platelet CD40-CD40L signaling via upregulation of ACE2/Ang (1-7)/MasR axis. Further, DIZE decreased platelet deposition in the brain by reducing the expression of adhesion molecules on the brain endothelium. Activation of ACE2 also reduced hypertension-induced endothelial dysfunction by increasing eNOS bioavailability. Interestingly, platelets isolated from hypertensive rats or activated with ADP had significantly increased sCD40L levels and induced significantly more glial activation than platelets from DIZE treated group. Therefore, injection of DIZE pre-treated ADP-activated platelets into normotensive rats strongly reduced glial activation compared to ADP-treated platelets. Moreover, CD40L-induced glial activation, CD40 expression, and NFкB-NLRP3 inflammatory signaling are reversed by DIZE. Furthermore, the beneficial effects of ACE2 activation, DIZE was found to be significantly blocked by MLN4760 (ACE2 inhibitor) as well as A779 (MasR antagonist) treatments. Hence, our study demonstrated that ACE2 activation reduced the platelet CD40-CD40L induced glial activation and neuroinflammation, hence imparted neuroprotection.

5.
Front Endocrinol (Lausanne) ; 15: 1375409, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040679

RESUMO

Introduction: The classical axis of the renin-angiotensin system (RAS) makes an important contribution to blood pressure regulation under general anesthesia via the vasopressor angiotensin II (Ang II). As part of the alternative RAS, angiotensin-converting enzyme 2 (ACE2) modulates the pro-inflammatory and fibrotic effects of Ang II by processing it into the organ-protective Ang 1-7, which is cleaved to Ang 1-5 by ACE. Although the levels of ACE2 may be associated with postoperative complications, alternative RAS metabolites have never been studied perioperatively. This study was designed to investigate the perioperative kinetics and balance of both RAS axes around major abdominal surgery. Methods: In this observational cohort study, 35 patients undergoing elective major abdominal surgery were included. Blood sampling was performed before and after induction of anesthesia, at 1 h after skin incision, at the end of surgery, and on postoperative days (POD) 1, 3, and 7. The equilibrium concentrations of Ang I-IV, Ang 1-7, and Ang 1-5 in plasma were quantified using mass spectrometry. The plasma protein levels of ACE and ACE2 were measured with ELISA. Results: Surgery caused a rapid, transient, and primarily renin-dependent activation of both RAS axes that returned to baseline on POD 1, followed by suppression. After induction, the Ang II/Ang I ratio persistently decreased, while the ACE levels started to increase on POD 1 (all p < 0.01 versus before anesthesia). Conversely, the ACE2 levels increased on POD 3 and 7 (both p < 0.001 versus before anesthesia), when the median Ang 1-7 concentrations were unquantifiably low. Discussion: The postoperative elevation of ACE2 may prolong the decrease of the Ang II/Ang I ratio through the increased processing of Ang II. Further clarification of the intraoperative factors leading to relative Ang II deficiency and the sources of postoperatively elevated ACE2 is warranted.


Assuntos
Abdome , Angiotensina II , Enzima de Conversão de Angiotensina 2 , Procedimentos Cirúrgicos Eletivos , Complicações Pós-Operatórias , Sistema Renina-Angiotensina , Humanos , Angiotensina II/sangue , Feminino , Masculino , Sistema Renina-Angiotensina/fisiologia , Pessoa de Meia-Idade , Abdome/cirurgia , Idoso , Enzima de Conversão de Angiotensina 2/metabolismo , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/sangue , Peptidil Dipeptidase A/sangue , Estudos de Coortes , Período Pós-Operatório , Angiotensina I/sangue
6.
Front Med (Lausanne) ; 11: 1419612, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040892

RESUMO

Background: Observational studies suggest a connection between ACE2 (angiotensin-converting enzyme 2) and lung cancer. However, it's not apparent if confounding variables are interfering with the link. Therefore, we aimed to define the relationships between ACE2 and the risk of lung cancer. Methods: With the aim of developing genetic tools, we selected SNPs substantially associated with ACE2 using a statistically significant criterion. The relevant SNPs were then taken from the lung cancer GWAS dataset for additional research. After that, we used two-sample Mendelian randomization (MR) to ascertain if ACE2 is causally linked to the risk of developing lung cancer. To investigate the causal links' directions, we also performed a reverse MR analysis. Results: According to our findings, there is strong evidence that ACE2 is linked to a decreased chance of developing lung cancer (odds ratio: 0.94; 95% confidence interval: 0.90-0.98; P = 0.0016). The IVW method, the major MR analysis, was not impacted by heterogeneity in any of the analyses, according to Cochrane's Q test ( P Cochran e ' sQ = 0.207). The MR-Egger intercept (P intercept = 0.622) showed no indication of horizontal pleiotropy in any of the investigations. Outlier SNPs were not detected by the MR-PRESSO global test (P globaltest = 0.191). The leave-one-out analysis was performed, and the results showed a steady outcome. Nonsignificant causal estimates between lung cancer and ACE2 were produced by reverse MR analysis. Conclusion: MR investigation revealed a significant causal link between ACE2 and the risk of getting lung cancer. These findings may have implications for public health measures aimed at reducing the incidence of lung cancer.

7.
Mol Cell Neurosci ; 130: 103953, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39013481

RESUMO

Hypertension-induced brain renin-angiotensin system (RAS) activation and neuroinflammation are hallmark neuropathological features of neurodegenerative diseases. Previous studies from our lab have shown that inhibition of ACE/Ang II/AT1R axis (by AT1R blockers or ACE inhibitors) reduced neuroinflammation and accompanied neurodegeneration via up-regulating adult hippocampal neurogenesis. Apart from this conventional axis, another axis of RAS also exists i.e., ACE2/Ang (1-7)/MasR axis, reported as an anti-hypertensive and anti-inflammatory. However, the role of this axis has not been explored in hypertension-induced glial activation and hippocampal neurogenesis in rat models of hypertension. Hence, in the present study, we examined the effect of ACE2 activator, Diminazene aceturate (DIZE) at 2 different doses of 10 mg/kg (non-antihypertensive) and 15 mg/kg (antihypertensive dose) in renovascular hypertensive rats to explore whether their effect on glial activation, neuroinflammation, and neurogenesis is either influenced by blood-pressure. The results of our study revealed that hypertension induced significant glial activation (astrocyte and microglial), neuroinflammation, and impaired hippocampal neurogenesis. However, ACE2 activation by DIZE, even at the low dose prevented these hypertension-induced changes in the brain. Mechanistically, ACE2 activation inhibited Ang II levels, TRAF6-NFκB mediated inflammatory signaling, NOX4-mediated ROS generation, and mitochondrial dysfunction by upregulating ACE2/Ang (1-7)/MasR signaling. Moreover, DIZE-induced activation of the ACE2/Ang (1-7)/MasR axis upregulated Wnt/ß-catenin signaling, promoting hippocampal neurogenesis during the hypertensive state. Therefore, our study demonstrates that ACE2 activation can effectively prevent glial activation and enhance hippocampal neurogenesis in hypertensive conditions, regardless of its blood pressure-lowering effects.

8.
Bioorg Chem ; 150: 107602, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38959647

RESUMO

The binding affinities and interactions between eight drug candidates, both commercially available (candesartan; losartan; losartan carboxylic acid; nirmatrelvir; telmisartan) and newly synthesized benzimidazole-N-biphenyltetrazole (ACC519T), benzimidazole bis-N,N'-biphenyltetrazole (ACC519T(2) and 4-butyl-N,N-bis([2-(2H-tetrazol-5-yl)biphenyl-4-yl]) methyl (BV6), and the active site of angiotensin-converting enzyme-2 (ACE2) were evaluated for their potential as inhibitors against SARS-CoV-2 and regulators of ACE2 function through Density Functional Theory methodology and enzyme activity assays, respectively. Notably, telmisartan and ACC519T(2) exhibited pronounced binding affinities, forming strong interactions with ACE2's active center, favorably accepting proton from the guanidinium group of arginine273. The ordering of candidates by binding affinity and reactivity descriptors, emerged as telmisartan > ACC519T(2) > candesartan > ACC519T > losartan carboxylic acid > BV6 > losartan > nirmatrelvir. Proton transfers among the active center amino acids revealed their interconnectedness, highlighting a chain-like proton transfer involving tyrosine, phenylalanine, and histidine. Furthermore, these candidates revealed their potential antiviral abilities by influencing proton transfer within the ACE2 active site. Furthermore, through an in vitro pharmacological assays we determined that candesartan and the BV6 derivative, 4-butyl-N,N0-bis[20-2Htetrazol-5-yl)bipheyl-4-yl]methyl)imidazolium bromide (BV6(K+)2) also contain the capacity to increase ACE2 functional activity. This comprehensive analysis collectively underscores the promise of these compounds as potential therapeutic agents against SARS-CoV-2 by targeting crucial protein interactions.


Assuntos
Antagonistas de Receptores de Angiotensina , Enzima de Conversão de Angiotensina 2 , Teoria da Densidade Funcional , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Humanos , Antagonistas de Receptores de Angiotensina/farmacologia , Antagonistas de Receptores de Angiotensina/química , Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/química , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , COVID-19/virologia , Relação Estrutura-Atividade , Estrutura Molecular , Benzimidazóis/farmacologia , Benzimidazóis/química , Tetrazóis/farmacologia , Tetrazóis/química , Tetrazóis/síntese química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Tratamento Farmacológico da COVID-19
9.
J Pharm Pharmacol ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39018169

RESUMO

AIMS: The aim of the present review was to highlight natural product investigations in silico and in vitro to find plants and chemicals that inhibit or stimulate angiotensin-converting enzyme 2 (ACE-2). BACKGROUND: The global reduction of incidents and fatalities attributable to infections with SARS-CoV-2 is one of the most public health problems. In the absence of specific therapy for coronavirus disease 2019 (COVID-19), phytocompounds generated from plant extracts may be a promising strategy worth further investigation, motivating researchers to evaluate the safety and anti-SARS-CoV-2 effectiveness of these ingredients. OBJECTIVE: To review phytochemicals in silico for anti-SARS-CoV-2 activity and to assess their safety and effectiveness in vitro and in vivo. METHODS: The present review was conducted using various scientific databases and studies on anti-SARS-CoV-2 phytochemicals were analyzed and summarized. The results obtained from the in silico screening were subjected to extraction, isolation, and purification. The in vitro studies on anti-SarcoV-2 were also included in this review. In addition, the results of this research were interpreted, analyzed, and documented on the basis of the bibliographic information obtained. RESULTS: This review discusses recent research on using natural remedies to cure or prevent COVID-19 infection. The literature analysis shows that the various herbal preparations (extracts) and purified compounds can block the replication or entrance of the virus directly to carry out their anti-SARS-CoV-2 effects. It is interesting to note that certain items can prevent SARS-CoV-2 from infecting human cells by blocking the ACE-2 receptor or the serine protease TMPRRS2. Moreover, natural substances have been demonstrated to block proteins involved in the SARS-CoV-2 life cycle, such as papain- or chymotrypsin-like proteases. CONCLUSION: The natural products may have the potential for use singly or in combination as alternative drugs to treat/prevent COVID-19 infection, including blocking or stimulating ACE-2. In addition, their structures may provide indications for the development of anti-SARS-CoV-2 drugs.

10.
ACS Sens ; 9(6): 3158-3169, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38843447

RESUMO

An integrated approach combining surface-enhanced Raman spectroscopy (SERS) with a specialized deep learning algorithm to rapidly and accurately detect and quantify SARS-CoV-2 variants is developed based on an angiotensin-converting enzyme 2 (ACE2)-functionalized AgNR@SiO2 array SERS sensor. SERS spectra with concentrations of different variants were collected using a portable Raman system. After appropriate spectral preprocessing, a deep learning algorithm, CoVari, is developed to predict both the viral variant species and concentrations. Using a 10-fold cross-validation strategy, the model achieves an average accuracy of 99.9% in discriminating between different virus variants and R2 values larger than 0.98 for quantifying viral concentrations of the three viruses, demonstrating the high quality of the detection. The limit of detection of the ACE2 SERS sensor is determined to be 10.472, 11.882, and 21.591 PFU/mL for SARS-CoV-2, SARS-CoV-2 B1, and CoV-NL63, respectively. The feature importance of virus classification and concentration regression in the CoVari algorithm are calculated based on a permutation algorithm, which showed a clear correlation to the biochemical origins of the spectra or spectral changes. In an unknown specimen test, classification accuracy can achieve >90% for concentrations larger than 781 PFU/mL, and the predicted concentrations consistently align with actual values, highlighting the robustness of the proposed algorithm. Based on the CoVari architecture and the output vector, this algorithm can be generalized to predict both viral variant species and concentrations simultaneously for a broader range of viruses. These results demonstrate that the SERS + CoVari strategy has the potential for rapid and quantitative detection of virus variants and potentially point-of-care diagnostic platforms.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Aprendizado Profundo , SARS-CoV-2 , Análise Espectral Raman , Análise Espectral Raman/métodos , SARS-CoV-2/isolamento & purificação , Humanos , COVID-19/diagnóstico , COVID-19/virologia , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Nanopartículas Metálicas/química , Prata/química , Técnicas Biossensoriais/métodos , Dióxido de Silício/química , Algoritmos , Limite de Detecção
11.
Artigo em Inglês | MEDLINE | ID: mdl-38909634

RESUMO

BACKGROUND: The Spike protein mutation of SARS-CoV-2 led to decreased protective effect of various vaccines and monoclonal antibodies, suggesting that blocking SARS-CoV-2 infection by targeting host factors would make the therapy more resilient against virus mutations. Angiotensin converting enzyme 2 (ACE2) is the host receptor of SARS-CoV-2 and its variants, as well as many other coronaviruses. Down-regulation of ACE2 expression in the respiratory tract may prevent viral infection. Antisense oligonucleotides (ASOs) can be rationally designed based on sequence data, require no delivery system, and can be administered locally. OBJECTIVE: We sought to design ASOs that can block SARS-CoV-2 by down-regulating ACE2 in human airway. METHODS: ACE2-targeting ASOs were designed using a bioinformatic method and screened in cell lines. Human primary nasal epithelial cells cultured at the air-liquid interface and humanized ACE2 mice were used to detect the ACE2 reduction levels and the safety of ASOs. ASOs pretreated nasal epithelial cells and mice were infected and then used to detect the viral infection levels. RESULTS: ASOs reduced ACE2 expression on mRNA and protein level in cell lines and in human nasal epithelial cells. Furthermore they efficiently suppressed virus replication of three different SARS-CoV-2 variants in human nasal epithelial cells. In vivo, ASOs also down-regulated human ACE2 in humanized ACE2 mice and thereby reduced viral load, histopathological changes in lungs, and they increased survival of mice. CONCLUSION: ACE2-targeting ASOs can effectively block SARS-COV-2 infection. Our study provides a new approach for blocking SARS-CoV-2 and other ACE2-targeting virus in high-risk populations.

12.
Chem Pharm Bull (Tokyo) ; 72(6): 574-583, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38866495

RESUMO

In Vietnam, the stems and roots of the Rutaceous plant Paramignya trimera (Oliv.) Burkill (known locally as "Xáo tam phân") are widely used to treat liver diseases such as viral hepatitis and acute and chronic cirrhosis. In an effort to search for Vietnamese natural compounds capable of inhibiting coronavirus based on molecular docking screening, two new dimeric coumarin glycosides, namely cis-paratrimerin B (1) and cis-paratrimerin A (2), and two previously identified coumarins, the trans-isomers paratrimerin B (3) and paratrimerin A (4), were isolated from the roots of P. trimera and tested for their anti-angiotensin-converting enzyme 2 (ACE-2) inhibitory properties in vitro. It was discovered that ACE-2 enzyme was inhibited by cis-paratrimerin B (1), cis-paratrimerin A (2), and trans-paratrimerin B (3), with IC50 values of 28.9, 68, and 77 µM, respectively. Docking simulations revealed that four biscoumarin glycosides had good binding energies (∆G values ranging from -10.6 to -14.7 kcal/mol) and mostly bound to the S1' subsite of the ACE-2 protein. The key interactions of these natural ligands include metal chelation with zinc ions and multiple H-bonds with Ser128, Glu145, His345, Lys363, Thr371, Glu406, and Tyr803. Our findings demonstrated that biscoumarin glycosides from P. trimera roots occur naturally in both cis- and trans-diastereomeric forms. The biscoumarin glycosides Lys363, Thr371, Glu406, and Tyr803. Our findings demonstrated that biscoumarin glycosides from P. trimera roots hold potential for further studies as natural ACE-2 inhibitors for preventing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.


Assuntos
Enzima de Conversão de Angiotensina 2 , Cumarínicos , Glicosídeos , Simulação de Acoplamento Molecular , SARS-CoV-2 , Glicosídeos/química , Glicosídeos/farmacologia , Glicosídeos/isolamento & purificação , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/química , Humanos , Cumarínicos/química , Cumarínicos/farmacologia , Cumarínicos/isolamento & purificação , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , COVID-19/virologia , Rutaceae/química , Tratamento Farmacológico da COVID-19 , Antivirais/farmacologia , Antivirais/química , Antivirais/isolamento & purificação , Raízes de Plantas/química , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/isolamento & purificação
13.
Virology ; 597: 110149, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38917689

RESUMO

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a significant socioeconomic burden, and combating COVID-19 is imperative. Blocking the SARS-CoV-2 RBD-ACE2 interaction is a promising therapeutic approach for viral infections, as SARS-CoV-2 binds to the ACE2 receptors of host cells via the RBD of spike proteins to infiltrate these cells. We used computer-aided drug design technology and cellular experiments to screen for peptide S4 with high affinity and specificity for the human ACE2 receptor through structural analysis of SARS-CoV-2 and ACE2 interactions. Cellular experiments revealed that peptide S4 effectively inhibited SARS-CoV-2 and HCoV-NL63 viruses from infecting host cells and was safe for cells at effective concentrations. Based on these findings, peptide S4 may be a potential pharmaceutical agent for clinical application in the treatment of the ongoing SARS-CoV-2 pandemic.


Assuntos
Enzima de Conversão de Angiotensina 2 , Antivirais , Peptídeos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Internalização do Vírus , Humanos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Enzima de Conversão de Angiotensina 2/metabolismo , Internalização do Vírus/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Peptídeos/farmacologia , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Ligação Proteica , COVID-19/virologia , Coronavirus Humano NL63/efeitos dos fármacos , Coronavirus Humano NL63/fisiologia , Chlorocebus aethiops , Animais
14.
Cureus ; 16(5): e61172, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38933630

RESUMO

The novel SARS-CoV-2 introduced several new inflammatory conditions including SARS-CoV-2-associated rhabdomyolysis and viral myositis. We present a 22-year-old man who noted a week of cough followed by myalgias, dark-colored urine, and decreased oral intake. He was found to have acute nontraumatic rhabdomyolysis after an acutely positive SARS-CoV-2 test. Initial creatine kinase (CK) level was above the reference range as were liver enzymes reflective of muscle breakdown. Treatment involved fluid resuscitation and pain control, with close monitoring of kidney, liver, and skeletal markers over five days of hospitalization till there was clinical and symptomatic improvement.

15.
Chem Biodivers ; : e202400717, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38837886

RESUMO

Severe acute respiratory syndrome coronavirus 2 poses ongoing global health challenges due to its propensity for mutations, which can undermine vaccine efficacy. With no definitive treatment available, urgent research into affordable and biocompatible therapeutic agents is extremely urgent. Angiotensin converting enzyme-2 (ACEII), transmembrane protease serine subtype 2 (TMPRSS2), and Furin enzymes, which allow the virus to enter cells, are particularly important as potential drug targets among scientists. Olive leaf extract (OLE) has garnered attention for its potential against COVID-19, yet its mechanism remains understudied. In this study, we aimed to investigate the effects of OLE on ACEII, TMPRSS2, and Furin protein expressions by cell culture study. Total phenol, flavonoid content, and antioxidant capacity were measured by photometric methods, and oleuropein levels were measured by liquid LC-HR-MS. Cell viability was analyzed by ATP levels using a luminometric method.  ACEII, TMPRSS2, and Furin expressions were analyzed by the Western Blotting method. ACEII, TMPRSS2, and Furin protein expression levels were significantly lower in dose dependent manner and the highest inhibition was seen at 100 ug/ml OLE. The results showed that OLE may be a promising treatment candidate for COVID-19 disease.  However, further studies need to be conducted in cells co-infected with the virus.

16.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892098

RESUMO

There is a lack of studies aiming to assess cellular a disintegrin and metalloproteinase-17 (ADAM-17) activity in COVID-19 patients and the eventual associations with the shedding of membrane-bound angiotensin-converting enzyme 2 (mACE2). In addition, studies that investigate the relationship between ACE2 and ADAM-17 gene expressions in organs infected by SARS-CoV-2 are lacking. We used data from the Massachusetts general hospital COVID-19 study (306 COVID-19 patients and 78 symptomatic controls) to investigate the association between plasma levels of 33 different ADAM-17 substrates and COVID-19 severity and mortality. As a surrogate of cellular ADAM-17 activity, an ADAM-17 substrate score was calculated. The associations between soluble ACE2 (sACE2) and the ADAM-17 substrate score, renin, key inflammatory markers, and lung injury markers were investigated. Furthermore, we used data from the Genotype-Tissue Expression (GTEx) database to evaluate ADAM-17 and ACE2 gene expressions by age and sex in ages between 20-80 years. We found that increased ADAM-17 activity, as estimated by the ADAM-17 substrates score, was associated with COVID-19 severity (p = 0.001). ADAM-17 activity was also associated with increased mortality but did not reach statistical significance (p = 0.06). Soluble ACE2 showed the strongest positive correlation with the ADAM-17 substrate score, follow by renin, interleukin-6, and lung injury biomarkers. The ratio of ADAM-17 to ACE2 gene expression was highest in the lung. This study indicates that increased ADAM-17 activity is associated with severe COVID-19. Our findings also indicate that there may a bidirectional relationship between membrane-bound ACE2 shedding via increased ADAM-17 activity, dysregulated renin-angiotensin system (RAS) and immune signaling. Additionally, differences in ACE2 and ADAM-17 gene expressions between different tissues may be of importance in explaining why the lung is the organ most severely affected by COVID-19, but this requires further evaluation in prospective studies.


Assuntos
Proteína ADAM17 , Enzima de Conversão de Angiotensina 2 , COVID-19 , SARS-CoV-2 , Índice de Gravidade de Doença , Humanos , COVID-19/virologia , COVID-19/metabolismo , COVID-19/genética , COVID-19/patologia , Proteína ADAM17/metabolismo , Proteína ADAM17/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Pessoa de Meia-Idade , Feminino , Masculino , Idoso , Adulto , Idoso de 80 Anos ou mais , Adulto Jovem , Biomarcadores/sangue
17.
Cureus ; 16(5): e60852, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38910667

RESUMO

Angioedema is a condition characterized by non-pitting swelling of the subcutaneous or submucosal tissues in particular the face, lips, and oral cavity. Angiotensin-converting enzyme (ACE) inhibitors are known to contribute to the development of angioedema by increasing the levels of bradykinin and its active metabolites. Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is hypothesized to contribute to the development of angioedema by modifying ACE II levels and further increasing the level of bradykinin in patients taking ACE inhibitors. African Americans may be at particular risk of developing angioedema with concomitant SARS-CoV-2 infection and ACE inhibitor use. This case involves a 31-year-old African American male diagnosed with coronavirus disease 2019 (COVID-19) who developed angioedema while taking an ACE inhibitor.

18.
FASEB J ; 38(10): e23656, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38752523

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Obesity is a major risk factor for the development of COVID-19. Angiotensin-converting enzyme 2 (ACE2) is an essential receptor for cell entry of SARS-CoV-2. The receptor-binding domain of the S1 subunit (S1-RBD protein) in the SARS-CoV-2 spike glycoprotein binds to ACE2 on host cells, through which the virus enters several organs, including the lungs. Considering these findings, recombinant ACE2 might be utilized as a decoy protein to attenuate SARS-CoV-2 infection. Here, we examined whether obesity increases ACE2 expression in the lungs and whether recombinant ACE2 administration diminishes the entry of S1-RBD protein into lung cells. We observed that high-fat diet-induced obesity promoted ACE2 expression in the lungs by increasing serum levels of LPS derived from the intestine. S1-RBD protein entered the lungs specifically through ACE2 expressed in host lungs and that the administration of recombinant ACE2 attenuated this entry. We conclude that obesity makes hosts susceptible to recombinant SARS-CoV-2 spike proteins due to elevated ACE2 expression in lungs, and this model of administering S1-RBD protein can be applied to new COVID-19 treatments.


Assuntos
COVID-19 , Dieta Hiperlipídica , Pulmão , Obesidade , Proteínas Recombinantes , Glicoproteína da Espícula de Coronavírus , Animais , Humanos , Masculino , Camundongos , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , COVID-19/metabolismo , COVID-19/virologia , Dieta Hiperlipídica/efeitos adversos , Pulmão/metabolismo , Pulmão/virologia , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo , Proteínas Recombinantes/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Internalização do Vírus
19.
Acta Pharm Sin B ; 14(5): 1939-1950, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38799626

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been significantly alleviated. However, long-term health effects and prevention strategy remain unresolved. Thus, it is essential to explore the pathophysiological mechanisms and intervention for SARS-CoV-2 infection. Emerging research indicates a link between COVID-19 and bile acids, traditionally known for facilitating dietary fat absorption. The bile acid ursodeoxycholic acid potentially protects against SARS-CoV-2 infection by inhibiting the farnesoid X receptor, a bile acid nuclear receptor. The activation of G-protein-coupled bile acid receptor, another membrane receptor for bile acids, has also been found to regulate the expression of angiotensin-converting enzyme 2, the receptor through which the virus enters human cells. Here, we review the latest basic and clinical evidence linking bile acids to SARS-CoV-2, and reveal their complicated pathophysiological mechanisms.

20.
Sci Rep ; 14(1): 10505, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714718

RESUMO

Metabolic syndrome (MetS) is closely related to cardiovascular and cerebrovascular diseases, and genetic predisposition is one of the main triggers for its development. To identify the susceptibility genes for MetS, we investigated the relationship between angiotensin-converting enzyme 2 (ACE2) single nucleotide polymorphisms (SNPs) and MetS in southern China. In total, 339 MetS patients and 398 non-MetS hospitalized patients were recruited. Four ACE2 polymorphisms (rs2074192, rs2106809, rs879922, and rs4646155) were genotyped using the polymerase chain reaction-ligase detection method and tested for their potential association with MetS and its related components. ACE2 rs2074192 and rs2106809 minor alleles conferred 2.485-fold and 3.313-fold greater risks of MetS in women. ACE2 rs2074192 and rs2106809 variants were risk factors for obesity, diabetes, and low-high-density lipoprotein cholesterolemia. However, in men, the ACE2 rs2074192 minor allele was associated with an approximately 0.525-fold reduction in MetS prevalence. Further comparing the components of MetS, ACE2 rs2074192 and rs2106809 variants reduced the risk of obesity and high triglyceride levels. In conclusion, ACE2 rs2074192 and rs2106809 SNPs were independently associated with MetS in a southern Chinese population and showed gender heterogeneity, which can be partially explained by obesity. Thus, these SNPs may be utilized as predictive biomarkers and molecular targets for MetS. A limitation of this study is that environmental and lifestyle differences, as well as genetic heterogeneity among different populations, were not considered in the analysis.


Assuntos
Enzima de Conversão de Angiotensina 2 , Predisposição Genética para Doença , Síndrome Metabólica , Polimorfismo de Nucleotídeo Único , Humanos , Síndrome Metabólica/genética , Síndrome Metabólica/epidemiologia , Enzima de Conversão de Angiotensina 2/genética , Feminino , Masculino , Pessoa de Meia-Idade , China/epidemiologia , Estudos de Casos e Controles , Alelos , Idoso , Adulto , Fatores de Risco , Peptidil Dipeptidase A/genética , Frequência do Gene , Genótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA