Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.333
Filtrar
1.
J Agric Food Chem ; 72(19): 10909-10922, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38689562

RESUMO

Pumpkin (Cucurbita moschata) seed meal (PSM), the major byproduct of pumpkin seed oil industry, was used to prepare angiotensin-converting enzyme (ACE) inhibitory and angiotensin-converting enzyme 2 (ACE2) upregulating peptides. These peptides were isolated and purified from the PSM hydrolysate prepared using Neutrase 5.0 BG by ultrafiltration, Sephadex G-15 column chromatography, and reversed-phase high-performance liquid chromatography. Two peptides with significant ACE inhibition activity were identified as SNHANQLDFHP and PVQVLASAYR with IC50 values of 172.07 and 90.69 µM, respectively. The C-terminal tripeptides of the two peptides contained Pro, Phe, and Tyr, respectively, and PVQVLASAYR also had Val in its N-terminal tripeptide, which was a favorable structure for ACE inhibition. Molecular docking results declared that the two peptides could interact with ACE through hydrogen bonds and hydrophobic interactions. Furthermore, the two peptides performed protective function on EA.hy926 cells by decreasing the secretion of endothelin-1, increasing the release of nitric oxide, and regulating the ACE2 activity. In vitro simulated gastrointestinal digestion showed the two peptides exhibited good stability against gastrointestinal enzyme digestion. In conclusion, PSM is a promising material for preparing antihypertensive peptides.


Assuntos
Enzima de Conversão de Angiotensina 2 , Inibidores da Enzima Conversora de Angiotensina , Cucurbita , Simulação de Acoplamento Molecular , Peptídeos , Peptidil Dipeptidase A , Sementes , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Cucurbita/química , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Sementes/química , Humanos , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Hidrolisados de Proteína/química , Hidrolisados de Proteína/metabolismo , Regulação para Cima/efeitos dos fármacos , Linhagem Celular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo
2.
Adv Appl Bioinform Chem ; 17: 61-70, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38764460

RESUMO

Purpose: This study aimed to screen potential drug candidates from the flavonoids of the genus Erythrina for the Corona Virus Disease 2019 (COVID-19) treatment. Patients and Methods: A comprehensive screening was conducted on the structures of 473 flavonoids derived from the genus Erythrina, focusing on their potential toxicity and pharmacokinetic profiles. Subsequently, flavonoids that were non-toxic and possessed favorable pharmacokinetic properties underwent further analysis to explore their interactions with the angiotensin-converting enzyme 2 (ACE2) receptor, employing molecular docking and molecular dynamics simulations. Results: Among 473 flavonoids, 104 were predicted to be safe from being mutagenic, hepatotoxic, and inhibitors of the human ether-a-go-go-related gene (hERG). Among these 104 flavonoids, 18 compounds were predicted not to be substrates of P-glycoprotein (P-gp). Among these 18 flavonoids, gangetinin (471) and erybraedin D (310) exhibit low binding affinities and root mean square deviation (RMSD) values, indicating stable binding to the ACE2 receptor. The physicochemical attributes of compounds 310 and 471 suggest that they possess drug-like properties. Conclusion: Gangetinin (471) and erybraedin D (310) may serve as promising candidates for COVID-19 treatment due to their potential to inhibit the ACE2-RBD interaction. This warrants further investigation into their inhibitory effects on ACE2-RBD binding through in vitro experiments.

3.
Virulence ; 15(1): 2351266, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38717195

RESUMO

Background: The COVID-19 pandemic has led to millions of fatalities globally. Kidney transplant (KT) patients, given their comorbidities and under immunosuppressant drugs, are identified as a high-risk group. Though vaccination remains pivotal for pandemic control, some studies indicate that KT exhibits diminished immune reactions to SARS-CoV-2 vaccines. Therefore, evaluating the vaccine responses in KT, especially the humoral responses against emergent variants is crucial.Methods: We developed a multiplexed SARS-CoV-2 variant protein microarray, incorporating the extracellular domain (ECD) and the receptor binding domain (RBD) of the spike proteins from the variants. This was employed to investigate the collective humoral responses after administering two doses of mRNA-1273 and AZD1222 vaccines in KT under immunosuppressive drugs and in healthy controls.Results: After two doses of either mRNA-1273 or AZD1222, the KT generally showed lower surrogate neutralizing and total antibodies against spike ECD in multiple variants compared to healthy controls. Although two doses of mRNA-1273 induced 1.5-2 fold more surrogate neutralizing and total antibodies than AZD1222 in healthy controls, the KT subjects with two doses of mRNA-1273 generally exhibited higher surrogate neutralizing but similar total antibodies against spike ECD in multiple variants. There were moderate to high correlations between the surrogate neutralizing and total antibodies against spike ECDs.Conclusion: This study offers pivotal insights into the relative vulnerability of KT concerning humoral immunity and the evolving mutations of SARS-CoV-2. Such findings are useful for evaluating vaccine responses and recommending vaccine episodes for KT.


Assuntos
Vacina de mRNA-1273 contra 2019-nCoV , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Imunidade Humoral , Transplante de Rim , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , SARS-CoV-2/imunologia , SARS-CoV-2/genética , COVID-19/prevenção & controle , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Anticorpos Antivirais/sangue , Masculino , Pessoa de Meia-Idade , Feminino , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Vacina de mRNA-1273 contra 2019-nCoV/administração & dosagem , Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Adulto , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Imunossupressores/administração & dosagem , Vacinação , Idoso , Transplantados
4.
FASEB J ; 38(10): e23656, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38752523

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Obesity is a major risk factor for the development of COVID-19. Angiotensin-converting enzyme 2 (ACE2) is an essential receptor for cell entry of SARS-CoV-2. The receptor-binding domain of the S1 subunit (S1-RBD protein) in the SARS-CoV-2 spike glycoprotein binds to ACE2 on host cells, through which the virus enters several organs, including the lungs. Considering these findings, recombinant ACE2 might be utilized as a decoy protein to attenuate SARS-CoV-2 infection. Here, we examined whether obesity increases ACE2 expression in the lungs and whether recombinant ACE2 administration diminishes the entry of S1-RBD protein into lung cells. We observed that high-fat diet-induced obesity promoted ACE2 expression in the lungs by increasing serum levels of LPS derived from the intestine. S1-RBD protein entered the lungs specifically through ACE2 expressed in host lungs and that the administration of recombinant ACE2 attenuated this entry. We conclude that obesity makes hosts susceptible to recombinant SARS-CoV-2 spike proteins due to elevated ACE2 expression in lungs, and this model of administering S1-RBD protein can be applied to new COVID-19 treatments.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Dieta Hiperlipídica , Pulmão , Obesidade , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Dieta Hiperlipídica/efeitos adversos , Camundongos , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Pulmão/metabolismo , Pulmão/virologia , SARS-CoV-2/metabolismo , Obesidade/metabolismo , COVID-19/metabolismo , COVID-19/virologia , Camundongos Endogâmicos C57BL , Internalização do Vírus , Masculino , Humanos , Camundongos Obesos , Proteínas Recombinantes/metabolismo
5.
Sci Rep ; 14(1): 10505, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714718

RESUMO

Metabolic syndrome (MetS) is closely related to cardiovascular and cerebrovascular diseases, and genetic predisposition is one of the main triggers for its development. To identify the susceptibility genes for MetS, we investigated the relationship between angiotensin-converting enzyme 2 (ACE2) single nucleotide polymorphisms (SNPs) and MetS in southern China. In total, 339 MetS patients and 398 non-MetS hospitalized patients were recruited. Four ACE2 polymorphisms (rs2074192, rs2106809, rs879922, and rs4646155) were genotyped using the polymerase chain reaction-ligase detection method and tested for their potential association with MetS and its related components. ACE2 rs2074192 and rs2106809 minor alleles conferred 2.485-fold and 3.313-fold greater risks of MetS in women. ACE2 rs2074192 and rs2106809 variants were risk factors for obesity, diabetes, and low-high-density lipoprotein cholesterolemia. However, in men, the ACE2 rs2074192 minor allele was associated with an approximately 0.525-fold reduction in MetS prevalence. Further comparing the components of MetS, ACE2 rs2074192 and rs2106809 variants reduced the risk of obesity and high triglyceride levels. In conclusion, ACE2 rs2074192 and rs2106809 SNPs were independently associated with MetS in a southern Chinese population and showed gender heterogeneity, which can be partially explained by obesity. Thus, these SNPs may be utilized as predictive biomarkers and molecular targets for MetS. A limitation of this study is that environmental and lifestyle differences, as well as genetic heterogeneity among different populations, were not considered in the analysis.


Assuntos
Enzima de Conversão de Angiotensina 2 , Predisposição Genética para Doença , Síndrome Metabólica , Polimorfismo de Nucleotídeo Único , Humanos , Síndrome Metabólica/genética , Síndrome Metabólica/epidemiologia , Enzima de Conversão de Angiotensina 2/genética , Feminino , Masculino , Pessoa de Meia-Idade , China/epidemiologia , Estudos de Casos e Controles , Alelos , Idoso , Adulto , Fatores de Risco , Peptidil Dipeptidase A/genética , Frequência do Gene , Genótipo
6.
Curr Pharm Des ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566383

RESUMO

The SARS-CoV-2 virus emerged towards the end of 2019 and caused a major worldwide pandemic lasting at least 2 years, causing a disease called COVID-19. SARS-CoV-2 caused a severe infection with direct cellular toxicity, stimulation of cytokine release, increased oxidative stress, disruption of endothelial structure, and thromboinflammation, as well as angiotensin-converting enzyme 2 (ACE2) down-regulation-mediated renin-angiotensin system (RAS) activation. In addition to glucosuria and natriuresis, sodium-glucose transport protein 2 (SGLT2) inhibitors (SGLT2i) cause weight loss, a decrease in glucose levels with an insulin-independent mechanism, an increase in erythropoietin levels and erythropoiesis, an increase in autophagy and lysosomal degradation, Na+/H+-changer inhibition, prevention of ischemia/reperfusion injury, oxidative stress and they have many positive effects such as reducing inflammation and improving vascular function. There was great anticipation for SGLT2i in treating patients with diabetes with COVID-19, but current data suggest they are not very effective. Moreover, there has been great confusion in the literature about the effects of SGLT2i on COVID-19 patients with diabetes . Various factors, including increased SGLT1 activity, lack of angiotensin receptor blocker co-administration, the potential for ketoacidosis, kidney injury, and disruptions in fluid and electrolyte levels, may have hindered SGLT2i's effectiveness against COVID-19. In addition, the duration of use of SGLT2i and their impact on erythropoiesis, blood viscosity, cholesterol levels, and vitamin D levels may also have played a role in their failure to treat the virus. This article aims to uncover the reasons for the confusion in the literature and to unravel why SGLT2i failed to succeed in COVID-19 based on some solid evidence as well as speculative and personal perspectives.

7.
Cureus ; 16(3): e55571, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38576676

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus discovered in late 2019 in Wuhan, Hubei Province, China. The virus has now developed into a full-scale global pandemic affecting hundreds of millions of people to date. A majority of cases present with nonspecific acute upper respiratory symptoms. A wide range of systemic symptoms has been reported, with some patients presenting with nonspecific extrapulmonary symptoms. Recently, there has been an increased association of COVID-19-positive patients presenting with ocular symptoms. As an increasing number of patients present with ophthalmic manifestations, recognizing these visual symptoms is of utmost importance. Some patients may present with ocular symptoms as the first indication of COVID-19 infection; quickly isolating and starting treatment can aid in stopping the spread of this novel coronavirus. This review will describe the current epidemiology and pathophysiology of SARS-CoV-2, emphasizing the ophthalmic manifestations and their clinical course progression. Further, we will be reporting on the growing number of rare ocular manifestations that have occurred in some COVID-19-positive patients, along with the route of transmission, specific manifestations, and the treatment methods for both these pulmonary and extrapulmonary symptoms, specifically the ocular manifestations.

9.
J Agric Food Chem ; 72(15): 8606-8617, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38581395

RESUMO

Peptide IRW is the first food-derived angiotensin-converting enzyme 2 (ACE2) upregulator. This study aimed to investigate the pharmacokinetic characteristics of IRW and identify the metabolites contributing to its antihypertensive activity in spontaneously hypertensive rats (SHRs). Rats were administered 100 mg of IRW/kg of the body weight via an intragastric or intravenous route. The bioavailability (F %) was determined to be 11.7%, and the half-lives were 7.9 ± 0.5 and 28.5 ± 6.8 min for gavage and injection, respectively. Interestingly, significant blood pressure reduction was not observed until 1.5 h post oral administration, or 2 h post injection, indicating that the peptide's metabolites are likely responsible for the blood pressure-lowering activity. Time-course metabolomics revealed a significant increase in the level of kynurenine, a tryptophan metabolite, in blood after IRW administration. Kynurenine increased the level of ACE2 in cells. Oral administration of tryptophan (W), but not dipeptide IR, lowered the blood pressure and upregulated aortic ACE2 in SHRs. Our study supports the key role of tryptophan and its metabolite, kynurenine, in IRW's blood pressure-lowering effects.


Assuntos
Enzima de Conversão de Angiotensina 2 , Hipertensão , Ratos , Animais , Ratos Endogâmicos SHR , Enzima de Conversão de Angiotensina 2/metabolismo , Disponibilidade Biológica , Cinurenina/metabolismo , Cinurenina/farmacologia , Triptofano/metabolismo , Peptídeos/metabolismo , Anti-Hipertensivos/farmacologia , Pressão Sanguínea , Hipertensão/metabolismo , Peptidil Dipeptidase A/metabolismo
10.
J Pharm Biomed Anal ; 245: 116142, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38631070

RESUMO

Traditional Chinese Medicine (TCM) is a supremely valuable resource for the development of drug discovery. Few methods are capable of hunting for potential molecule ligands from TCM towards more than one single protein target. In this study, a novel dual-target surface plasmon resonance (SPR) biosensor was developed to perform targeted compound screening of two key proteins involved in the cellular invasion process of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): the spike (S) protein receptor binding domain (RBD) and the angiotensin-converting enzyme 2 (ACE2). The screening and identification of active compounds from six Chinese herbs were conducted taking into consideration the multi-component and multi-target nature of Traditional Chinese Medicine (TCM). Puerarin from Radix Puerariae Lobatae was discovered to exhibit specific binding affinity to both S protein RBD and ACE2. The results highlight the efficiency of the dual-target SPR system in drug screening and provide a novel approach for exploring the targeted mechanisms of active components from Chinese herbs for disease treatment.


Assuntos
Enzima de Conversão de Angiotensina 2 , Medicamentos de Ervas Chinesas , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Ressonância de Plasmônio de Superfície , Enzima de Conversão de Angiotensina 2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Ressonância de Plasmônio de Superfície/métodos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Ligantes , Humanos , SARS-CoV-2/efeitos dos fármacos , Ligação Proteica , Medicina Tradicional Chinesa/métodos , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , COVID-19/virologia , Tratamento Farmacológico da COVID-19
11.
BMC Infect Dis ; 24(1): 429, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649818

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly contagious virus that uses angiotensin converting enzyme 2 (ACE2), a pivotal member of the renin-angiotensin system (RAS), as its cell-entry receptor. Another member of the RAS, angiotensin II (Ang II), is the major biologically active component in this system. There is growing evidence suggesting that serum miRNAs could serve as prognostic biomarkers for SARS-CoV-2 infection and regulate ACE2 expression. Therefore, the aim of this study is to evaluate the changes in the serum levels of sACE2 and Ang II, as well as the expression level of miR-141-3p and miR-421 in SARS-CoV-2 positive and negative subjects. METHODS: In the present study, the serum levels of sACE2 and Ang II were measured in 94 SARS-CoV-2 positive patients and 94 SARS-CoV-2 negative subjects with some symptoms similar to those of SARS-CoV-2 positive patients using the ELISA method. In addition, the expression level of miR-141-3p and miR-421 as ACE2 regulators and biomarkers was evaluated using quantitative real-time PCR (qRT-PCR) method. RESULTS: The mean serum sACE2 concentration in the SARS-CoV-2-positive group was 3.268 ± 0.410 ng/ml, whereas in the SARS-CoV-2 negative group, it was 3.564 ± 0.437 ng/ml. Additionally, the mean serum Ang II level in the SARS-CoV-2 positive and negative groups were 60.67 ± 6.192 ng/L and 67.97 ± 6.837 ng/L, respectively. However, there was no significant difference in the serum levels of sACE2 (P value: 0.516) and Ang II (P value: 0.134) between the SARS-CoV-2 positive and negative groups. Meanwhile, our findings indicated that the expression levels of miR-141-3p and miR-421 in SARS-CoV-2 positive group were significantly lower and higher than SARS-CoV-2 negative group, respectively (P value < 0.001). CONCLUSIONS: Taken together, the results of this study showed that the serum levels of sACE2 and Ang II in SARS-CoV-2 positive and negative subjects were not significantly different, but the expression levels of miR-141-3p and miR-421 were altered in SARS-CoV-2 positive patients which need more investigation to be used as biomarkers for COVID-19 diagnosis.


Assuntos
Angiotensina II , Enzima de Conversão de Angiotensina 2 , COVID-19 , MicroRNAs , SARS-CoV-2 , Humanos , MicroRNAs/sangue , COVID-19/diagnóstico , COVID-19/sangue , COVID-19/virologia , Enzima de Conversão de Angiotensina 2/sangue , Enzima de Conversão de Angiotensina 2/genética , Angiotensina II/sangue , Masculino , Feminino , Estudos de Casos e Controles , Pessoa de Meia-Idade , Adulto , Biomarcadores/sangue , Idoso
12.
World J Diabetes ; 15(4): 606-622, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38680697

RESUMO

Coronavirus disease 2019 (COVID-19) is a disease that caused a global pandemic and is caused by infection of severe acute respiratory syndrome coronavirus 2 virus. It has affected over 768 million people worldwide, resulting in approximately 6900000 deaths. High-risk groups, identified by the Centers for Disease Control and Prevention, include individuals with conditions like type 2 diabetes mellitus (T2DM), obesity, chronic lung disease, serious heart conditions, and chronic kidney disease. Research indicates that those with T2DM face a heightened susceptibility to COVID-19 and increased mortality compared to non-diabetic individuals. Examining the renin-angiotensin system (RAS), a vital regulator of blood pressure and pulmonary stability, reveals the significance of the angiotensin-converting enzyme (ACE) and ACE2 enzymes. ACE converts angiotensin-I to the vasoconstrictor angiotensin-II, while ACE2 counters this by converting angiotensin-II to angiotensin 1-7, a vasodilator. Reduced ACE2 expression, common in diabetes, intensifies RAS activity, contributing to conditions like inflammation and fibrosis. Although ACE inhibitors and angiotensin receptor blockers can be therapeutically beneficial by increasing ACE2 levels, concerns arise regarding the potential elevation of ACE2 receptors on cell membranes, potentially facilitating COVID-19 entry. This review explored the role of the RAS/ACE2 mechanism in amplifying severe acute respiratory syndrome coronavirus 2 infection and associated complications in T2DM. Potential treatment strategies, including recombinant human ACE2 therapy, broad-spectrum antiviral drugs, and epigenetic signature detection, are discussed as promising avenues in the battle against this pandemic.

13.
Chem Zvesti ; 78(6): 3431-3441, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38685970

RESUMO

Chemical prototypes with broad-spectrum antiviral activity are important toward developing new therapies that can act on both existing and emerging viruses. Binding of the SARS-CoV-2 spike protein to the host angiotensin-converting enzyme 2 (ACE2) receptor is required for cellular entry of SARS-CoV-2. Toward identifying new chemical leads that can disrupt this interaction, including in the presence of SARS-CoV-2 adaptive mutations found in variants like omicron that can circumvent vaccine, immune, and therapeutic antibody responses, we synthesized 5-chloro-3-(2-(2,4-dinitrophenyl)hydrazono)indolin-2-one (H2L) from the condensation reaction of 5-chloroisatin and 2,4-dinitrophenylhydrazine in good yield. H2L was characterised by elemental and spectral (IR, electronic, Mass) analyses. The NMR spectrum of H2L indicated a keto-enol tautomerism, with the keto form being more abundant in solution. H2L was found to selectively interfere with binding of the SARS-CoV-2 spike receptor-binding domain (RBD) to the host angiotensin-converting enzyme 2 receptor with a 50% inhibitory concentration (IC50) of 0.26 µM, compared to an unrelated PD-1/PD-L1 ligand-receptor-binding pair with an IC50 of 2.06 µM in vitro (Selectivity index = 7.9). Molecular docking studies revealed that the synthesized ligand preferentially binds within the ACE2 receptor-binding site in a region distinct from where spike mutations in SARS-CoV-2 variants occur. Consistent with these models, H2L was able to disrupt ACE2 interactions with the RBDs from beta, delta, lambda, and omicron variants with similar activities. These studies indicate that H2L-derived compounds are potential inhibitors of multiple SARS-CoV-2 variants, including those capable of circumventing vaccine and immune responses. Supplementary Information: The online version contains supplementary material available at 10.1007/s11696-023-03274-5.

14.
Eur J Pharm Biopharm ; 198: 114248, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467335

RESUMO

Fc Fusion protein represents a versatile molecular platform with considerable potential as protein therapeutics of which the charge heterogeneity should be well characterized according to regulatory guidelines. Angiotensin-converting enzyme 2 Fc fusion protein (ACE2Fc) has been investigated as a potential neutralizing agent to various coronaviruses, including the lingering SARS-CoV-2, as this coronavirus must bind to ACE2 to allow for its entry into host cells. ACE2Fc, an investigational new drug developed by Henlius (Shanghai China), has passed the Phase I clinical trial, but its huge amount of charge isoforms and complicated charge heterogeneity posed a challenge to charge variant investigation in pharmaceutical development. We employed offline free-flow isoelectric focusing (FF-IEF) fractionation, followed by detailed characterization of enriched ACE2Fc fractions, to unveil the structural origins of charge heterogeneity in ACE2Fc expressed by recombinant CHO cells. We adopted a well-tuned 3-component separation medium for ACE2Fc fractionation, the highest allowable voltage to maximize the FF-IEF separation window and a mild Protein A elution method for preservation of protein structural integrity. Through peptide mapping and other characterizations, we revealed that the intricate profiles of ACE2Fc charge heterogeneity are mainly caused by highly sialylated multi-antenna N-glycosylation. In addition, based on fraction characterization and in silico glycoprotein model analysis, we discovered that the large acidic glycans at N36, N73, and N305 of ACE2Fc were able to decrease the binding activity towards Spike (S) protein of SARS-CoV-2. Our study exemplifies the value of FF-IEF in highly complex fusion protein characterization and revealed a quantitative sialylation-activity relationship in ACE2Fc.


Assuntos
Glicoproteínas , Animais , Cricetinae , Cricetulus , China , Proteínas Recombinantes , Focalização Isoelétrica/métodos , Ligação Proteica
15.
Nano Lett ; 24(14): 4064-4071, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38466130

RESUMO

Herein, we fabricate host-directed virus-mimicking particles (VMPs) to block the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into host cells through competitive inhibition enabled by their interactions with the angiotensin-converting enzyme 2 (ACE2) receptor. A microfluidic platform is developed to fabricate a lipid core of the VMPs with a narrow size distribution and a low level of batch-to-batch variation. The resultant solid lipid nanoparticles are decorated with an average of 231 or 444 Spike S1 RBD protrusions mimicking either the original SARS-CoV-2 or its delta variant, respectively. Compared with that of the nonfunctionalized core, the cell uptake of the functionalized VMPs is enhanced with ACE2-expressing cells due to their strong interactions with the ACE2 receptor. The fabricated VMPs efficiently block the entry of SARS-CoV-2 pseudovirions into host cells and suppress viral infection. Overall, this study provides potential strategies for preventing the spread of SARS-CoV-2 or other coronaviruses employing the ACE2 receptor to enter into host cells.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Ligação Proteica
16.
Brain Pathol ; : e13251, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454306

RESUMO

The renin-angiotensin system (RAS) regulates systemic and cerebral blood flow and is dysregulated in dementia. The major aim of this study was to determine if RAS signalling is dysregulated in vascular dementia. We measured markers of RAS signalling in white matter underlying the frontal and occipital cortex in neuropathologically confirmed cases of vascular dementia (n = 42), Alzheimer's disease (n = 50), mixed AD/VaD (n = 50) and age-matched controls (n = 50). All cases were stratified according to small vessel disease (SVD) severity across both regions. ACE-1 and ACE-2 protein and activity was measured by ELISA and fluorogenic peptide assays respectively, and angiotensin peptide (Ang-II, Ang-III and Ang-(1-7)) levels were measured by ELISA. ACE-1 protein level and enzyme activity, and Ang-II and Ang-III, were elevated in the white matter in vascular dementia in relation to SVD severity. ACE-1 and Ang-II protein levels were inversely related to MAG:PLP1 ratio, a biochemical marker of brain tissue oxygenation that when reduced indicates cerebral hypoperfusion, in a subset of cases. ACE-2 level was elevated in frontal white matter in vascular dementia. Ang-(1-7) level was elevated across all dementia groups compared to age-matched controls but was not related to SVD severity. RAS signalling was not altered in the white matter in Alzheimer's disease. In the overlying frontal cortex, ACE-1 protein was reduced and ACE-2 protein increased in vascular dementia, whereas angiotensin peptide levels were unchanged. These data indicate that RAS signalling is dysregulated in the white matter in vascular dementia and may contribute to the pathogenesis of small vessel disease.

17.
World J Clin Cases ; 12(6): 1104-1110, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38464928

RESUMO

BACKGROUND: Acute pancreatitis is a rare extrapulmonary manifestation of coronavirus disease 2019 (COVID-19) but its full correlation with COVID-19 infection remains unknown. AIM: To identify acute pancreatitis' occurrence, clinical presentation and outcomes in a cohort of kidney transplant recipients with acute COVID-19. METHODS: A retrospective observational single-centre cohort study from a transplant centre in Croatia for all adult renal transplant recipients with a functioning kidney allograft between March 2020 and August 2022 to record cases of acute pancreatitis during acute COVID-19. Data were obtained from hospital electronic medical records. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection was proven by a positive SARS-CoV-2 real-time reverse transcriptase-polymerase chain reaction on the nasopharyngeal swab. RESULTS: Four hundred and eight out of 1432 (28.49%) patients who received a renal allograft developed COVID-19 disease. The analyzed cohort included 321 patients (57% males). One hundred and fifty patients (46.7%) received at least one dose of the anti-SARS-CoV-2 vaccine before the infection. One hundred twenty-five (39.1%) patients required hospitalization, 141 (44.1%) developed pneumonia and four patients (1.3%) required mechanical ventilation. Treatment included immunosuppression modification in 233 patients (77.1%) and remdesivir in 53 patients (16.6%), besides the other supportive measures. In the study cohort, only one transplant recipient (0.3%) developed acute pancreatitis during acute COVID-19, presenting with abdominal pain and significantly elevated pancreatic enzymes. She survived without complications with a stable kidney allograft function. CONCLUSION: Although rare, acute pancreatitis may complicate the course of acute COVID-19 in kidney transplant recipients. The mechanism of injury to the pancreas and its correlation with the severity of the COVID-19 infection in kidney transplant recipients warrants further research.

18.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474182

RESUMO

Blocking the interaction between the SARS-CoV-2 spike protein and the human angiotensin-converting enzyme II (hACE2) protein serves as a therapeutic strategy for treating COVID-19. Traditional Chinese medicine (TCM) treatments containing bioactive products could alleviate the symptoms of severe COVID-19. However, the emergence of SARS-CoV-2 variants has complicated the process of developing broad-spectrum drugs. As such, the aim of this study was to explore the efficacy of TCM treatments against SARS-CoV-2 variants through targeting the interaction of the viral spike protein with the hACE2 receptor. Antiviral activity was systematically evaluated using a pseudovirus system. Scutellaria baicalensis (S. baicalensis) was found to be effective against SARS-CoV-2 infection, as it mediated the interaction between the viral spike protein and the hACE2 protein. Moreover, the active molecules of S. baicalensis were identified and analyzed. Baicalein and baicalin, a flavone and a flavone glycoside found in S. baicalensis, respectively, exhibited strong inhibitory activities targeting the viral spike protein and the hACE2 protein, respectively. Under optimized conditions, virus infection was inhibited by 98% via baicalein-treated pseudovirus and baicalin-treated hACE2. In summary, we identified the potential SARS-CoV-2 inhibitors from S. baicalensis that mediate the interaction between the Omicron spike protein and the hACE2 receptor. Future studies on the therapeutic application of baicalein and baicalin against SARS-CoV-2 variants are needed.


Assuntos
COVID-19 , Flavonas , Humanos , SARS-CoV-2 , Scutellaria baicalensis , Glicoproteína da Espícula de Coronavírus , Angiotensinas , Ligação Proteica
19.
World J Gastroenterol ; 30(6): 607-609, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38463024

RESUMO

The present letter to the editor is related to the study titled 'Angiotensin-converting enzyme 2 improves liver fibrosis in mice by regulating autophagy of hepatic stellate cells'. Angiotensin-converting enzyme 2 can alleviate liver fibrosis by regulating autophagy of hepatic stellate cells and affecting the renin-angiotensin system.


Assuntos
Peptidil Dipeptidase A , Sistema Renina-Angiotensina , Animais , Camundongos , Angiotensina II/metabolismo , Enzima de Conversão de Angiotensina 2 , Fibrose , Células Estreladas do Fígado/metabolismo , Cirrose Hepática , Peptidil Dipeptidase A/metabolismo
20.
Med. clín (Ed. impr.) ; 162(4): 163-169, Feb. 2024. tab, ilus, graf
Artigo em Inglês | IBECS | ID: ibc-230572

RESUMO

Objectives: COVID-19, caused by SARS-CoV-2, has spread around the world since 2019. In severe cases, COVID-19 can lead to hospitalization and death. Systemic arterial hypertension and other comorbidities are associated with serious COVID-19 infection. Literature is unclear whether antihypertensive therapy with angiotensin receptor blockers (ARBs) and angiotensin converting enzyme (ACE) inhibitors affect COVID-19 outcomes. We aim to assess whether ACEI/ARB therapy is a risk factor for worse respiratory outcomes related to COVID-19 in hospitalized patients. Methods: Retrospective study enrolling admitted COVID-19-diagnosed patients by RT-PCR at the Hospital Geral de Fortaleza, Brazil, during 2021. Patient medical records, sociodemographic, and clinical data were analyzed. Chest CT images were analyzed using CAD4COVID-CT/Thirona™ software. Results: A total of 294 patients took part in the study. A cut-off point of 66% of pulmonary involvement was found by ROC curve, with patients having higher risk of death and intubation and lower 60-day survival. Advanced age (RR 1.025, P=0.001) and intubation (RR 16.747, P<0.001) were significantly associated with a higher risk of death. Advanced age (RR 1.023, P=0.001) and the use of noninvasive ventilation (RR 1.548, P=0.037) were associated with a higher risk of intubation. Lung involvement (>66%) increased the risk of death by almost 2.5-fold (RR 2.439, P<0.001) and by more than 2.3-fold the risk of intubation (RR 2.317, P<0.001). Conclusions: Altogether, our findings suggest that ACEI or ARB therapy does not affect the risk of death and disease course during hospitalization.(AU)


Objetivos: La COVID-19, causada por el SARS-CoV-2, se ha extendido por todo el mundo desde 2019. En casos graves, la COVID-19 puede provocar hospitalización y muerte. La hipertensión arterial sistémica y otras comorbilidades se asocian con una infección grave por COVID-19. La literatura no está clara si la terapia antihipertensiva con bloqueadores de los receptores de angiotensina (BRA) e inhibidores de la enzima convertidora de angiotensina (ECA) afecta los resultados de la COVID-19. Nuestro objetivo fue evaluar si la terapia BRA/ECA es un factor de riesgo de peores resultados respiratorios relacionados con COVID-19 en pacientes hospitalizados. Métodos: Estudio retrospectivo que incluyó pacientes ingresados con diagnóstico de COVID-19 mediante RT-PCR en el Hospital General de Fortaleza, Brasil, durante 2021. Se analizaron las historias clínicas de los pacientes, datos sociodemográficos y clínicos. Las imágenes de TC de tórax se analizaron utilizando el software CAD4COVID-CT/ThironaTM. Resultados: Participaron en el estudio un total de 294 pacientes. Mediante curva ROC se encontró un punto de corte del 66% de afectación pulmonar, teniendo los pacientes mayor riesgo de muerte e intubación y menor supervivencia a 60 días. La edad avanzada (RR 1,025; P=0,001) y la intubación (RR 16,747; P<0,001) se asociaron significativamente con un mayor riesgo de muerte. La edad avanzada (RR 1,023; P=0,001) y el uso de ventilación no invasiva (RR 1,548; P=0,037) se asociaron con un mayor riesgo de intubación. La afectación pulmonar (>66%) aumentó el riesgo de muerte casi 2,5 veces (RR 2,439; P<0,001) y más de 2,3 veces el riesgo de intubación (RR 2,317, P<0,001). Conclusiones: Se concluyó que el tratamiento con BRA o ECA no afecta el riesgo de muerte y el curso de la enfermedad durante la hospitalización.(AU)


Assuntos
Humanos , Masculino , Feminino , /diagnóstico , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Hipertensão , Comorbidade , /epidemiologia , Medicina Clínica , Estudos Retrospectivos , Brasil , Anti-Hipertensivos/efeitos adversos , Inteligência Artificial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...