Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 458
Filtrar
1.
Phytochemistry ; 223: 114097, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38641142

RESUMO

A chemical investigation of the dichloromethane extract from the Xisha sponge Diacarnus sp. revealed seven undescribed norterpene cyclic peroxides, named diacarperoxides T-Z, and five unreported related norterpenes, named diacarnoids E-I, and eleven previously reported compounds. The structures of these isolated compounds, including their absolute configurations, were elucidated based on extensive spectroscopic analyses, electronic circular dichroism (ECD) calculations, Snatzke's method, [Rh2(OCOCF3)4]-induced ECD spectra, and modified Mosher's method. Bioassays were performed to assess the antibacterial activity against six pathogenic bacteria, cytotoxicities toward three cancer cell lines, and antimalarial activity against Plasmodium parasites. Most of the cyclic peroxides exhibited substantial antibacterial activity (MIC 1-8 µg/mL). Diacarperoxide W and nuapapuin A showed substantial antimalarial activity with IC50 values of 0.98 and 2.83 µM. Moreover, many compounds exhibited <50% cell survival rates, and IC50 values of 0.22-6.33 µM. The apoptosis assay showed that nuapapuin A induced cancer cell apoptosis in a dose-dependent manner.

2.
J Dent ; 145: 104989, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582435

RESUMO

OBJECTIVE: To map and summarize the current scientific evidence concerning the active ingredients, effectiveness, and adverse effects of over-the-counter (OTC) bleaching products. DATA AND SOURCE: This study was conducted according to the PRISMA-ScR guidelines for scoping reviews and registered on the Open Science Framework platform. STUDY SELECTION: Database searches were conducted in PubMed/MEDLINE, Embase, and Scopus up to January 2024. All in vitro, in situ, and clinical studies evaluating the effectiveness and adverse effects of OTC bleaching products were included. A descriptive analysis of the included studies was performed. RESULTS: A total of 88 studies were included. Most of them were in vitro studies (n = 49), followed by randomized clinical trials (n = 28). The main OTC bleaching products identified were whitening or stain-removing toothpastes (n = 42), followed by whitening strips (n = 39). Most clinical studies indicate that whitening strips are effective in improving tooth color and providing whitening benefits. In contrast, the bleaching effectiveness of toothpastes, mouth rinses and whitening trays was mainly supported by in vitro studies. The main adverse effects associated with OTC bleaching agents were tooth sensitivity and gingival irritation. CONCLUSION: A wide variety of OTC bleaching products is available for consumer self-administered use. Clinical studies have mainly confirmed the bleaching effectiveness of whitening strips, while the validation for toothpastes, mouth rinses and whitening trays has mainly relied on in vitro studies. Nevertheless, the use of OTC bleaching products may result in adverse effects, including tooth sensitivity, gingival irritation, and enamel surface changes. CLINICAL SIGNIFICANCE: Some over-the-counter bleaching products may have whitening properties supported by clinical studies, particularly those containing hydrogen or carbamide peroxide. Nonetheless, clinicians must be aware of the potential risks associated with excessive self-administration of these products, which may result in adverse effects.


Assuntos
Medicamentos sem Prescrição , Clareadores Dentários , Clareamento Dental , Cremes Dentais , Clareamento Dental/efeitos adversos , Clareamento Dental/métodos , Humanos , Clareadores Dentários/uso terapêutico , Clareadores Dentários/efeitos adversos , Medicamentos sem Prescrição/uso terapêutico , Medicamentos sem Prescrição/efeitos adversos , Cremes Dentais/uso terapêutico , Cremes Dentais/efeitos adversos , Antissépticos Bucais/uso terapêutico , Antissépticos Bucais/efeitos adversos , Sensibilidade da Dentina/induzido quimicamente , Descoloração de Dente/induzido quimicamente , Descoloração de Dente/tratamento farmacológico , Peróxido de Hidrogênio/uso terapêutico , Peróxido de Hidrogênio/efeitos adversos , Peróxido de Carbamida/uso terapêutico
3.
Apoptosis ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38615304

RESUMO

Ferroptosis is a new discovered regulated cell death triggered by the ferrous ion (Fe2+)-dependent accumulation of lipid peroxides associated with cancer and many other diseases. The mechanism of ferroptosis includes oxidation systems (such as enzymatic oxidation and free radical oxidation) and antioxidant systems (such as GSH/GPX4, CoQ10/FSP1, BH4/GCH1 and VKORC1L1/VK). Among them, ferroptosis suppressor protein 1 (FSP1), as a crucial regulatory factor in the antioxidant system, has shown a crucial role in ferroptosis. FSP1 has been well validated to ferroptosis in three ways, and a variety of intracellular factors and drug molecules can alleviate ferroptosis via FSP1, which has been demonstrated to alter the sensitivity and effectiveness of cancer therapies, including chemotherapy, radiotherapy, targeted therapy and immunotherapy. This review aims to provide important frameworks that, bring the regulation of FSP1 mediated ferroptosis into cancer therapies on the basis of existing studies.

4.
Med Res Rev ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38618882

RESUMO

Malaria is a life-threatening disease that affects tropical and subtropical regions worldwide. Various drugs were used to treat malaria, including artemisinin and derivatives, antibiotics (tetracycline, doxycycline), quinolines (chloroquine, amodiaquine), and folate antagonists (sulfadoxine and pyrimethamine). Since the malarial parasites developed drug resistance, there is a need to develop new chemical entities with high efficacy and low toxicity. In this context, 1,2,4,5-tetraoxanes emerged as an essential scaffold and have shown promising antimalarial activity. To improve activity and overcome resistance to various antimalarial drugs; 1,2,4,5-tetraoxanes were fused with various aryl/heteroaryl/alicyclic/spiro moieties (steroid-based 1,2,4,5-tetraoxanes, triazine-based 1,2,4,5-tetraoxanes, aminoquinoline-based 1,2,4,5-tetraoxanes, dispiro-based 1,2,4,5-tetraoxanes, piperidine-based 1,2,4,5-tetraoxanes and diaryl-based 1,2,4,5-tetraoxanes). The present review aims to focus on covering the relevant literature published during the past 30 years (1992-2022). We summarize the most significant in vitro, in vivo results and structure-activity relationship studies of 1,2,4,5-tetraoxane-based hybrids as antimalarial agents. The structural evolution of different hybrids can provide the framework for the future development of 1,2,4,5-tetraoxane-based hybrids to treat malaria.

5.
Environ Sci Technol ; 58(15): 6564-6574, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38578220

RESUMO

Formation of highly oxygenated molecules (HOMs) such as organic peroxides (ROOR, ROOH, and H2O2) is known to degrade food and organic matter. Gas-phase unimolecular autoxidation and bimolecular RO2 + HO2/RO2 reactions are prominently renowned mechanisms associated with the formation of peroxides. However, the reaction pathways and conditions favoring the generation of peroxides in the aqueous phase need to be evaluated. Here, we identified bulk aqueous-phase ROOHs in varying organic precursors, including a laboratory model compound and monoterpene oxidation products. Our results show that formation of ROOHs is suppressed at enhanced oxidant concentrations but exhibits complex trends at elevated precursor concentrations. Furthermore, we observed an exponential increase in the yield of ROOHs when UV light with longer wavelengths was used in the experiment, comparing UVA, UVB, and UVC. Water-soluble organic compounds represent a significant fraction of ambient cloud-water components (up to 500 µM). Thus, the reaction pathways facilitating the formation of HOMs (i.e., ROOHs) during the aqueous-phase oxidation of water-soluble species add to the climate and health burden of atmospheric particulate matter.


Assuntos
Peróxido de Hidrogênio , Peróxidos , Material Particulado/análise , Oxidantes , Água , Aerossóis
6.
Biomaterials ; 309: 122574, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38670032

RESUMO

As an iron dependent regulatory cell death process driven by excessive lipid peroxides (LPO), ferroptosis is recognized as a powerful weapon for pancreatic cancer (PC) therapy. However, the tumor microenvironment (TME) with hypoxia and elevated glutathione (GSH) expression not only inhibits LPO production, but also induces glutathione peroxidase 4 (GPX4) mediated LPO clearance, which greatly compromise the therapeutic outcomes of ferroptosis. To address these issues, herein, a novel triple-enhanced ferroptosis amplifier (denoted as Zal@HM-PTBC) is rationally designed. After intravenous injection, the overexpressed H2O2/GSH in TME induces the collapse of Zal@HM-PTBC and triggers the production of oxygen and reactive oxygen species (ROS), which synergistically amplify the degree of lipid peroxidation (broaden sources). Concurrently, GSH consumption because of the degradation of the hollow manganese dioxide (HM) significantly weakens the activity of GPX4, resulting in a decrease in LPO clearance (reduce expenditure). Moreover, the loading and site-directed release of zalcitabine further promotes autophagy-dependent LPO accumulation (enhance effectiveness). Both in vitro and in vivo results validated that the ferroptosis amplifier demonstrated superior specificity and favorable therapeutic responses. Overall, this triple-enhanced LPO accumulation strategy demonstrates the ability to facilitate the efficacy of ferroptosis, injecting vigorous vitality into the treatment of PC.

7.
Pharmaceutics ; 16(4)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38675163

RESUMO

Multicomponent solid forms for the combined delivery of antimicrobials can improve formulation performance, especially for poorly soluble drugs, by enabling the modified release of the active ingredients to better meet therapeutic needs. Chitosan microspheres incorporating ozonated sunflower oil were prepared by a spray-drying method and using azelaic acid as a biocompatible cross-linker to improve the long time frame. Two methods were used to incorporate ozonated oil into microspheres during the atomization process: one based on the use of a surfactant to emulsify the oil and another using mesoporous silica as an oil absorbent. The encapsulation efficiency of the ozonated oil was evaluated by measuring the peroxide value in the microspheres, which showed an efficiency of 75.5-82.1%. The morphological aspects; particle size distribution; zeta potential; swelling; degradation time; and thermal, crystallographic and spectroscopic properties of the microspheres were analyzed. Azelaic acid release and peroxide formation over time were followed in in vitro analyses, which showed that ozonated oil embedded within chitosan microspheres cross-linked with azelaic acid is a valid system to obtain a sustained release of antimicrobials. In vitro tests showed that the microspheres exhibit synergistic antimicrobial activity against P. aeruginosa, E. coli, S. aureus, C. albicans and A. brasiliensis. This makes them ideal for use in the development of biomedical devices that require broad-spectrum and prolonged antimicrobial activity.

8.
Chembiochem ; 25(9): e202400106, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38469601

RESUMO

Bioluminescence, the mesmerizing natural phenomenon where living organisms produce light through chemical reactions, has long captivated scientists and laypersons alike, offering a rich tapestry of insights into biological function, ecology, evolution as well as the underlying chemistry. This comprehensive introductory review systematically explores the phenomenon of bioluminescence, addressing its historical context, geographic dispersion, and ecological significance with a focus on their chemical mechanisms. Our examination begins with terrestrial bioluminescence, discussing organisms from different habitats. We analyze thefireflies of Central Europe's meadows and the fungi in the Atlantic rainforest of Brazil. Additionally, we inspect bioluminescent species in New Zealand, specifically river-dwelling snails and mosquito larvae found in Waitomo Caves. Our exploration concludes in the Siberian Steppes, highlighting the area's luminescent insects and annelids. Transitioning to the marine realm, the second part of this review examines marine bioluminescent organisms. We explore this phenomenon in deep-sea jellyfish and their role in the ecosystem. We then move to Toyama Bay, Japan, where seasonal bioluminescence of dinoflagellates and ostracods present a unique case study. We also delve into the bacterial world, discussing how bioluminescent bacteria contribute to symbiotic relationships. For each organism, we contextualize its bioluminescence, providing details about its discovery, ecological function, and geographical distribution. A special focus lies on the examination of the underlying chemical mechanisms that enables these biological light displays. Concluding this review, we present a series of practical bioluminescence and chemiluminescence experiments, providing a resource for educational demonstrations and student research projects. Our goal with this review is to provide a summary of bioluminescence across the diverse ecological contexts, contributing to the broader understanding of this unique biological phenomenon and its chemical mechanisms serving researchers new to the field, educators and students alike.


Assuntos
Luminescência , Animais , Medições Luminescentes , Ecossistema
9.
Phytomedicine ; 128: 155475, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38492368

RESUMO

BACKGROUND: The intricate interactions between chronic psychological stress and susceptibility to breast cancer have been recognized, yet the underlying mechanisms remain unexplored. Danzhi Xiaoyao Powder (DZXY), a traditional Chinese medicine (TCM) formula, has found clinical utility in the treatment of breast cancer. Macrophages, as the predominant immune cell population within the tumor microenvironment (TME), play a pivotal role in orchestrating tumor immunosurveillance. Emerging evidence suggests that lipid oxidation accumulation in TME macrophages, plays a critical role in breast cancer development and progression. However, a comprehensive understanding of the pharmacological mechanisms and active components of DZXY related to its clinical application in the treatment of stress-aggravated breast cancer remains elusive. PURPOSE: This study sought to explore the plausible regulatory mechanisms and identify the key active components of DZXY contributing to its therapeutic efficacy in the context of breast cancer. METHODS: Initially, we conducted an investigation into the relationship between the phagocytic capacity of macrophages damaged by psychological stress and phospholipid peroxidation using flow cytometry and LC-MS/MS-based phospholipomics. Subsequently, we evaluated the therapeutic efficacy of DZXY based on the results of the tumor size, tumor weight, the phospholipid peroxidation pathway and phagocytosis of macrophage. Additionally, the target-mediated characterization strategy based on binding of arachidonate 15-lipoxygenase (ALOX15) to phosphatidylethanolamine-binding protein-1 (PEBP1), including molecular docking analysis, microscale thermophoresis (MST) assay, co-immunoprecipitation analysis and activity verification, has been further implemented to reveal the key bio-active components in DZXY. Finally, we evaluated the therapeutic efficacy of isochlorogenic acid C (ICAC) based on the results of tumor size, tumor weight, the phospholipid peroxidation pathway, and macrophage phagocytosis in vivo. RESULTS: The present study demonstrated that phospholipid peroxides, as determined by LC-MS/MS-based phospholipidomics, triggered in macrophages, which in turn compromised their capacity to eliminate tumor cells through phagocytosis. Furthermore, we elucidate the mechanism behind stress-induced PEBP1 to form a complex with ALOX15, thereby mediating membrane phospholipid peroxidation in macrophages. DZXY, demonstrates potent anti-breast cancer therapeutic effects by disrupting the ALOX15/PEBP1 interaction and inhibiting phospholipid peroxidation, ultimately enhancing macrophages' phagocytic capability towards tumor cells. Notably, ICAC emerged as a promising active component in DZXY, which can inhibit the ALOX15/PEBP1 interaction, thereby mitigating phospholipid peroxidation in macrophages. CONCLUSION: Collectively, our findings elucidate stress increases the susceptibility of breast cancer by driving lipid peroxidation of macrophages and suggest the ALOX15/PEBP1 complex as a promising intervention target for DZXY.


Assuntos
Araquidonato 15-Lipoxigenase , Medicamentos de Ervas Chinesas , Peroxidação de Lipídeos , Macrófagos , Fosfolipídeos , Microambiente Tumoral , Medicamentos de Ervas Chinesas/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Animais , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Feminino , Camundongos , Araquidonato 15-Lipoxigenase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Humanos , Neoplasias da Mama/tratamento farmacológico , Estresse Psicológico/tratamento farmacológico , Simulação de Acoplamento Molecular , Fagocitose/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Células RAW 264.7
10.
Foods ; 13(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38472871

RESUMO

Coffee pods and capsules require packaging that guarantees the optimal coffee preservation. The chemical composition of coffee can undergo quality decay phenomena during storage, especially in terms of lipidic and volatile components. Amongst coffee packaging, aluminum multilayer materials are particularly widely diffused. However, aluminum is a negative component because it is not recoverable in a mixed plastic structure and its specific weight gives significant weight to packaging. In this study, a multilayer film with a reduced content of aluminum was used to package coffe pods and capsules and compared to a standard film with an aluminum layer. Their influence on the peroxides and volatile organic compounds of two coffee blends, 100% Coffea arabica L., 50% Coffea arabica L., and 50% Coffea canephora var. robusta L., were studied during their 180-day shelf life. The predominant volatile organic compounds detected belonged to the class of furans and pyrazines. Both packaging materials used for both coffee blends in the pods and capsules showed no significant differences during storage. Thus, the alternative packaging with less aluminum had the same performance as the standard with the advantage of being more sustainable, reducing the packaging weight, with benefits for transportation, and preserving the coffee aroma during the shelf life.

11.
Mol Cell Biochem ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374233

RESUMO

Ferroptosis is a newly recognized type of regulated cell death that is characterized by the accumulation of iron and lipid peroxides in cells. Studies have shown that ferroptosis plays a significant role in the pathogenesis of various diseases, including cardiovascular diseases. In cardiovascular disease, ferroptosis is associated with ischemia-reperfusion injury, myocardial infarction, heart failure, and atherosclerosis. The molecular mechanisms underlying ferroptosis include the iron-dependent accumulation of lipid peroxidation products, glutathione depletion, and dysregulation of lipid metabolism, among others. This review aims to summarize the current knowledge of the molecular mechanisms of ferroptosis in cardiovascular disease and discuss the potential therapeutic strategies targeting ferroptosis as a treatment for cardiovascular disease.

12.
Int J Neurosci ; : 1-9, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38197187

RESUMO

PURPOSE: The objective of this study was to investigate the mechanism of electroacupuncture pretreatment in reducing myocardial ischemia-reperfusion injury in rats. MATERIALS AND METHODS: The comparison of HR among the different groups did not yield statistically significant differences (p > 0.05). Additionally, the trend of HR change at different time points within each group was not statistically significant (p > 0.05). In contrast, the comparison of SBP among the different groups showed statistically significant differences (p < 0.05). Furthermore, the trend of SBP change at different time points within each group exhibited significant differences (p < 0.05). RESULTS: Compared to the Sham group, rats in the I/R group and EA control group showed a significant decrease in EF, FS, SOD, p-mTOR/mTOR, GPX4, and FTH1, and an increase in CK-MB, cTnI, LDH, iron, ROS, MDA, ACSL4, and NCOA4 (p < 0.05). Compared to EA control group, rats in the EA group exhibited a significant increase in EF, FS, SOD, p-mTOR/mTOR, GPX4, and FTH1, and a decrease in CK-MB, cTnI, LDH, iron, ROS, MDA, ACSL4, and NCOA4 (p < 0.05). Compared to the EA group, rats in the EA + RAP group showed a significant decrease in EF, FS, SOD, p-mTOR/mTOR, GPX4, and FTH1, and an increase in CK-MB, cTnI, LDH, iron, ROS, MDA, ACSL4, and NCOA4 (p < 0.05). CONCLUSIONS: Electroacupuncture preconditioning confers protective effects against myocardial ischemia-reperfusion injury in rats. Its mechanism may involve the activation of the mTOR/ROS signaling pathway by electroacupuncture to inhibit ferroptosis.

13.
Adv Healthc Mater ; 13(7): e2302752, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37975280

RESUMO

Immunogenic cell death (ICD) shows promising therapeutic potential for tumor regression. However, the low sensitivity and immunosuppressive state of current cell death manners seriously impede tumor immunogenicity. Ferroptosis characterized by excessive lipid peroxidation, has emerged as a potential strategy to induce ICD and activate antitumor immune responses. However, the effectiveness of ferroptosis is limited by antioxidant regulatory networks, including the glutathione peroxidase 4 (GPX4) and ferroptosis suppressor protein 1 (FSP1) pathways, presenting challenges for its induction. Herein, they propose a novel approach that involves utilizing functionalized chitosan-ferrocene-sodium alginate (CFA) crosslinked nanogels, which are modified to pravastatin (PRV) and M1 macrophage membrane (MM) (designing as CFA/PRV@MM). Specifically, ferrocene boots intracellular reactive oxygen species levels for efficient glutathione (GSH) depletion through Fenton reaction, thus disrupting the GPX4/GSH axis, while PRV intervenes in the mevalonate pathway to inhibit the FSP1/CoQ10 antioxidant axis, thereby synergistically causing pronounced ferroptotic damage and promoting ICD. The CFA/PRV@MM nanogels demonstrate superior therapeutic efficacy in a mouse breast model, resulting in effective tumor ablation and immune response with minimal side effects. RNA transcription analysis reveals that nanogels can significantly affect metabolic progress, as well as immune activation. This research provides valuable insights into the design of ferroptosis induction for cancer immunotherapy.


Assuntos
Quitosana , Ferroptose , Compostos Ferrosos , Neoplasias , Animais , Camundongos , Metalocenos , Nanogéis , Antioxidantes , Biomimética , Alginatos , Modelos Animais de Doenças , Glutationa
14.
Apoptosis ; 29(1-2): 3-21, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37848673

RESUMO

Ferroptosis, a mode of cell death that was recently identified in 2012, is driven by iron-dependent lipid peroxidation and distinct from other mechanisms of cell death such as autophagy and apoptosis. Ferroptosis has the unique features of disruptions in iron equilibrium, iron-induced lipid peroxidation, and the accumulation of glutamate-induced cellular toxicity. The regulation of ferroptosis mainly involves the iron, lipid, and amino acid metabolic pathways, which are controlled by system Xc-, voltage-dependent anion channels, p53 and other pathways. Neurodegenerative diseases involve gradual neuronal loss predominantly within the central nervous system and are categorized into both sporadic and rare hereditary disorders. These diseases result in the progressive decline of specific neuron populations and their interconnections. Recent investigations have revealed a strong correlation between the manifestation and progression of neurodegenerative diseases and ferroptosis. The pharmacological modulation of ferroptosis, whether by induction or inhibition, exhibits promising prospects for therapeutic interventions for these diseases. This review aims to examine the literature on ferroptosis and its implications in various neurodegenerative diseases. We hope to offer novel insights into the potential therapies targeting ferroptosis in central nervous system neurodegenerative diseases. However, there are still limitations of this review. First, despite our efforts to maintain objectivity during our analysis, this review does not cover all the studies on ferroptosis and neurodegenerative diseases. Second, cell death in neurodegenerative diseases is not solely caused by ferroptosis. Future research should focus on the interplay of different cell death mechanisms to better elucidate the specific disease pathogenesis.


Assuntos
Ferroptose , Doenças Neurodegenerativas , Humanos , Ferroptose/genética , Apoptose , Doenças Neurodegenerativas/genética , Morte Celular , Ferro , Peroxidação de Lipídeos
15.
Curr Pharm Biotechnol ; 25(4): 396-410, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37612860

RESUMO

Ferroptosis is an iron-dependent programmed cell death mode that is distinct from other cell death modes, and radiation is able to stimulate cellular oxidative stress and induce the production of large amounts of reactive oxygen radicals, which in turn leads to the accumulation of lipid peroxide and the onset of ferroptosis. In this review, from the perspective of the role of ferroptosis in generating a radiation response following cellular irradiation, the relationship between ferroptosis induced by ionizing radiation stress and the response to ionizing radiation is reviewed, including the roles of MAPK and Nrf2 signaling pathways in ferroptosis, resulting from the oxidative stress response to ionizing radiation, the metabolic regulatory role of the p53 gene in ferroptosis, and regulatory modes of action of iron metabolism and iron metabolism-related regulatory proteins in promoting and inhibiting ferroptosis. It provides some ideas for the follow-up research to explore the specific mechanism and regulatory network of ferroptosis in response to ionizing radiation.


Assuntos
Ferroptose , Morte Celular , Peróxidos Lipídicos , Radiação Ionizante , Espécies Reativas de Oxigênio , Ferro
16.
Sci Total Environ ; 912: 168736, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-37996034

RESUMO

There is growing evidence that the interactions between sulfur dioxide (SO2) and organic peroxides (POs) in aerosol and clouds play an important role in atmospheric sulfate formation and aerosol aging, yet the reactivity of POs arising from anthropogenic precursors toward SO2 remains unknown. In this study, we investigate the multiphase reactions of SO2 with secondary organic aerosol (SOA) formed from the photooxidation of toluene, a major type of anthropogenic SOA in the atmosphere. The reactive uptake coefficient of SO2 on toluene SOA was determined to be on the order of 10-4, depending strikingly on aerosol water content. POs contribute significantly to the multiphase reactivity of toluene SOA, but they can only explain a portion of the measured SO2 uptake, suggesting the presence of other reactive species in SOA that also contribute to the particle reactivity toward SO2. The second-order reaction rate constant (kII) between S(IV) and toluene-derived POs was estimated to be in the range of the kII values previously reported for commercially available POs (e.g., 2-butanone peroxide and 2-tert-butyl hydroperoxide) and the smallest (C1-C2) and biogenic POs. In addition, unlike commercial POs that can efficiently convert S(IV) into both inorganic sulfate and organosulfates, toluene-derived POs appear to mainly oxidize S(IV) to inorganic sulfate. Our study reveals the multiphase reactivity of typical anthropogenic SOA and POs toward SO2 and will help to develop a better understanding of the formation and evolution of atmospheric secondary aerosol.

17.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1003787

RESUMO

Osteoporosis (OP) is a systemic metabolic bone disease characterized by bone microstructure degeneration and bone mass loss, which has a high prevalence and disability rate. Effective prevention and treatment of OP is a major difficulty in the medical community. The nature of OP is that multiple pathological factors lead to the imbalance of human bone homeostasis maintained by osteoblasts and osteoclasts. Ferroptosis is a non-apoptotic cell death pathway, and its fundamental cause is cell damage caused by iron accumulation and lipid peroxidation. Studies have shown that ferroptosis is involved in and affects the occurrence and development of OP, which leads to OP by mediating the imbalance of bone homeostasis. Ferroptosis is an adjustable form of programmed cell death. The intervention of ferroptosis can regulate the damage degree and death process of osteoblasts and osteoclasts, which is beneficial to maintain bone homeostasis, slow down the development process of OP, improve the clinical symptoms of patients, reduce the risk of disability, and improve their quality of life. However, there are few studies on ferroptosis in OP. Traditional Chinese medicine (TCM) is a medical treasure with unique characteristics and great application value in China. It has been widely used in China and has a long history. It has the multi-target and multi-pathway advantages in the treatment of OP, with high safety, few toxic and side effects, and low treatment cost, and has a significant effect in clinical application. The intervention of TCM in ferroptosis to regulate bone homeostasis may be a new direction for the prevention and treatment of OP in the future. This article summarized the regulatory mechanisms related to ferroptosis, discussed the role of ferroptosis in bone homeostasis, and reviewed the current status and progress of active ingredients in TCM compounds and monomers in the regulation of OP through ferroptosis, so as to provide a theoretical basis for the participation of TCM in the prevention and treatment of OP in the future.

18.
Biomaterials ; 305: 122447, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38154441

RESUMO

Ferroptosis is a promising therapeutic approach for combating malignant cancers, but its effectiveness is limited in clinical due to the adaptability and self-repair abilities of cancer cells. Mitochondria, as the pivotal player in ferroptosis, exhibit tremendous therapeutic potential by targeting the intramitochondrial anti-ferroptotic pathway mediated by dihydroorotate dehydrogenase (DHODH). In this study, an albumin-based nanomedicine was developed to induce augmented ferroptosis in triple-negative breast cancer (TNBC) by depleting glutathione (GSH) and inhibiting DHODH activity. The nanomedicine (ATO/SRF@BSA) was developed by loading sorafenib (SRF) and atovaquone (ATO) into bovine serum albumin (BSA). SRF is an FDA-approved ferroptosis inducer and ATO is the only drug used in clinical that targets mitochondria. By combining the effects of SRF and ATO, ATO/SRF@BSA promoted the accumulation of lipid peroxides within mitochondria by inhibiting the glutathione peroxidase 4 (GPX4)-GSH pathway and downregulating the DHODH-coenzyme Q (CoQH2) defense mechanism, triggers a burst of lipid peroxides. Simultaneously, ATO/SRF@BSA suppressed cancer cell self-repair and enhanced cell death by inhibiting the synthesis of adenosine triphosphate (ATP) and pyrimidine nucleotides. Furthermore, the anti-cancer results showed that ATO/SRF@BSA exhibited tumor-specific killing efficacy, significantly improved the tumor hypoxic microenvironment, and lessened the toxic side effects of SRF. This work presents an efficient and easily achievable strategy for TNBC treatment, which may hold promise for clinical applications.


Assuntos
Ferroptose , Neoplasias de Mama Triplo Negativas , Humanos , Di-Hidro-Orotato Desidrogenase , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Peróxidos Lipídicos , Soroalbumina Bovina , Atovaquona , Glutationa , Linhagem Celular Tumoral , Microambiente Tumoral
19.
Cell Rep ; 42(12): 113561, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38096056

RESUMO

Quiescence is a common cellular state, required for stem cell maintenance and microorganismal survival under stress conditions or starvation. However, the mechanisms promoting quiescence maintenance remain poorly known. Plasma membrane components segregate into distinct microdomains, yet the role of this compartmentalization in quiescence remains unexplored. Here, we show that flavodoxin-like proteins (FLPs), ubiquinone reductases of the yeast eisosome membrane compartment, protect quiescent cells from lipid peroxidation and ferroptosis. Eisosomes and FLPs expand specifically in respiratory-active quiescent cells, and mutants lacking either show accelerated aging and defective quiescence maintenance and accumulate peroxidized phospholipids with monounsaturated or polyunsaturated fatty acids (PUFAs). FLPs are essential for the extramitochondrial regeneration of the lipophilic antioxidant ubiquinol. FLPs, alongside the Gpx1/2/3 glutathione peroxidases, prevent iron-driven, PUFA-dependent ferroptotic cell death. Our work describes ferroptosis-protective mechanisms in yeast and introduces plasma membrane compartmentalization as an important factor in the long-term survival of quiescent cells.


Assuntos
Ferroptose , Saccharomyces cerevisiae , Peroxidação de Lipídeos , Antioxidantes , Ácidos Graxos Insaturados
20.
Artigo em Inglês | MEDLINE | ID: mdl-38082030

RESUMO

Photodynamic therapy (PDT), extensively explored as a non-invasive and spatio-temporal therapeutic modality for cancer treatment, encounters challenges related to the brief half-life and limited diffusion range of singlet oxygen. Lipid peroxides, formed through the oxidation of polyunsaturated fatty acids by singlet oxygen, exhibit prolonged half-life and potent cytotoxicity. Herein, we employed small molecule co-assembly technology to create nanoassemblies of pyropheophorbide a (PPa) and docosahexaenoic acid (DHA) to bolster PDT. DHA, an essential polyunsaturated fatty acid, co-assembled with PPa to generate nanoparticles (PPa@DHA NPs) without the need for additional excipients. To enhance the stability of these nanoassemblies, we introduced 20% DSPE-PEG2k as a stabilizing agent, leading to the formation of PPa@DHA PEG2k NPs. Upon laser irradiation, PPa-produced singlet oxygen swiftly oxidized DHA, resulting in the generation of cytotoxic lipid peroxides. This process significantly augmented the therapeutic efficiency of PDT. Consequently, tumor growth was markedly suppressed, attributed to the sensitizing and amplifying impact of DHA on PDT in a 4T1 tumor-bearing mouse model. In summary, this molecule-engineered nanoassembly introduces an innovative co-delivery approach to enhance PDT with polyunsaturated fatty acids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...