Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 258
Filtrar
1.
PeerJ ; 12: e17457, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38854793

RESUMO

For many species, the relationship between space use and diet composition is complex, with individuals adopting varying space use strategies such as territoriality to facilitate resource acquisition. Coyotes (Canis latrans) exhibit two disparate types of space use; defending mutually exclusive territories (residents) or moving nomadically across landscapes (transients). Resident coyotes have increased access to familiar food resources, thus improved foraging opportunities to compensate for the energetic costs of defending territories. Conversely, transients do not defend territories and are able to redirect energetic costs of territorial defense towards extensive movements in search of mates and breeding opportunities. These differences in space use attributed to different behavioral strategies likely influence foraging and ultimately diet composition, but these relationships have not been well studied. We investigated diet composition of resident and transient coyotes in the southeastern United States by pairing individual space use patterns with analysis of stable carbon (δ13C) and nitrogen (δ15N) isotope values to assess diet. During 2016-2017, we monitored 41 coyotes (26 residents, 15 transients) with GPS radio-collars along the Savannah River area in the southeastern United States. We observed a canopy effect on δ13C values and little anthropogenic food in coyote diets, suggesting 13C enrichment is likely more influenced by reduced canopy cover than consumption of human foods. We also observed other land cover effects, such as agricultural cover and road density, on δ15N values as well as reduced space used by coyotes, suggesting that cover types and localized, resident-like space use can influence the degree of carnivory in coyotes. Finally, diets and niche space did not differ between resident and transient coyotes despite differences observed in the proportional contribution of potential food sources to their diets. Although our stable isotope mixing models detected differences between the diets of resident and transient coyotes, both relied mostly on mammalian prey (52.8%, SD = 15.9 for residents, 42.0%, SD = 15.6 for transients). Resident coyotes consumed more game birds (21.3%, SD = 11.6 vs 13.7%, SD = 8.8) and less fruit (10.5%, SD = 6.9 vs 21.3%, SD = 10.7) and insects (7.2%, SD = 4.7 vs 14.3%, SD = 8.5) than did transients. Our findings indicate that coyote populations fall on a feeding continuum of omnivory to carnivory in which variability in feeding strategies is influenced by land cover characteristics and space use behaviors.


Assuntos
Coiotes , Isótopos de Nitrogênio , Coiotes/fisiologia , Animais , Isótopos de Nitrogênio/análise , Isótopos de Carbono/análise , Carnivoridade , Dieta , Territorialidade , Sudeste dos Estados Unidos , Comportamento Alimentar/fisiologia
2.
J Med Entomol ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38726974

RESUMO

White-tailed deer, Odocoileus virginianus Zimmermann (Artiodactyla: Cervidae), are the primary wildlife host for adult stages of blacklegged ticks (Acari: Ixodidae: Ixodes scapularis Say) and an important host for lone star ticks (Acari: Ixodidae: Amblyomma americanum Linnaeus), both of which are vectors of numerous tick-borne pathogens. The 4-poster passive deer treatment device is a topical, host-targeted method to control free-living tick populations and has been proven to successfully reduce tick abundance in several states. Aggressive behavior of white-tailed deer at concentrated feeding stations is hypothesized to interfere with the effective use of 4-poster devices and deer contact with acaricide applicators. We analyzed images collected by camera traps at 4-poster feeding stations deployed at 3 sites in Maryland and found a negative relationship between some aggressive interactions and contact with applicators. Our results emphasize the need for further investigation into whether deer social dynamics can impact 4-poster efficacy for tick control. This study serves as a reminder that intraspecific interactions are important to consider when using host-targeted acaricide approaches.

3.
Viruses ; 16(5)2024 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-38793647

RESUMO

(1) Background: Epizootic hemorrhagic disease virus (EHDV) and bluetongue virus (BTV) are orbiviruses that cause hemorrhagic disease (HD) with significant economic and population health impacts on domestic livestock and wildlife. In the United States, white-tailed deer (Odocoileus virginianus) are particularly susceptible to these viruses and are a frequent blood meal host for various species of Culicoides biting midges (Diptera: Ceratopogonidae) that transmit orbiviruses. The species of Culicoides that transmit EHDV and BTV vary between regions, and larval habitats can differ widely between vector species. Understanding how midges are distributed across landscapes can inform HD virus transmission risk on a local scale, allowing for improved animal management plans to avoid suspected high-risk areas or target these areas for insecticide control. (2) Methods: We used occupancy modeling to estimate the abundance of gravid (egg-laden) and parous (most likely to transmit the virus) females of two putative vector species, C. stellifer and C. venustus, and one species, C. haematopotus, that was not considered a putative vector. We developed a universal model to determine habitat preferences, then mapped a predicted weekly midge abundance during the HD transmission seasons in 2015 (July-October) and 2016 (May-October) in Florida. (3) Results: We found differences in habitat preferences and spatial distribution between the parous and gravid states for C. haematopotus and C. stellifer. Gravid midges preferred areas close to water on the border of well and poorly drained soil. They also preferred mixed bottomland hardwood habitats, whereas parous midges appeared less selective of habitat. (4) Conclusions: If C. stellifer is confirmed as an EHDV vector in this region, the distinct spatial and abundance patterns between species and physiological states suggest that the HD risk is non-random across the study area.


Assuntos
Animais Selvagens , Vírus Bluetongue , Ceratopogonidae , Cervos , Vírus da Doença Hemorrágica Epizoótica , Insetos Vetores , Infecções por Reoviridae , Animais , Ceratopogonidae/virologia , Ceratopogonidae/fisiologia , Vírus da Doença Hemorrágica Epizoótica/fisiologia , Cervos/virologia , Insetos Vetores/virologia , Insetos Vetores/fisiologia , Vírus Bluetongue/fisiologia , Animais Selvagens/virologia , Infecções por Reoviridae/transmissão , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/virologia , Ecossistema , Estações do Ano , Fazendas , Aves/virologia
4.
Ecol Evol ; 14(5): e11347, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38774134

RESUMO

Chronic wasting disease (CWD) can spread among cervids by direct and indirect transmission, the former being more likely in emerging areas. Identifying subpopulations allows the delineation of focal areas to target for intervention. We aimed to assess the population structure of white-tailed deer (Odocoileus virginianus) in the northeastern United States at a regional scale to inform managers regarding gene flow throughout the region. We genotyped 10 microsatellites in 5701 wild deer samples from Maryland, New York, Ohio, Pennsylvania, and Virginia. We evaluated the distribution of genetic variability through spatial principal component analysis and inferred genetic structure using non-spatial and spatial Bayesian clustering algorithms (BCAs). We simulated populations representing each inferred wild cluster, wild deer in each state and each physiographic province, total wild population, and a captive population. We conducted genetic assignment tests using these potential sources, calculating the probability of samples being correctly assigned to their origin. Non-spatial BCA identified two clusters across the region, while spatial BCA suggested a maximum of nine clusters. Assignment tests correctly placed deer into captive or wild origin in most cases (94%), as previously reported, but performance varied when assigning wild deer to more specific origins. Assignments to clusters inferred via non-spatial BCA performed well, but efficiency was greatly reduced when assigning samples to clusters inferred via spatial BCA. Differences between spatial BCA clusters are not strong enough to make assignment tests a reliable method for inferring the geographic origin of deer using 10 microsatellites. However, the genetic distinction between clusters may indicate natural and anthropogenic barriers of interest for management.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38695836

RESUMO

Background: Early detection and monitoring of SARS-CoV-2 infections in animal populations living in close proximity to humans is crucial for preventing reverse zoonosis of new viral strains. Evidence accumulated has revealed widespread SARS-CoV-2 infection among white-tailed deer (WTD), (Odocoileus virginianus) populations in the United States except in the southeast region. Therefore, the objective was to conduct surveillance for evidence of SARS-CoV-2 infection among WTD in Mississippi. Materials and Methods: Blood, kidney tissues, and nasal swab samples were collected in 17 counties from hunter-harvested deer during 2021-2022 and 2022-2023.Samples of kidney tissue were collected to evaluate for detecting antibody as a possible alternative to blood that is not always available from dead WTD. Nasal swab samples were tested for SARS-CoV-2 viral RNA by a RT-PCR assay. Sera and kidney tissue samples were tested for SARS-CoV-2 antibody by an enzyme-linked immunoassay (ELISA) and sera by a plaque reduction neutralization test (PRNT80). Results: The results of testing sera and kidney homogenate samples provided the first evidence of SARS-CoV-2 infection among WTD in Mississippi. The infection rate during 2021-2022 was 67% (10/15) based on the detection of neutralizing antibody by the PRNT80 and 26%(16/62) based on the testing of kidney tissue homogenates by an ELISA, and viral RNA was detected in 25% (3/12) of nasal swab samples. In 2022 to 2023, neutralizing antibody was detected in 62% (28/45) of WTD serum samples. In contrast, antibodies were not detected in 220 kidney homogenates by an ELISA nor was viral RNA detected in 220 nasal swab samples. Evidence of WTD activity was common in urban areas during the survey. Conclusion: Overall, the findings documented the first SARS-CoV-2 infection among WTD in Mississippi and showed that WTD commonly inhabited urban areas as a possible source of acquiring infection from humans infected with this virus.

6.
Mov Ecol ; 12(1): 33, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671527

RESUMO

BACKGROUND: Prey are more vulnerable during migration due to decreased familiarity with their surroundings and spatially concentrated movements. Predators may respond to increased prey vulnerability by shifting their ranges to match prey. Moose (Alces alces) and white-tailed deer (Odocoileus virginianus) are primary gray wolf (Canis lupus) prey and important subsistence species for Indigenous communities. We hypothesized wolves would increase use of ungulate migration corridors during migrations and predicted wolf distributions would overlap primary available prey. METHODS: We examined seasonal gray wolf, moose, and white-tailed deer movements on and near the Grand Portage Indian Reservation, Minnesota, USA. We analyzed GPS collar data during 2012-2021 using Brownian bridge movement models (BBMM) in Migration Mapper and mechanistic range shift analysis (MRSA) to estimate individual- and population-level occurrence distributions and determine the status and timing of range shifts. We estimated proportional overlap of wolf distributions with moose and deer distributions and tested for differences among seasons, prey populations, and wolf sex and pack affiliations. RESULTS: We identified a single migration corridor through which white-tailed deer synchronously departed in April and returned in October-November. Gray wolf distributions overlapped the deer migration corridor similarly year-round, but wolves altered within-range distributions seasonally corresponding to prey distributions. Seasonal wolf distributions had the greatest overlap with deer during fall migration (10 October-28 November) and greatest overlap with moose during summer (3 May-9 October). CONCLUSIONS: Gray wolves did not increase their use of the white-tailed deer migration corridor but altered distributions within their territories in response to seasonal prey distributions. Greater overlap of wolves and white-tailed deer in fall may be due to greater predation success facilitated by asynchronous deer migration movements. Greater summer overlap between wolves and moose may be linked to moose calf vulnerability, American beaver (Castor canadensis) co-occurrence, and reduced deer abundance associated with migration. Our results suggest increases in predation pressure on deer in fall and moose in summer, which can inform Indigenous conservation efforts. We observed seasonal plasticity of wolf distributions suggestive of prey switching; that wolves did not exhibit migratory coupling was likely due to spatial constraints resulting from territoriality.

7.
Animals (Basel) ; 14(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38672360

RESUMO

Perceived risk associated with hunters can cause white-tailed deer (Odocoileus virginianus) to shift their activity away from key foraging areas or alter normal movements, which are important considerations in managing hunting and its effects on a population. We studied the effects of seven firearms hunts on the movements of 20 female deer in two Wildlife Management Areas within the Chattahoochee National Forest of northern Georgia, USA, during the 2018-2019 and 2019-2020 hunting seasons. Deer populations and the number of hunters in our study area have declined significantly since the 1980s. In response, hunting regulations for the 2019-2020 hunting season eliminated opportunities for harvesting female deer. To evaluate the indirect effects of antlered deer hunting on non-target female deer, we calculated 90% utilization distributions (UDs), 50% UDs, and step lengths for pre-hunt, hunt, and post-hunt periods using the dynamic Brownian bridge movement model. Data included 30 min GPS locations for 44 deer-hunt combinations. Pre-hunt 50% UDs (x- = 7.0 ha, SE = 0.4 ha) were slightly greater than both hunt (x- = 6.0 ha, SE = 0.3 ha) and post-hunt (x- = 6.0 ha, SE = 0.2 ha) 50% UDs (F = 3.84, p = 0.03). We did not detect differences in step length, nor did we detect differences in size or composition of 90% UDs, among the periods. Overall, our results suggest that the low level of hunting pressure in our study area and lack of exposure to hunters led to no biologically significant changes in female deer movements. To the extent of the findings presented in this paper, adjustments to the management of hunting in our study area do not appear to be necessary to minimize hunting-related disturbances for female deer. However, managers should continue to consider female deer behavior when evaluating future changes to hunting regulations.

8.
Ecol Evol ; 14(3): e11149, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38500852

RESUMO

Predator species can indirectly affect prey species through the cost of anti-predator behavior responses, which may involve shifts in occupancy, space use, or movement. Quantifying the various strategies implemented by prey species to avoid adverse interactions with predators can lead to a better understanding of potential population-level repercussions. Therefore, the purpose of this study was to examine predator-prey interactions by quantifying the effect of predator species presence on detection rates of prey species, using coyotes (Canis latrans) and white-tailed deer (Odocoileus virginianus) in Central Appalachian forests of the eastern United States as a model predator-prey system. To test two competing hypotheses related to interspecific interactions, we modeled species detections from 319 camera traps with a two-species occupancy model that incorporated a continuous-time detection process. We found that white-tailed deer occupancy was independent of coyote occupancy, but white-tailed deer were more frequently detectable and had greater detection intensity at sites where coyotes were present, regardless of vegetation-related covariates. In addition, white-tailed deer detection rates at sites with coyotes were highest when presumed forage availability was relatively low. These findings suggest that white-tailed deer may be exhibiting an active avoidance behavioral response to predators by increasing movement rates when coyotes are present in an area, perhaps due to reactive evasive maneuvers and/or proactive attempts to reduce adverse encounters with them. Concurrently, coyotes could be occupying sites with higher white-tailed deer densities. Because white-tailed deer did not exhibit significant shifts in daily activity patterns based on coyote occupancy, we further suggest that white-tailed deer in our study system generally do not use temporal partitioning as their primary strategy for avoiding encounters with coyotes. Overall, our study implements a recently developed analytical approach for modeling multi-species occupancy from camera traps and provides novel ecological insight into the complex relationships between predator and prey species.

9.
Microb Genom ; 10(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38536208

RESUMO

With emerging infectious disease outbreaks in human, domestic and wild animal populations on the rise, improvements in pathogen characterization and surveillance are paramount for the protection of human and animal health, as well as the conservation of ecologically and economically important wildlife. Genomics offers a range of suitable tools to meet these goals, with metagenomic sequencing facilitating the characterization of whole microbial communities associated with emerging and endemic disease outbreaks. Here, we use metagenomic sequencing in a case-control study to identify microbes in lung tissue associated with newly observed pneumonia-related fatalities in 34 white-tailed deer (Odocoileus virginianus) in Wisconsin, USA. We identified 20 bacterial species that occurred in more than a single individual. Of these, only Clostridium novyi was found to substantially differ (in number of detections) between case and control sample groups; however, this difference was not statistically significant. We also detected several bacterial species associated with pneumonia and/or other diseases in ruminants (Mycoplasma ovipneumoniae, Trueperella pyogenes, Pasteurella multocida, Anaplasma phagocytophilum, Fusobacterium necrophorum); however, these species did not substantially differ between case and control sample groups. On average, we detected a larger number of bacterial species in case samples than controls, supporting the potential role of polymicrobial infections in this system. Importantly, we did not detect DNA of viruses or fungi, suggesting that they are not significantly associated with pneumonia in this system. Together, these results highlight the utility of metagenomic sequencing for identifying disease-associated microbes. This preliminary list of microbes will help inform future research on pneumonia-associated fatalities of white-tailed deer.


Assuntos
Cervos , Pneumonia , Animais , Humanos , Estudos de Casos e Controles , Metagenômica , Animais Selvagens
10.
Parasites Hosts Dis ; 62(1): 117-130, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38443775

RESUMO

Ticks host different pathogens as endosymbiont and nonpathogenic microorganisms and play an important role in reproductive fitness and nutrient provision. However, the bacterial microbiomes of white-tailed deer ticks have received minimal attention. This study aimed to examine the bacterial microbiome of ticks collected from Odocoileus virginianus on the Mexico-United States border to assess differences in microbiome diversity in ticks of different species, sexes, and localities. Five different tick species were collected: Rhipicephalus microplus, Dermacentor nitens, Otobius megnini, Amblyomma cajennense, and A. maculatum. The tick microbiomes were analyzed using next-generation sequencing. Among all tick species, the most predominant phylum was Proteobacteria, followed by Actinobacteria and Firmicutes. The ticks from Tamaulipas and Nuevo León presented the highest bacterial species diversity. Acinetobacter johnsonii and A. lwoffii were the common bacterial species in the microbiome of all ticks, Coxiella were present in R. microplus, and Dermacentor nitens also exhibited a Francisella-like endosymbiont. The microbiome of most females in D. nitens was less diverse than that of males, whereas R. microplus occurs in females, suggesting that microbiome diversity is influenced by sex. In the bacterial communities of A. maculatum and O. megnini, Candidatus Midichloria massiliensis, and Candidatus Endoecteinascidia fumentensis were the most predominant endosymbionts. These results constitute the initial report on these bacteria, and this is also the first study to characterize the microbiome of O. megnini.


Assuntos
Cervos , Microbiota , Rhipicephalus , Animais , Feminino , Masculino , México , Microbiota/genética
11.
Front Vet Sci ; 11: 1354772, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414651

RESUMO

Introduction: Free-ranging white-tailed deer (Odocoileus virginianus) in northeastern lower Michigan, (United States) are a self-sustaining reservoir for bovine tuberculosis (bTB). Farm mitigation practices, baiting bans, and antlerless deer harvests have been ineffective in eliminating bTB in white-tailed deer and risks to cattle. The apparent prevalence has remained relatively constant in deer, prompting interest among wildlife researchers, managers, and veterinarians for an effective means of vaccinating deer against bTB. The commonly used human vaccine for bTB, Bacillus Calmette Guerin (BCG), is the primary candidate with oral delivery being the logical means for vaccinating deer. Materials and methods: We developed vaccine delivery units and incorporated the biomarker Rhodamine B before delivering them to deer to assess the level of coverage achievable. Following deployment of Rhodamine B-laden vaccine delivery units on 17 agricultural study sites in Alpena County, MI in Mar/Apr 2016, we sampled deer to detect evidence of Rhodamine B consumption. Results and discussion: We collected a total of 116 deer and sampled them for vibrissae/rumen marking and found 66.3% (n = 77) of the deer collected exhibited evidence of vaccine delivery unit consumption. Understanding the level of coverage we achieved with oral delivery of a biomarker in vaccine delivery units to deer enables natural resource professionals to forecast expectations of a next step toward further minimizing bTB in deer.

12.
Ecol Evol ; 14(2): e10875, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38352199

RESUMO

White-tailed deer (Odocoileus virginianus) are generally considered a home-ranging species, although northern populations may migrate between summer and winter ranges to balance resource requirements with environmental stressors. We evaluated annual home range characteristics of adult bucks (n = 30) fitted with GPS collars from 2017 to 2021 in central Mississippi with time series segmentation and Kernel Density Estimation (KDE) to determine if individuals employed varying movement strategies. We found 67% of bucks displayed a "sedentary" strategy characterized by a single KDE home range polygon with a mean size of 361 ha. The remaining 33% of bucks employed a "mobile" strategy characterized by multiple home range segments with a mean size of 6530 ha. Sedentary bucks went on an average of 5.9 excursions annually while mobile bucks went on 0.8. Excursion timing for both strategies peaked in breeding season and early spring. Mobile buck home ranges were separated by a mean distance of 7.1 km and mean duration in one home range segment before traveling to another was 78 days. Our study provides the first evidence that partial migration may apply to a larger proportion of lower-latitude deer populations than originally thought, though the environmental justification for this partial migration is not clear.

13.
EMBO Rep ; 25(1): 334-350, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38191872

RESUMO

Chronic wasting disease (CWD) is a prion disease affecting farmed and free-ranging cervids. CWD is rapidly expanding across North America and its mechanisms of transmission are not completely understood. Considering that cervids are commonly afflicted by nasal bot flies, we tested the potential of these parasites to transmit CWD. Parasites collected from naturally infected white-tailed deer were evaluated for their prion content using the protein misfolding cyclic amplification (PMCA) technology and bioassays. Here, we describe PMCA seeding activity in nasal bot larvae collected from naturally infected, nonclinical deer. These parasites efficiently infect CWD-susceptible mice in ways suggestive of high infectivity titers. To further mimic environmental transmission, bot larvae homogenates were mixed with soils, and plants were grown on them. We show that both soils and plants exposed to CWD-infected bot homogenates displayed seeding activity by PMCA. This is the first report describing prion infectivity in a naturally occurring deer parasite. Our data also demonstrate that CWD prions contained in nasal bots interact with environmental components and may be relevant for disease transmission.


Assuntos
Cervos , Príons , Doença de Emaciação Crônica , Animais , Camundongos , Príons/metabolismo , Doença de Emaciação Crônica/metabolismo , Cervos/metabolismo , Solo
14.
Oecologia ; 204(1): 47-58, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38091102

RESUMO

Two of the major factors that control the composition of herbaceous plant communities are competition for limiting soil resources and herbivory. We present results from a 14-year full factorial experiment in a tallgrass prairie ecosystem that crossed nitrogen (N) addition with fencing to exclude white-tailed deer, Odocoileus virginianus, from half the plots. Deer presence was associated with only modest decreases in aboveground plant biomass (14% decrease; -45 ± 19 g m-2) with no interaction with N addition. N addition at 5.44 and 9.52 g N m-2 year-1 led to increases in biomass. There were weak increases in species richness associated with deer presence, but only for no or low added N (1 and 2 g N m-2 year-1). However, the presence of deer greatly impacted the abundances of some of the dominant perennial forb species, but not the dominant grasses. Deer presence increased the abundance of the forb Artemisia ludoviciana by 34 ± 12 SE g m-2 (94%) and decreased the forb Solidago rigida by 32 ± 13 SE g m-2 (79%). We suggest that these changes may have resulted from trade-offs in plant competitive ability for soil N versus resistance to deer herbivory. Field observations suggest deer acted as florivores, mainly consuming the flowers of susceptible forb species. The preferential consumption of flowers of forbs that seem to be superior N competitors appears to create an axis of interspecific niche differentiation. The overpopulation of white-tailed deer in many tallgrass reserves likely structures the abundance of forb species.


Assuntos
Cervos , Ecossistema , Animais , Herbivoria , Pradaria , Nitrogênio , Plantas , Solo
15.
J Med Entomol ; 61(1): 245-249, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-37897421

RESUMO

White-tailed deer Odocoileus virginianus (Zimmermann) (Artiodactyla: Cervidae) are the main host for adult Ixodes scapularis Say (Acari: Ixodidae) (blacklegged tick) and all stages of Amblyomma americanum Linnaeus (Acari: Ixodidae) (lone star tick). However, literature describing the feeding and reproductive parameters of these tick species when feeding on this host is limited. We experimentally infested white-tailed deer with adult pairs of either I. scapularis or A. americanum to improve our understanding of these tick-host relationships. Our study used tick-naïve white-tailed deer and restricted host grooming throughout the infestation. For I. scapularis, the days to repletion (mean ±â€…SE, 6.04 ±â€…0.07), engorgement weight of replete females (0.20 ±â€…0.0032 g), duration of oviposition (32 ±â€…0.45 d), egg mass weight (0.10 ±â€…0.0027 g), and number of eggs laid per tick (1,803.00 ±â€…49.00) were recorded. Data from A. americanum were also recorded, including days to repletion (11.00 ±â€…0.063), engorgement weight of replete females (0.63 ±â€…0.025 g), duration of oviposition (37.00 ±â€…1.30 d), egg mass weight (0.34 ±â€…0.017 g), and number of eggs laid per tick (5,873.00 ±â€…291.00). These biological parameter data could be used as variables in models (e.g., LYMESIM 2.0) to determine how white-tailed deer influence I. scapularis and A. americanum populations in nature, and to evaluate the protective efficacy of tick-antigen-based antitick vaccines.


Assuntos
Cervos , Ixodes , Ixodidae , Infestações por Carrapato , Animais , Feminino , Amblyomma , Infestações por Carrapato/veterinária
16.
J Wildl Dis ; 60(1): 179-183, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37921658

RESUMO

Outbreaks of anthrax, caused by the soilborne bacterium Bacillus anthracis, are a continuous threat to free-ranging livestock and wildlife in enzootic regions of the United States, sometimes causing mass mortalities. Injectable anthrax vaccines are commercially available for use in livestock, and although hand injection is not a cost- or time-effective long-term management plan for prevention in wildlife, it may provide a tool for managers to target selectively animals of high conservation or economic value. Vaccine-induced anthrax-specific antibody responses have been reported previously in white-tailed deer (Odocoileus virginianus), but the protective nature was not determined. In this study, five white-tailed deer were subcutaneously vaccinated with one dose (1 mL) of the Anthrax Spore Vaccine. Eight blood collections by jugular venipuncture were conducted over 146 d to measure the anthrax-specific antibody response in each deer's serum over time. Antibodies were first detected by ELISA and later with toxin neutralization assays to estimate in vitro protection. Average peak absorbance by ELISA occurred at 14 d postvaccination, whereas average peak in vitro protection occurred at 28 d postvaccination. Observed in vitro protection on average for white-tailed deer after this single-dose vaccination protocol lasted 42-56 d postvaccination, although three individuals still maintained lethal toxin-neutralizing serum antibody titers out to 112 d postvaccination. Vaccination responses were variable but effective to some degree in all white-tailed deer.


Assuntos
Vacinas contra Antraz , Antraz , Bacillus anthracis , Cervos , Humanos , Animais , Antraz/prevenção & controle , Antraz/veterinária , Antraz/epidemiologia , Cervos/microbiologia , Esporos Bacterianos , Animais Selvagens/microbiologia , Vacinação/veterinária , Anticorpos Neutralizantes , Anticorpos Antibacterianos , Antígenos de Bactérias
17.
Animals (Basel) ; 13(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38067026

RESUMO

Although generally abundant, white-tailed deer (Odocoileus virginianus) populations in the southeastern United States have recently experienced several localized declines attributed to reduced fawn recruitment following the establishment of coyotes (Canis latrans). The Southern Appalachians is a mountainous region suggested to be experiencing white-tailed deer declines, as harvest numbers and hunter success rates have substantially decreased in northern Georgia since 1979. Low fawn survival (16%) was also recently documented in the Chattahoochee National Forest (CNF) in northern Georgia, necessitating further examination. We radio-collared 14 yearling and 45 adult female white-tailed deer along with 71 fawns during 2018-2020 in the CNF to estimate field-based vital rates (i.e., survival and fecundity) and parameterize stage-structured population models. We projected population growth rates (λ) over 10 years to evaluate the current rate of decline and various other management scenarios. Our results indicated that the observed population would decline by an average of 4.0% annually (λ = 0.960) under current conditions. Only scenarios including antlerless harvest restrictions in addition to improved fawn survival resulted in positive growth (λ = 1.019, 1.085), suggesting these measures are likely necessary for population recovery in the region. This approach can be applied by wildlife managers to inform site-specific management strategies.

18.
Biol Open ; 12(10)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37843403

RESUMO

Visual perception is dynamic and depends on physiological properties of a species' visual system and physical characteristics of the environment. White-tailed deer (Odocoileus virginianus) are most sensitive to short- and mid-wavelength light (e.g. blue and green). Wavelength enrichment varies spatially and temporally across the landscape. We assessed how the visual perception of deer influences their movement decisions. From August to September 2019, we recorded 10-min locations from 15 GPS-collared adult male deer in Central Florida. We used Hidden-Markov models to identify periods of movement by deer and subset these data into three time periods based on temporal changes in light environments. We modeled resource selection during movement using path-selection functions and simulated 10 available paths for every path used. We developed five a priori models and used 10-fold cross validation to assess our top model's performance for each time period. During the day, deer selected to move through woodland shade, avoided forest shade, and neither selected nor avoided small gaps. At twilight, deer avoided wetlands as cloud cover increased but neither selected nor avoided other cover types. Visual cues and signals are likely more conspicuous to deer in short-wavelength-enriched woodland shade during the day, while at twilight in long-wavelength-enriched wetlands during cloud cover, visual cues are likely less conspicuous. The nocturnal light environment did not influence resource selection and likely has little effect on deer movements because it's relatively homogenous. Our findings suggest visual perception relative to light environments is likely an underappreciated driver of behaviors and decision-making by an ungulate prey species.


Assuntos
Cervos , Animais , Masculino , Cervos/fisiologia , Áreas Alagadas , Percepção Visual , Modelos Biológicos
19.
J Vector Ecol ; 48(2): 103-112, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37843452

RESUMO

Lyme disease is the most prevalent vector-borne disease in the U.S., and acaricidal feeds administered to white-tailed deer (Odocoileus virginianus) have potential to disrupt blood feeding by the blacklegged tick, Ixodes scapularis. Two studies were conducted with the aim of determining an ideal formulation to deliver oral acaricides to white-tailed deer and finding the lowest fipronil dose level to effectively control I. scapularis. During formulation screening, various commercial attractants (baits) were presented to deer in large paddocks under semi-field conditions and motion-sensitive cameras were used to monitor consumption by deer and non-target species. During dose range-finding, deer were housed individually and presented a fipronil feed at one of five dose levels for 48 h (two deer untreated). At 24 h post-exposure, the deer were anesthetized, blood was drawn, and deer were manually infested with 20 I. scapularis mating pairs in feeding capsules. Tick mortality was monitored up to nine days post-attachment. Results of formulation screening indicated that loose/granular formulations were substantially more palatable to deer, relative to block formulations, and would be more effective under field conditions. Dose range-finding concluded fipronil feeds with doses of 25 ppm and higher would eliminate 100% of I. scapularis parasitizing deer. Additionally, 10 ppm fipronil feed controlled a considerable proportion of ticks, and results suggested 100% ticks could be eliminated if fipronil sulfone was present in plasma at ≥25.1 ppb. These results were paramount in developing a low dose fipronil deer feed for tick control and should provide valuable insights prior to execution of future field trials.


Assuntos
Cervos , Ixodes , Infestações por Carrapato , Animais , Infestações por Carrapato/prevenção & controle , Infestações por Carrapato/veterinária
20.
J Wildl Dis ; 59(4): 569-576, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37846910

RESUMO

Exposure of a dam to pathogens may potentially affect her fawns positively or negatively. Mammalian females transfer immunologic protection to their offspring via colostrum obtained while nursing. Conversely, chronic diseases in dams may potentially result in small and weak neonates, reduced milk production or quality, or infection. Little is known about how pathogen exposure in adult female white-tailed deer (Odocoileus virginianus) affects offspring survival. Our objective was to assess pathogen exposure for female white-tailed deer and subsequent survival rates of fawns in Dunn and Grant counties, North Dakota, and Perkins County, South Dakota, USA. We collected blood serum from 150 adult female deer during 2014. We compared survival of 49 fawns to maternal exposure to 10 pathogens from 37 of 150 adult females. There was no difference in fawn mass between dams based on antibody status and no difference in fawn survival for nine pathogens. The 12-wk survival for fawns born to mothers with antibodies against bovine herpesvirus 1 (BoHV-1, causing infectious bovine rhinotracheitis) was lower than for fawns born from mothers without antibodies against BoHV-1; however, the indirect or direct impacts of BoHV-1 exposure in mothers on fawn survival are unclear. Although our findings suggest that the cost of exposure to previous diseases may have minimal impact on short-term fawn survival for most pathogens, additional research with increased sample sizes is needed to confirm our findings.


Assuntos
Cervos , Bovinos , Animais , Feminino , Espectroscopia de Ressonância de Spin Eletrônica/veterinária , Anticorpos , Washington
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...