Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.429
Filtrar
1.
Environ Monit Assess ; 196(8): 688, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958799

RESUMO

Rivers are vital and complex natural systems that provide a wide range of ecosystem services. This study presents a methodology for assessing the riverine provisioning and supporting ecosystem services, whose applicability has been demonstrated over the Budhabalanga River Basin of India. The Soil and Water Assessment Tool (SWAT) is used to generate streamflow time series at various ungauged sites, and then the streamflow is characterized for the evaluation of provisioning services. Further, the diversity and abundance of macroinvertebrates, along with the Lotic-invertebrate Index for Flow Evaluation (LIFE), is used to study the riverine supporting ecosystem services. The streams show intermittent behavior and strong seasonality for low flows, which limits the water availability, particularly during pre-monsoon season. The Baseflow Index (BFI) is greater than 0.6, indicating that groundwater contributes more than 60% of the total streamflow. Interestingly, despite the high BFI, the streams did not conform to the prevailing opinion that a greater baseflow contribution results in a later commencement of the low-flow period in the hydrological year. Furthermore, the study depicts significant variations in the diversity and abundance of the macroinvertebrates across the various sampling sites. However, the LIFE score across the sites remained consistent within a narrow range, i.e., 8 to 9, suggesting a steady supply of supporting ecosystem services. The results of the study can help the policymakers towards an informed decision making and the simplistic methodology proposed in this study can be replicated in other river basins for identifying vulnerable watersheds and prioritizing management actions.


Assuntos
Ecossistema , Monitoramento Ambiental , Hidrologia , Rios , Índia , Monitoramento Ambiental/métodos , Animais , Invertebrados , Conservação dos Recursos Naturais/métodos , Biodiversidade , Água Subterrânea
2.
Data Brief ; 55: 110574, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38988732

RESUMO

For mitigating the unintended environmental impacts associated with intensive farming across the world, it is crucial to understand the complex impacts of potential reductions in fertiliser use on multiple ecosystem services, including crop production, GHG emissions and changes in soil organic carbon (SOC) stocks. Using site specific spatial data and information, a novel integrated modelling approach using established agroecosystem models (SPACSYS and RothC) was implemented to evaluate the impacts of various fertiliser reductions (10 %, 30 % and 50 %) under current / baseline and projected (RCP2.6, RCP4.5 and RCP8.5) climate scenarios in a study catchment in southwest England. 48 unique combinations of soil types, climate conditions and fertiliser inputs were evaluated for five major arable crops (winter wheat, maize, winter barley, spring barley, winter oilseed rape) plus ryegrass. Modelled annual estimates of crop yields and biomass, emissions of gases with warming potentials (nitrous oxide, methane, carbon) and SOC stocks in the topsoil (0-30 cm) were tabulated for all combinations considered. These simulated data series could be further analysed to evaluate inter-annual variations and their implications for climate resilience and combined with additional data to quantify nutrient use efficiency and undertake cost- benefit analysis, and to contribute to inter-regional comparisons of fertiliser management at broad scale.

3.
J Environ Manage ; 366: 121659, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38991344

RESUMO

Mountain forests play an essential role in protecting people and infrastructure from natural hazards. However, forests are currently experiencing an increasing rate of natural disturbances (including windthrows, bark beetle outbreaks and forest fires) that may jeopardize their capacity to provide this ecosystem service in the future. Here, we mapped the risk to forests' protective service across the European Alps by integrating the risk components of hazard (in this case, the probability of a disturbance occurring), exposure (the proportion of forests that protect people or infrastructure), and vulnerability (the probability that the forests lose their protective structure after a disturbance). We combined satellite-based data on forest disturbances from 1986 to 2020 with data on key forest structural characteristics (cover and height) from spaceborne lidar (GEDI), and used ensemble models to predict disturbance probabilities and post-disturbance forest structure based on topographic and climatic predictors. Wind and bark beetles are dominant natural disturbance agents in the Alps, with a mean annual probability of occurrence of 0.05%, while forest fires were less likely (mean annual probability <0.01%), except in the south-western Alps. After a disturbance, over 40% of forests maintained their protective structure, highlighting the important role of residual living or dead trees. Within 30 years after wind and bark beetle disturbance, 61% of forests were likely to either maintain or recover their protective structure. Vulnerability to fires was higher, with 51% of forest still lacking sufficient protective structure 30 years after fire. Fire vulnerability was especially pronounced at dry sites, which also had a high fire hazard. Combining hazard and vulnerability with the exposure of protective forests we identified 186 Alpine municipalities with a high risk to protective forests due to wind and bark beetles, and 117 with a high fire risk. Mapping the disturbance risk to ecosystem services can help identify priority areas for increasing preparedness and managing forests towards lower susceptibility under an intensifying disturbance regime.

4.
Sci Total Environ ; : 174607, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002585

RESUMO

The Ecological Security Pattern (ESP) has emerged as a prominent area of focus in global ecosystem research, offering valuable scientific insights for reconciling ecological preservation with economic progress. Understanding the variances among different approaches to constructing ESP serves as a fundamental step in ensuring its efficacy. However, there has been a scarcity of studies that quantitatively assess the disparities in the effectiveness of various ESP construction methods. This study focuses on the West Liaohe River Basin as its research subject. Leveraging remote sensing data alongside county-level statistical information, the study employs three distinct ecological source identification methodologies to establish ESP frameworks. It then proceeds to analyze the discrepancies in ecological protection outcomes across different ESP construction techniques under varying future development scenarios. The findings reveal that an ecological security pattern centered around ecosystem services emerges as particularly suited for diverse development scenarios, consistently yielding optimal ecological protection outcomes. These research outcomes not only furnish a theoretical foundation and practical guidance for ESP development in the West Liaohe River Basin but also offer methodological insights transferrable to other regions.

5.
Sci Total Environ ; : 174509, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986697

RESUMO

Agri-environment and forest schemes can support landowners to conserve and enhance agricultural and forest ecosystems. The effectiveness of these schemes is often debated due to discrepancies that occur between the application of such measures and the delivery of Ecosystem Services (ES). We simulated the application of a suite of farmland and forest measures within a range of biophysical contexts in known High Nature Value landscapes across the Republic of Ireland. Three high resolution geospatial scenarios simulated the anticipated effects of the measures: i) a Baseline Scenario of current conditions, ii) an Enhanced Scenario simulated the application of measures, and iii) using the new 'Restoration Planner' freeware, an Enhanced + Connectivity Scenario simulated the application of additional targeted measures for ecosystem connectivity. Across all scenarios, we modelled and compared the responses of a range of ES including: habitat quality, carbon storage, production income and ecosystem connectivity. Multivariate analyses were used to ordinate and determine eight bundles of measures and their associated effect on ES and connectivity. These Bundles were subsequently contextualised by examining unique landscape characteristics in which they occurred. The results show that measures applied under the Enhanced Scenario resulted in weak gains to carbon storage (2 %), strong gains to habitat quality (28 %), and weak losses to production income (-7 %) and ecosystem connectivity (-2 %). Similarities were observed under the Enhanced + Connectivity Scenario, though with comparably stronger gains to ecosystem connectivity (15 %). This study is the first to demonstrate the potential synergies and trade-offs to ES that can result from the integrated and targeted application of both farmland and forest measures within a variety of landscape characteristics.

6.
J Environ Manage ; 365: 121645, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38959768

RESUMO

Priority ecological reserves (PER) aim to protect areas with significant ecological value and crucial ecological functions, optimizing resource allocation to maximize the benefits of ecological conservation. However, most previous studies have considered only ecosystem services (ESs) in delineating PER, neglecting eco-environmental quality (EEQ). This study used the Remote Sensing-based Ecological Index (RSEI) to represent EEQ and combined it with ESs to delineate PER at the county scale in the Yellow River Basin (YRB). Additionally, it employed Multiscale Geographically Weighted Regression to identify the driving factors influencing the ESs and EEQ of PER. The results showed that: (1) From 2000 to 2020, both RSEI and the Comprehensive ESs (CES) in the YRB exhibited a fluctuating upward trend; (2) Three types of PER were extracted, with ESs reserve mainly distributed in the upstream region, EEQ reserve primarily in the middle and lower reaches, and integrated ecological reserve mainly in the midstream region, all dominated by vegetation land-use types; (3) Within the extracted PER, RSEI was mainly influenced by soil, aspect, population (pop), PM2.5, temperature (tmp), and potential evapotranspiration (pet), while CES was affected by soil, pop, PM2.5, slope, tmp, precipitation, and pet. To enhance the EEQ and ESs of the YRB, it was recommended to incorporate at least 105,379 km2 into the existing protected areas in the YRB. These areas should be subdivided based on their ecological status, with specific management measures for different types of PER. This study provides recommendations for environmental protection and land planning in the YRB, actively responding to current policies on high-quality development and ecological environmental protection in the YRB.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Rios , Monitoramento Ambiental , Ecologia , China
7.
J Environ Manage ; 365: 121529, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38963961

RESUMO

Mangroves in Southeast Asia provide numerous supporting, provisioning, regulating, and cultural services that are crucial to the environment and local livelihoods since they support biodiversity conservation and climate change resilience. However, Southeast Asia mangroves face deforestation threats from the expansion of commercial aquaculture, agriculture, and urban development, along with climate change-related natural processes. Ecotourism has gained prominence as a financial incentive tool to support mangrove conservation and restoration. Through a systematic literature review approach, we examined the relationships between ecotourism and mangrove conservation in Southeast Asia based on scientific papers published from 2010 to 2022. Most of the studies were reported in Indonesia, Malaysia, Philippines, Thailand, and Vietnam, respectively, which were associated with the highest number of vibrant mangrove ecotourism sites and largest mangrove areas compared to the other countries of Southeast Asia. Mangrove-related ecotourism activities in the above countries mainly include boat tours, bird and wildlife watching, mangrove planting, kayaking, eating seafood, and snorkeling. The economic benefits, such as an increase in income associated with mangrove ecotourism, have stimulated infrastructural development in ecotourism destinations. Local communities benefited from increased access to social amenities such as clean water, electricity, transportation networks, schools, and health services that are intended to make destinations more attractive to tourists. Economic benefits from mangrove ecotourism motivated the implementation of several community-based mangrove conservation and restoration initiatives, which attracted international financial incentives and public-private partnerships. Since mangroves are mostly located on the land occupied by indigenous people and local communities, ensuring respect for their land rights and equity in economic benefit sharing may increase their intrinsic motivation and participation in mangrove restoration and conservation initiatives. Remote sensing tools for mangrove monitoring, evaluation, and reporting, and integrated education and awareness campaigns can ensure the long-term conservation of mangroves while sustaining ecotourism's economic infrastructure and social amenities benefits.


Assuntos
Conservação dos Recursos Naturais , Áreas Alagadas , Sudeste Asiático , Mudança Climática , Biodiversidade
8.
J Environ Manage ; 365: 121662, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38968878

RESUMO

Fire-induced changes in vegetation composition due to fire-regime intensification are leading to alterations in ecosystem services that might threaten their future sustainability. Fire recurrence, in particular, could be a key driver shaping ecosystem service resilience in fire-prone ecosystems. This study evaluates the impact of fire recurrence, over twenty-four years, on the potential supply capacity of ten regulating, provisioning, and cultural services selected as critical services by stakeholders and experts. We assessed fire effects in four fire-prone landscapes dominated by species with different functional-traits response to fire (i.e., obligate seeder vs resprouter species). Trends in the potential supply capacity linked to fire recurrence were estimated by applying a supervised classification of Land Use and Land Cover (LULC) classes performed using Landsat imagery, associated to an ecosystem service capacity matrix adapted to the local socio-ecological context. In landscapes dominated by seeders, fire recurrence broke off the potential supply capacity of services traditionally associated to mature forest cover (i.e., the predicted probability of a decrease in the potential supply capacity of climate regulation, timber, wood fuel, mushroom production, tourism, landscape aesthetic, and cultural heritage occurred with high fire recurrence). In landscapes dominated by resprouter species, the effect of fire recurrence was partially buffered in the short-term after fire and no substantial differences in trends of change were found (i.e., equal predicted probability in the potential supply capacity of ecosystem services regardless of fire recurrence). We detected two new opportunities for ecosystems service supply associated to fire recurrence: livestock and honey production, especially in sites dominated by seeders. These findings provide valuable information aiming at recovering post-fire ecosystem service potential supply to partially counterbalance the loss in the socio-ecological system. When the main post-fire restoration goal is preserving ecosystem service resilience in fire-prone ecosystems, establishing management strategies focused on promoting resprouter species could aid mitigating the fire-driven loss of their supply capacity.


Assuntos
Ecossistema , Incêndios , Conservação dos Recursos Naturais , Florestas , Plantas
9.
J Environ Manage ; 365: 121698, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38968890

RESUMO

In China, over 65% of human activities are concentrated in cities, resulting in a conflict between the supply and demand of ecosystem services (ESs). To alleviate this problem, many cities have adopted eco-friendly development modes, however, the effectiveness of these models in reducing ESs supply-demand conflicts has not been comprehensively reviewed, and the human and natural drivers behind these relationship shifts remain unclear. To bridge this gap, this study analyzed the shifts in the relationships between supply and demand of ESs across China from 2010 to 2020 at a city level, as well as identified the human and natural drivers behind them. Firstly, the InVEST models were integrated with socioeconomic data to evaluate the supply and demand distribution for three pivotal ESs: water yield (WY), habitat quality (HQ), and soil retention (SR). Then, a four-quadrant diagram approach was proposed to enhance the analysis of their spatiotemporal relationships. Furthermore, random forest models were employed to examine the drivers of the shifts in these relationships. The results showed that WY and SR services witnessed growth until 2015, and then receded, while HQ saw a modest decline from 2010 to 2020. Spatial synergies in the supply and demand of ESs were primarily observed in the southern cities, with a significant northward extension by 2020. From a temporal perspective, the percentage of cities achieving coordination in WY and SR services increased from 32.6% to 57.3%, respectively, in the 2010-2015 period to 42.4% and 63.3% between 2015 and 2020, meanwhile, HQ service conflicts diminished from 58.7% to 53.5%. The changes in socioeconomic and land use factors contributed to 64.3%, 36.1%, and 33.3% of the shifts in the supply-demand relationship for HQ, WY, and SR services, respectively. Our analysis highlights the potential of human-driven ecological management to enhance the balance of this relationship. It can support the design of city-specific policies that foster a balance between ecological processes and socio-economic development.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , China , Humanos , Cidades , Solo
10.
J Environ Manage ; 366: 121790, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003900

RESUMO

Oleaginous forests provide diverse ecosystem services, including timber, seed yield (a vital feedstock for biodiesel production), and substantial carbon savings. These carbon savings encompass carbon sequestration related to timber growth and carbon savings resulting from substituting fossil fuel with biodiesel. However, oleaginous forests are vulnerable to seed wasp attacks (disservice), which significantly threaten both seed yield and carbon savings. Using an integrated ecological-economic model that includes Faustmann's Land Expectation Value model and a pest damage control model, we aim to understand the intricate relationship among multiple ecosystem services and disservices of oleaginous forests. The results reveal four distinct phases contingent on varying pesticide application rates: the pesticide under-use phase, substitution phase, complementary phase, and over-use phase. Notably, a potential avenue to minimize pest damage is identified during the complementary phase by reducing the optimal rotation age at the expense of decreased carbon sequestration and bioenergy provision, posing a challenge to climate change mitigation. These findings have implications for formulating policies to manage conflicting ecosystem services of energy forests, offering valuable insights into the intersection of sustainable forest management and climate policy.

11.
Sci Total Environ ; 947: 174400, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38960204

RESUMO

Ecosystem services are strongly responsive to changes in land use intensity, especially for the service of water purification, which is highly sensitive to water pollutant emission. Increased nitrogen (N) application to cropland has potential impacts on the supply and demand for water purification through changes in land use intensity. However, there has been a lack of research focusing on the impacts of cropland N application on population exposure to water purification deficit and their cross-regional delivery network. Taking the Dongting Lake (DTL) Basin as an example, this study explored the spatial pattern of N exposure in the DTL Basin from 1990 to 2015 by integrating water purification deficit and population density. Changes in potential N exposure in 2050 were simulated based on population projection data from the Shared Socioeconomic Pathways (SSP1-5). N delivery pathways in the DTL Basin were clarified by constructing the N delivery network. The results showed that N exposure increased significantly with increasing N application in DTL Basin. The DTL surrounding area and lower reaches of the Xiangjiang River Basin had high increases of N exposure (50.2 % and 71.6 %) and high increases in N exposure due to increases in N application per unit (N influence coefficients exceeding 0.5). The lower reaches of the Xiangjiang River Basin with the highest population density had the smallest decrease in N exposure (1.4 %-11.1 %) in the SSP1-5 scenarios. During 1990-2015, the increase of N export to the DTL surrounding area was higher in the lower reach sub-basins of DTL Basin. N application had a stronger impact on N delivery processes in the lower reaches of DTL Basin. Managers should distribute N applications to basins with high N retention and low N export to the DTL surrounding area. This study confirmed the strong response of water purification deficit and its population exposure to N application, and provided decision-making guidelines for water quality enhancement in DTL Basin from a spatial planning perspective.

12.
Sci Total Environ ; : 174871, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39038672

RESUMO

Vegetated coastal ecosystems (VCE), encompassing tidal marshes, mangroves, and seagrass, serve as significant 'blue' carbon (C) sinks. Improving our understanding of VCE soils and their spatial and temporal dynamics is essential for conservation efforts. Conventional methods to characterise the dynamics and provenance of VCE soils and measure their total organic carbon (TOC) and inorganic carbon (TIC) contents are cumbersome and expensive. We recorded the MIR spectra and measured the TOC and TIC content of 323 subsamples across consistent depths from 106 soil core samples. Using the spectra of each VCE, we determined their mineral and organic composition by depth. We then used a regression tree algorithm, cubist, to model TOC and TIC contents. We rigorously validated the models to test their performance with a 10-fold cross-validation, bootstrapping, and a separate random test dataset. Our analysis revealed distinct mineralogical and organic MIR signatures in VCE soils correlated with their position within the seascape. The spectra showed decreased clay minerals and increased quartz and carbonate with distance from freshwater inputs. The mineralogy of tidal marsh and mangrove soils differed with depth, showing larger absorptions due to carbonate and quartz and weakening clay minerals and organics absorptions. The mineralogy of the seagrass soils remained the same with depth. The cubist models to estimate TOC and TIC content were accurate (Lin's concordance correlation, ρc≥ 0.92 and 0.93 respectively) and interpretable, confirming our understanding of C in these systems. These findings shed light on the provenance of the soils and help quantify the flux and accumulation of TOC and TIC, which is crucial for informing VCE conservation. Moreover, our results show that MIR spectroscopy could help scale the measurements cost-effectively, for example, in carbon crediting schemes and to improve inventories. The approach could advance blue C science and contribute to their conservation and protection.

13.
Sci Total Environ ; : 174869, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39038670

RESUMO

Healthy soils provide valuable ecosystem services (ES), but soil contamination can inhibit essential soil functions (SF) and pose risks to human health and the environment. A key advantage of using gentle remediation options (GRO) is the potential for multifunctionality: to both manage risks and improve soil functionality. In this study, an accessible, scientific method for soil health assessment directed towards practitioners and decision-makers in contaminated land management was developed and demonstrated for a field experiment at a DDX-contaminated tree nursery site in Sweden to evaluate the relative effects of GRO on soil health (i.e., the 'current capacity' to provide ES). For the set of relevant soil quality indicators (SQI) selected using a simplified logical sieve, GRO treatment was observed to have highly significant effects on many SQI according to statistical analysis due to the strong influence of biochar amendment on the sandy soil and positive effects of nitrogen-fixing leguminous plants. The SQI were grouped within five SF and the relative effects on soil health were evaluated compared to a reference state (experimental control) by calculating quantitative treated-SF indices. Multiple GRO treatments are shown to have statistically significant positive effects on many SF, including pollutant attenuation and degradation, water cycling and storage, nutrient cycling and provisioning, and soil structure and maintenance. The SF were in turn linked to soil-based ES to calculate treated-ES indices and an overall soil health index (SHI), which can provide simplified yet valuable information to decision-makers regarding the effectiveness of GRO. The experimental GRO treatment of the legume mix with biochar amendment and grass mix with biochar amendment are shown to result in statistically significant improvements to soil health, with overall SHI values of 141 % and 128 %, respectively, compared to the reference state of the grass mix without biochar (set to 100 %).

14.
Sci Rep ; 14(1): 15954, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987301

RESUMO

Gross ecosystem product (GEP) is an aggregate measure of the monetary value of final ecosystem services, or the direct benefits that people derive from nature. GEP can provide decision makers with clear and competing evidence of the monetary value of ecosystem services. However, the relationship between GEP and urbanization has not been clarified which is not conducive to the decision-making role of GEP in the process of urban sustainable development. This work focused on the 'Beijing-Tianjin-Hebei' (BTH) urban agglomeration as a case study of the dynamics of ecological production amidst rapid economic and urban development, and coupled a spatial-temporal analysis of regional ecological change based on GIS (Geographic Information System) with economic valuation methods using official statistics and survey data. Results showed that from 2000 to 2020, the GEP increased from 1.55 trillion to 2.36 trillion, the value of provisioning services and cultural services increased from 0.51 to 0.71 trillion to 0.10-0.65 trillion. The value of regulation services showed an upward and downward trend (0.94-1.03-0.98) due to the rapid economic development in the Beijing-Tianjin-Hebei region. There were obvious spatial differences in the distribution of the GEP, in which Beijing, Tianjin, Tangshan, Cangzhou GEP accounted for 15%, 14%, 16% and 11%, respectively. During 2000-2020, there is a significant correlation between urbanization index (UI) and GEP in BTH, but the correlation between GEP and UI shows a trend of first increasing and then decreasing. The correlation between UI and EPS and ERS gradually decreases, and the impact of UI on ETS shows a significant positive correlation. In the future, it can be foreseen that urbanization will suppress the increase of GEP.

15.
Environ Sci Pollut Res Int ; 31(32): 45264-45279, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38963628

RESUMO

This study used an integrated approach to mainly assess the water quality of paddy field during cultivation and quantify its equivalent ecological damages. Accordingly, an isolated pilot area with 0.6 ha and subsurface drainage pipes was prepared for flow measurement and multiple pollutant examination (DO, EC, pH, COD, TKN, TN, TP, NO3, butachlor) under controlled condition during 94 days of rice cultivation. Based on life cycle impact assessment (LCIA) database, the indices of ReCiPe (2016) were used to convert the examined nutrient and herbicide pollution. Results showed that TKN and TP were significant pollutants and reached the maximum concentrations of 7.2 and 4.9 mg/L in pilot outflow, respectively. Here, their average discharged loads were 56.2 gN/day and 45.3 gP/day. These loads equal leaching 8.5% and 9.4% of applied urea and phosphate fertilizers, respectively. The nutrient export coefficients were 8.4 kgN/ha and 6.8 kgP/ha. Nevertheless, the majority of this pollution was transferred by inflow. The net export coefficients were 0.3 kgN/ha and 2.6 kgP/ha while net leaching rates were 0.3%TN and 3.3%TP. The trend of combined ecological damages also showed that the 11-17th day of cultivation imposed the highest ecological risks. The state-of-the-art index of ecological footprint per food production estimates the equivalent ratio of lost lives by impaired ecosystem against lives saved from starvation. This index showed that 7% of the potential of produced paddy rice in this area for saving lives would be spoiled by releasing pollution to the terrestrial ecosystem in the long term. Yet, it can be enhanced as a matter of direct discharge to the freshwater. Therefore, using suitable agricultural operations or improving farm management practices for pollution abatement or assimilation potential is highly recommended.


Assuntos
Monitoramento Ambiental , Oryza , Qualidade da Água , Poluentes Químicos da Água/análise , Agricultura , Irrigação Agrícola , Fertilizantes , Ecologia
16.
J Environ Manage ; 366: 121915, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033627

RESUMO

Phosphorus is a limiting element for the productivity of mangroves, which in turn are important ecosystems in regulating nutrients cycle and climate change by sequestering carbon (C). Despite this, there is an intense process of degradation in these environments. In addition to providing socio-environmental services, mangrove replanting can also alter the dynamics of nutrients in soils. Therefore, this study aims to understand the changes in soil phosphorus (P) fractions after a mangrove restoration. Soil samples from an unvegetated area (NV), a mature mangrove (R) and 7 and 9 year old replanted mangroves at SE-Brazil (APA Guapi-mirim, Rio de Janeiro state) were collected and analyzed to characterize the redox conditions (Eh), pH, and iron (Fe) fractionation, Total Organic Carbon (TOC) contents and P fractionation (exchangeable P; P associated with reducible Fe and Mn oxyhydroxides; associated with Al silicates and hydroxides; associated with humic acids; associated with Ca and Mg; associated with humin). The results indicate an increase in TOC as the age of the mangrove restoration increases (from 8.6 to 17.9%). The pH values were significantly lower, reaching very acidic values, associated with an increase in Eh. Both parameters also showed strong seasonal variation, with a drop in Eh during the wet period (from 165% to -46%) and an increase in pH in the same period (from 6.0 to 6.7). Regarding P fractionation, the main P pool was organic P forms, which showed the highest concentrations in all studied sites. Unvegetated areas showed higher organic P forms (NV: 108.8 µg g-1) than vegetated areas (M7: 55.7 µg g-1, M9: 83.6 µg g-1, R: 87.3 µg g-1). Vegetated sites also showed lower levels of the PEx, PFeMn and Papatite fractions (total forest mean: 2.4 µg g-1, 5.8 µg g-1, 3.0 µg g-1, respectively). Besides no clear trend on P fractionation through seasons and forest age, pseudo-total P increased following the forest recovery (e.g. M7

17.
Glob Chang Biol ; 30(7): e17422, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39034898

RESUMO

Climate change is negatively impacting ecosystems and their contributions to human well-being, known as ecosystem services. Previous research has mainly focused on the direct effects of climate change on species and ecosystem services, leaving a gap in understanding the indirect impacts resulting from changes in species interactions within complex ecosystems. This knowledge gap is significant because the loss of a species in a food web can lead to additional species losses or "co-extinctions," particularly when the species most impacted by climate change are also the species that play critical roles in food web persistence or provide ecosystem services. Here, we present a framework to investigate the relationships among species vulnerability to climate change, their roles within the food web, their contributions to ecosystem services, and the overall persistence of these systems and services in the face of climate-induced species losses. To do this, we assess the robustness of food webs and their associated ecosystem services to climate-driven species extinctions in eight empirical rocky intertidal food webs. Across food webs, we find that highly connected species are not the most vulnerable to climate change. However, we find species that directly provide ecosystem services are more vulnerable to climate change and more connected than species that do not directly provide services, which results in ecosystem service provision collapsing before food webs. Overall, we find that food webs are more robust to climate change than the ecosystem services they provide and show that combining species roles in food webs and services with their vulnerability to climate change offer predictions about the impacts of co-extinctions for future food web and ecosystem service persistence. However, these conclusions are limited by data availability and quality, underscoring the need for more comprehensive data collection on linking species roles in interaction networks and their vulnerabilities to climate change.


Assuntos
Mudança Climática , Ecossistema , Extinção Biológica , Cadeia Alimentar , Animais
18.
Environ Monit Assess ; 196(8): 741, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017942

RESUMO

Land use and land cover (LULC) changes are inevitable outcomes of socioeconomic changes and greatly affect ecosystem services. Our study addresses the critical gap in the existing literature by providing the first comprehensive national analysis of LULC changes and their impacts on ecosystem service values (ESVs) in Malawi. We assessed changes in ecosystem service values (ESVs) in response to LULC changes using the benefit transfer method in ArcGIS 10.6 software. Our findings revealed a significant increase in grasslands, croplands, and urban areas and a notable decline in forests, shrubs, wetlands, and water bodies. Grassland, cropland, and built-up areas expanded by 52%, 1%, and 23.2%, respectively. In contrast, permanent wetlands, barren land, and water bodies declined by 27.6%, 34.3%, and 1%, respectively. The ESV declined from US$90.87 billion in 2001 to US$85.60 billion in 2022, marking a 5.8% reduction. Provisioning services increased by 0.5% while regulating, supporting, and cultural ecosystem service functions declined by 12.2%, 3.16%, and 3.22%, respectively. The increase in provisioning services was due to the expansion of cropland. However, the loss of regulating, supporting, and cultural services was mainly due to the loss of natural ecosystems. Thus, environmental policy should prioritise the conservation and restoration of natural ecosystems to enhance the ESV of Malawi.


Assuntos
Agricultura , Conservação dos Recursos Naturais , Ecossistema , Monitoramento Ambiental , Malaui , Conservação dos Recursos Naturais/métodos , Áreas Alagadas , Florestas , Pradaria
19.
Sci Total Environ ; : 174813, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019279

RESUMO

In forestry, although the so-called nature-based climate solutions have usually been focused on the calculation of carbon captured in new afforestation projects, it should be noted that the increase in carbon associated with improvements in their management (Improved Forest Management) can also be computed. This type of carbon is not usually integrated into strategic forest planning models, nor has its possible degree of conflict with other regulation ecosystemic services, like biodiversity conservation, been verified. In this research, those two issues have been approached by calculating a baseline in an emblematic forest with an extensive forestry history. For this purpose, we have designed two scenarios, i.e., one linked to its current management (Business As Usual, BAU) and another justified by the inclusion of Improved Forest Management (IFM). The results reveal a notable conflict between the carbon captured and the values of the indicators used to measure biodiversity. In order to reach a compromise between both scenarios, a multi-criteria model has been proposed that could be more attractive than the above ones. In addition, the carbon profit credits in the first ten years have been computed under the IFM scenario; the latter could be, a priori, an object of transaction in a voluntary carbon market. In conclusion, our model generates feasible solutions that allow the integration of IFM into strategic planning. Besides, those solutions show interesting tradeoffs between carbon and biodiversity. This discord must be distinguished by the current state of the forest and its expected growth, as well as their influence on the values associated with provision ecosystem services, such as the present net value associated with timber harvests.

20.
Huan Jing Ke Xue ; 45(7): 4152-4163, 2024 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-39022962

RESUMO

Revealing the spatiotemporal coupling relationship between urbanization and ecosystem services can help to clarify regional development differences, optimize the implementation path of urbanization, and improve the quality of ecosystem services. Taking southeastern Fujian, a region with a good ecological foundation and strong urbanization potential, as a case study, the levels of multidimensional urbanization systems and typical ecosystem services of this region in the years 2000, 2010, and 2020 were quantified using the index comprehensive evaluation method and the InVEST model. The Pearson correlation coefficient and the coupling coordination degree model were used to analyze the spatiotemporal coupling relationship between urbanization and ecosystem services, and suggestions for improving regional coordinated development were proposed. The results showed that: ① The comprehensive urbanization level in southeastern Fujian increased continuously, with an average annual growth rate of 7.3%, of which social urbanization was the fastest, followed by economic urbanization and population urbanization, and spatial urbanization was relatively backward. Ecosystem services tended to decline, especially food and water provision services, which decreased by 61.9% and 46.9%, respectively. The spatial distribution showed a mismatch pattern of "high urbanization level and weak ecosystem services" in the southeast coastal area and "low urbanization level and strong ecosystem services" in the northwest inland area. ② The correlation between urbanization and ecosystem services was mainly negative. The negative effect of economic and social urbanization on ecosystem services was weaker than that of population and spatial urbanization, with a clear weakening tendency. As population and spatial urbanization slowed down sharply and economic and social urbanization accelerated, the driving force of urbanization development gradually shifted from "quantitative increase" to "qualitative improvement." Thus, the decline of ecosystem services was alleviated. ③ Comprehensive urbanization and various ecosystem services experienced three stages of "imbalance-transition-reconciliation," with an average increase of 60.5% to 120.6% in the coupling coordination degree. However, highly coordinated regions remained scarce, indicating that there is still significant room for improvement. The relative relationship between urbanization and ecosystem services evolved from urbanization lag to ecosystem services lag. The fluctuation problem of backward coupling coordination level caused by excessive urbanization had initially appeared in the southeastern coastal area. Therefore, in future construction, southeastern Fujian should improve economic quality and social benefits; strengthen the overall management, protection, and restoration of ecological space; and enhance the order and stability of the coordinated development of urbanization and ecosystem services.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA