Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.459
Filtrar
1.
J Parkinsons Dis ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728204

RESUMO

Background: Parkinson's disease (PD) is characterized by alpha-synuclein (α-Syn) pathology, neurodegeneration and neuroinflammation. Human leukocyte antigen (HLA) variants associated with PD and α-Syn specific CD4+ T lymphocytes in PD patients highlight the importance of antigen presentation in PD etiology. The class II transactivator (CIITA) regulates major histocompatibility complex class II (MHCII) expression. Reduced Ciita levels significantly increase α-Syn pathology, nigrostriatal neurodegeneration and behavioral deficits in α-Syn-induced rat PD models. Objective: Characterize immune profiles associated with enhanced PD-like pathology observed in rats expressing lower Ciita levels (DA.VRA4) compared to the background strain (DA). Methods: To model PD, we combined rAAV-mediated α-Syn overexpression in the substantia nigra with striatal injection of α-Syn preformed fibrils. Immune profiles in brain and blood were analyzed by flow cytometry and multiplexed ELISA in naïve rats, 4- and 8 weeks post rAAV injection. Results: Flow cytometry showed Ciita-dependent regulation of MHCII on microglia, brain macrophages and circulating myeloid cells. The MHCII-dependent microglial response was highest at 4 weeks post rAAV injection, whereas the MHCII levels in circulating myeloid cells was highest at 8 weeks. There was no major infiltration of macrophages or T lymphocytes into the CNS in response to α-Syn and only subtle Ciita- and/or α-Syn-dependent changes in the T lymphocyte compartment. Lower Ciita levels were consistently associated with higher TNF levels in serum. Conclusions: Ciita regulates susceptibility to PD-like pathology through minor but detectable changes in resident and peripheral immune cells and TNF levels, indicating that mild immunomodulatory therapies could have therapeutic effects in PD.


Parkinson's disease is characterized by loss of nerve cells. There is also abnormal aggregation of a protein called alpha-synuclein and an ongoing inflammatory response. Findings that immune cells in the blood of individuals with Parkinson's disease react against the alpha-synuclein protein and that genes important for the immune system affect the risk of developing Parkinson's disease indicate that immune responses are important in Parkinson's disease. We have previously found that a low expression of certain immune molecules worsens disease progression in a rat model of Parkinson's disease. The aim of this study was to identify changes in the immune system in rats that are associated with disease severity, to identify mechanisms that could be targeted to treat Parkinson's disease. To model Parkinson's disease, we injected a modified virus to produce large amounts of alpha-synuclein combined with an injection of aggregated alpha-synuclein proteins in the rat brain. The model mimics several features of Parkinson's disease including nerve cell death, problems with movement, accumulation of alpha-synuclein in the brain, and an immune response. We observed that the immune system in the brain and blood responded to the model but that differences were small compared to controls. Our results suggest that small changes in the immune system can have a large effect on disease progression and that therapies targeting the immune system are worth exploring to find better treatment for Parkinson's disease.

2.
Arch Pharm Res ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734854

RESUMO

Tumor necrosis factor alpha (TNF-α), an abundant inflammatory cytokine in the tumor microenvironment (TME), is linked to breast cancer growth and metastasis. In this study, we established MCF10A cell lines incubated with TNF-α to investigate the effects of continuous TNF-α exposure on the phenotypic change of normal mammary epithelial cells. The established MCF10A-LE cell line, through long-term exposure to TNF-α, displayed cancer-like features, including increased proliferation, migration, and sustained survival signaling even in the absence of TNF-α stimulation. Unlike the short-term exposed cell line MCF10A-SE, MCF10A-LE exhibited elevated levels of epidermal growth factor receptor (EGFR) and subsequent TNF receptor 2 (TNFR2), and silencing of EGFR or TNFR2 suppressed the cancer-like phenotype of MCF10A-LE. Notably, we demonstrated that the elevated levels of NAD(P)H oxidase 4 (NOX4) and the resulting increase in reactive oxygen species (ROS) were associated with EGFR/TNFR2 elevation in MCF10A-LE. Furthermore, mammosphere-forming capacity and the expression of cancer stem cell (CSC) markers increased in MCF10A-LE. Silencing of EGFR reversed these effects, indicating the acquisition of CSC-like properties via EGFR signaling. In conclusion, our results reveal that continuous TNF-α exposure activates the EGFR/TNFR2 signaling pathway via the NOX4/ROS axis, promoting neoplastic changes in mammary epithelial cells within the inflammatory TME.

3.
Neurosci Lett ; : 137806, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38714229

RESUMO

BACKGROUND: Trigeminal neuralgia (TN) is a common and difficult-to-treat neuropathic pain disorder in clinical practice. Previous studies have shown that Toll-like receptor 4 (TLR4) modulates the activation of the NF-κB pathway to affect neuropathic pain in rats. Voltage-gated sodium channels (VGSCs) are known to play an important role in neuropathic pain electrical activity. OBJECTIVE: To investigate whether TLR4 can regulate Nav1.3 through the TRAF6/NF-κB p65 pathway after infraorbital nerve chronic constriction injury (ION-CCI). STUDY DESIGN: ION-CCI modeling was performed on SD (Sprague Dawley) rats. To verify the success of the modeling, we need to detect the mechanical pain threshold and ATF3. Then, detecting the expression of TLR4, TRAF6, NF-κB p65, p-p65, and Nav1.3 in rat TG. Subsequently, investigate the role of TLR4/TRAF6/NF-κB pathway in ION-CCI model by intrathecal injections of LPS-rs (TLR4 antagonist), C25-140 (TRAF6 inhibitor), and PDTC (NF-κB p65 inhibitor). RESULTS: ION-CCI surgery decreased the mechanical pain threshold of rats and increased the expression of ATF3, TLR4, TRAF6, NF-κB p-p65 and Nav1.3, but there was no difference in NF-κB p65 expression. After inject antagonist or inhibitor of the TLR4/TRAF6/NF-κB pathway, the expression of Nav1.3 was decreased and mechanical pain threshold was increased. CONCLUSION: In the rat model of ION-CCI, TLR4 in the rat trigeminal ganglion regulates Nav1.3 through the TRAF6/NF-κB p65 pathway, and TLR4 antagonist alleviates neuropathic pain in ION-CCI rats.

4.
Cell Commun Signal ; 22(1): 251, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698424

RESUMO

Anticancer immune surveillance and immunotherapies trigger activation of cytotoxic cytokine signaling, including tumor necrosis factor-α (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL) pathways. The pro-inflammatory cytokine TNF-α may be secreted by stromal cells, tumor-associated macrophages, and by cancer cells, indicating a prominent role in the tumor microenvironment (TME). However, tumors manage to adapt, escape immune surveillance, and ultimately develop resistance to the cytotoxic effects of TNF-α. The mechanisms by which cancer cells evade host immunity is a central topic of current cancer research. Resistance to TNF-α is mediated by diverse molecular mechanisms, such as mutation or downregulation of TNF/TRAIL receptors, as well as activation of anti-apoptotic enzymes and transcription factors. TNF-α signaling is also mediated by sphingosine kinases (SphK1 and SphK2), which are responsible for synthesis of the growth-stimulating phospholipid, sphingosine-1-phosphate (S1P). Multiple studies have demonstrated the crucial role of S1P and its transmembrane receptors (S1PR) in both the regulation of inflammatory responses and progression of cancer. Considering that the SphK/S1P/S1PR axis mediates cancer resistance, this sphingolipid signaling pathway is of mechanistic significance when considering immunotherapy-resistant malignancies. However, the exact mechanism by which sphingolipids contribute to the evasion of immune surveillance and abrogation of TNF-α-induced apoptosis remains largely unclear. This study reviews mechanisms of TNF-α-resistance in cancer cells, with emphasis on the pro-survival and immunomodulatory effects of sphingolipids. Inhibition of SphK/S1P-linked pro-survival branch may facilitate reactivation of the pro-apoptotic TNF superfamily effects, although the role of SphK/S1P inhibitors in the regulation of the TME and lymphocyte trafficking should be thoroughly assessed in future studies.


Assuntos
Imunoterapia , Neoplasias , Transdução de Sinais , Esfingolipídeos , Fator de Necrose Tumoral alfa , Humanos , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Neoplasias/patologia , Esfingolipídeos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos
5.
Artigo em Inglês | MEDLINE | ID: mdl-38716221

RESUMO

Background: Crohn's disease (CD) is a chronic inflammatory bowel disease with significant morbidity, affecting millions worldwide. The intricacies of immune responses in CD, especially post-treatment, remain a vital area of exploration. While memory T (Tm)-cell subsets play a pivotal role in adaptive immunity, their specific function in patients with CD after treatment is not well-understood. This study aims to investigate the effect and function of Tm-cell subsets in these patients, addressing a crucial knowledge gap in the context of CD therapeutics. Methods: A total of eight patients diagnosed with CD were selected based on predefined inclusion criteria. All patients were treated with either anti-inflammatory agents, immunosuppressive drugs, or a combination of both. For comparison, healthy donors were enrolled based on exclusion of autoimmune or inflammatory diseases. Peripheral blood mononuclear cells (PBMCs) and lymphocytes were isolated from blood and lymph node tissue respectively. The phenotype and cytokine production of T lymphocytes from both CD patients and healthy donors were analyzed using flow cytometry. Statistical comparisons of the outcomes between CD patients and healthy donors were made using Mann-Whitney test (two-tailed) and Student t-test. Results: Post-treatment CD patients exhibited an altered T cell distribution with a notable increase in CD8+ T cells in PBMCs (P=0.0005), and altered frequencies of CD4+ and CD8+ T cells in mesenteric lymph nodes (MLNs). Tm cells showed decreased interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) production, with significant alterations in the frequency of IFN-γ-producing CD8+ stem cell-like Tm (Tscm) cells in lesions of the MLNs from patients with CD (CD-M-Lys) compared to healthy MLNs from patients with CD (N-M-Lys) (P=0.0152). Differences in tissue-resident Tm (Trm)-cell subset frequencies were observed between the MLNs and small intestinal mucosa in CD patients. Conclusions: The treatments with anti-inflammatory agents and/or immunosuppressive drugs have a significant effect on the frequency and function of Tm-cell subsets. Clinically, these findings suggest a potential therapeutic avenue in modulating Tm-cell responses, which might be particularly beneficial for conditions where immune response modulation is crucial. Further clinical studies are warranted to explore the full therapeutic implications of these findings.

6.
Intest Res ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712360

RESUMO

Background/Aims: Robust management algorithms are required to reduce the residual risk of colectomy in acute severe ulcerative colitis (ASUC) refractory to standard infliximab salvage therapy. The aim of this study was to evaluate the performance and benefits of alternative ASUC management strategies using simulated prediction models of varying accuracy. Methods: This was a simulation-based modeling study using a hypothetical cohort of 5,000 steroid-refractory ASUC patients receiving standard infliximab induction. Simulated predictive models were used to risk-stratify patients and escalate treatment in patients at high risk of failing standard infliximab induction. The main outcome of interest was colectomy by 3 months. Results: The 3-month colectomy rate in the base scenario where all 5,000 patients received standard infliximab induction was 23%. The best-performing management strategy assigned high-risk patients to sequential Janus kinase inhibitor inhibition and mediumrisk patients to accelerated infliximab induction. Using a 90% area under the curve (AUC) prediction model and optimistic treatment efficacy assumptions, this strategy reduced the 3-month colectomy rate to 8% (65% residual risk reduction). Using an 80% AUC prediction model with only modest treatment efficacy assumptions, the 3-month colectomy rate was reduced to 15% (35% residual risk reduction). Overall management strategy efficacy was highly dependent on predictive model accuracy and underlying treatment efficacy assumptions. Conclusions: This is the first study to simulate predictive model-based management strategies in steroid-refractory ASUC and evaluate their effect on short-term colectomy rates. Future studies on predictive model development should incorporate simulation studies to better understand their expected benefit.

7.
Front Pharmacol ; 15: 1384198, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720780

RESUMO

Introduction: Bipolar disorder (BD) is a recurrent and disabling psychiatric disorder related to low-grade peripheral inflammation and altered levels of the members of the insulin-like growth factor (IGF) family. The aim of this study was to evaluate the plasma levels of IGF-2, insulin-like growth factor-binding protein 1 (IGFBP-1), IGFBP-3, IGFBP-5, IGFBP-7, and inflammatory markers such as tumor necrosis factor α (TNF-α), monocyte chemoattractant protein 1 (MCP-1), and macrophage inflammatory protein 1ß (MIP-1ß). Methods: We used the Young Mania Rating Scale (YMRS) to determine the severity of the symptomatology, while proteins were measured by enzyme-linked immunosorbent assay (ELISA). We included 20 patients with BD who suffered a manic episode and 20 controls. Some BD patients (n = 10) were evaluated after a period (17 ± 8 days) of pharmacological treatment. Results: No statistical difference was found in IGF-2, IGFBP-1, IGFBP-7, TNF-α, and MIP-1ß levels. However, IGFBP-3 and IGFBP-5 levels were found to be statistically decreased in BD patients. Conversely, the MCP-1 level was significantly increased in BD patients, but their levels were normalized after treatment. Intriguingly, only IGFBP-1 levels were significantly decreased after treatment. No significant correlation was found between the YMRS and any of the proteins studied either before or after treatment or between IGF proteins and inflammatory markers. Discussion: To some extent, IGFBP-3 and IGFBP-5 might be further explored as potential indicators of treatment responsiveness or diagnosis biomarkers in BD.

8.
Environ Res ; 252(Pt 3): 119034, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38701888

RESUMO

Cumulative human exposure to the environmental toxin, bisphenol A (BPA), has raised important health concerns in recent decades. However, the direct genomic regulation of BPA in skeletal muscles and its clinical significance are poorly understood. Therefore, we conducted a genome-wide transcriptome analysis after daily oral administration of BPA at the lowest observed adverse-effect level (LOAEL, 50 mg/kg) in male mice for six weeks to explore the gene-expression regulations in skeletal muscle induced by BPA. The primary Gene Ontology terms linked to BPA-dependent, differentially expressed genes at LOAEL comprised adaptive-immune response, positive regulation of T cell activation, and immune system process. The gene-set enrichment analysis disclosed increased complement-associated genes [complement components 3 (C3) and 4B, complement factor D, complement receptor 2, and immunoglobulin lambda constant 2] in the group administered with BPA, with a false-discovery rate of <0.05. Subsequent validation analysis conducted in BPA-fed animal skeletal muscle tissue and in vitro experiments confirmed that BPA induced immune activation, as evidenced by increased levels of C3 and C4α proteins in mice, C2C12 myoblasts, and mouse skeletal muscle cells. In addition, BPA markedly upregulated the transcription of tumor necrosis factor-α (Tnfα) in C2C12 myoblasts and mouse skeletal muscle cells, which was substantially inhibited by 5z-7-oxozeanol and parthenolide, providing further evidence of BPA-induced inflammation in muscle cells. Our bioinformatics and subsequent animal and in vitro validations demonstrate that BPA can activate inflammation in skeletal muscle, which could be a risk factor underlying chronic muscle weakness and wastage.

9.
Int J Pharm ; 657: 124159, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38701907

RESUMO

Inhibiting the expression of tumor necrosis factor-α (TNF-α), a pro-inflammatory cytokine widely distributed in the serum and synovial fluid, is important for managing rheumatoid arthritis (RA). Despite the good therapeutic effects of TNF-α small interfering RNA (TNF-α siRNA) in RA animal models, safe and efficient siRNA delivery systems that retain stability are lacking. We introduced a novel therapy using milk-derived exosomes(mEXOs)-encapsulated TNF-α siRNA-coated cryomicroneedle (cryoMN) patch and evaluated its efficacy via local transdermal administration through acupoints in RA treatment. The loading of TNF-α siRNAs into mEXOs was achieved by sonication, the loading rate, stability, and in vitro release of mEXOs-TNF-α siRNA were determined. The cryoMNs were prepared by micromolding, morphology, drug loading, and mechanical strength of the cryoMN array were analyzed. The loading efficiency of TNF-α siRNA was up to 21% and each cryoMN contained 39.6 ± 1.29 µg of TNF-α siRNA. Frozen sections penetrated 523 ± 63 µm deep. In vitro experiments have shown that mEXOs-TNF-α siRNA cryoMNs have good biocompatibility and inhibit the proliferation of HFLS-RA cells. In vivo pharmacodynamics studies found that general conditions, changes in microcirculation indexes, synovial histopathological changes, and expression of related proteins in the synovial tissue in RA rabbits were effectively alleviated by mEXOs-TNF-α siRNA cryoMNs. Improvement of each index at acupoints was greater than that at non-acupoints. Our findings facilitate the development of cryoMNs combined with exosomes and acupoints drug delivery for the treatment of RA. The combination of exosomes and cryoMNs will enable the development of new-generation microneedle-based treatments.

10.
Ocul Immunol Inflamm ; : 1-11, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709230

RESUMO

PURPOSE: We aimed to evaluate adalimumab efficacy in patients with initial-onset or recurrent Vogt-Koyanagi-Harada (VKH) syndrome. METHODS: A retrospective clinical study was performed to examine the therapeutic effect of adalimumab in 22 VKH patients,16 with initial-onset and six with recurrent VKH. Another 22 patients with initial-onset VKH who did not receive adalimumab were included as controls. The main observational parameters included the central macular thickness (CMT), subfoveal choroidal thickness (SCT), best-corrected visual acuity (BCVA), anterior chamber cell grade (ACC), glucocorticoid dose (GCD), and the development of sunset glow fundus. MRNA sequencing was used to profile the tumor necrosis factor (TNF)-α pathway in peripheral blood mononuclear cells obtained from nine patients with initial-onset VKH disease, six patients with recurrent VKH, and eight healthy controls. RESULTS: In the initial-onset group, adalimumab therapy significantly improved the BCVA, CMT, SCT, and ACC. Furthermore, adalimumab significantly decreased GCD in patients with initial-onset. In patients with recurrent VKH, the SCT significantly improved after adalimumab treatment, but no significant changes in BCVA, CMT, and ACC were observed. All six patients experienced relapse during follow-up. The TNF-α pathway exhibited a significant increase in initial-onset VKH when compared with that in both healthy controls and recurrent patients. Conversely, it was suppressed in recurrent VKH when compared with that in the initial-onset or healthy control groups. CONCLUSIONS: In patients with initial-onset VKH, adalimumab effectively reduces glucocorticoid dependence. However, adalimumab may not be effective for preventing relapse or providing long-term inflammation relief in patients with recurrent VKH.

11.
Methods Mol Biol ; 2800: 35-53, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38709476

RESUMO

Clustering of type II tumor necrosis factor (TNF) receptors (TNFRs) is essential for their activation, yet currently available drugs fail to activate signaling. Some strategies aim to cluster TNFR by using multivalent streptavidin or scaffolds based on dextran or graphene. However, these strategies do not allow for control of the valency or spatial organization of the ligands, and consequently control of the TNFR activation is not optimal. DNA origami nanostructures allow nanometer-precise control of the spatial organization of molecules and complexes, with defined spacing, number and valency. Here, we demonstrate the design and characterization of a DNA origami nanostructure that can be decorated with engineered single-chain TNF-related apoptosis-inducing ligand (SC-TRAIL) complexes, which show increased cell killing compared to SC-TRAIL alone on Jurkat cells. The information in this chapter can be used as a basis to decorate DNA origami nanostructures with various proteins, complexes, or other biomolecules.


Assuntos
DNA , Nanoestruturas , Nanoestruturas/química , Humanos , Células Jurkat , DNA/química , DNA/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/química , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Receptores do Fator de Necrose Tumoral/química , Nanotecnologia/métodos , Conformação de Ácido Nucleico
12.
Tissue Cell ; 88: 102396, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38703582

RESUMO

By using a unique animal model of type 2 diabetes mellitus, Psammomys obesus induced by a high-calorie diet (HCD) for nine months, we showed for the first time, in the liver, the impact of inflammation on the remodeling of intercellular junction molecules E-cadherins during the progression of steatohepatitis. Under the effect of HCD, the expressions of immunohistochemical markers, Tumor Necrosis Factor alpha (TNFα) and E-cadherins were inversely correlated. Ultrastructural examination revealed the involvement of destabilization and loss of E-cadherins in the process of hepatic pathogenesis. This mechanical maintenance stress was favored by the recruitment of immune cells which contributed to the triggering and progression of fibrosis by the enlargement of the intercellular space and the invasion of collagen fibers. Furthermore to escape cell death, loss of E-cadherins played a major role in mediating fibrosis. Psammomys obesus is a promising model for experimental research, enabling the extrapolation of observed structural and functional alterations in humans, the objective to find new therapeutic targets. The physiological resemblance between Psammomys obesus and humans enhances the precision and relevance of biomedical research efforts.

13.
Yakugaku Zasshi ; 144(5): 489-496, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38692922

RESUMO

The tumor necrosis factor receptor (TNFR)-associated factor (TRAF) family of molecules are intracellular adaptors that regulate cellular signaling through members of the TNFR and Toll-like receptor superfamily. Mammals have seven TRAF molecules numbered sequentially from TRAF1 to TRAF7. Although TRAF5 was identified as a potential regulator of TNFR superfamily members, the in vivo function of TRAF5 has not yet been fully elucidated. We identified an unconventional role of TRAF5 in interleukin-6 (IL-6) receptor signaling involving CD4+ T cells. Moreover, TRAF5 binds to the signal-transducing glycoprotein 130 (gp130) receptor for IL-6 and inhibits the activity of the janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway. In addition, Traf5-deficient CD4+ T cells exhibit significantly enhanced IL-6-driven differentiation of T helper 17 (Th17) cells, which exacerbates neuroinflammation in experimental autoimmune encephalomyelitis. Furthermore, TRAF5 demonstrates a similar activity to gp130 for IL-27, another cytokine of the IL-6 family. Additionally, Traf5-deficient CD4+ T cells display significantly increased IL-27-mediated differentiation of Th1 cells, which increases footpad swelling in delayed-type hypersensitivity response. Thus, TRAF5 functions as a negative regulator of gp130 in CD4+ T cells. This review aimed to explain how TRAF5 controls the differentiation of CD4+ T cells and discuss how the expression of TRAF5 in T cells and other cell types can influence the development and progression of autoimmune and inflammatory diseases.


Assuntos
Linfócitos T CD4-Positivos , Encefalomielite Autoimune Experimental , Transdução de Sinais , Fator 5 Associado a Receptor de TNF , Humanos , Animais , Fator 5 Associado a Receptor de TNF/genética , Fator 5 Associado a Receptor de TNF/metabolismo , Fator 5 Associado a Receptor de TNF/fisiologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/etiologia , Encefalomielite Autoimune Experimental/metabolismo , Receptor gp130 de Citocina/fisiologia , Receptor gp130 de Citocina/metabolismo , Células Th17/imunologia , Interleucina-6/metabolismo , Interleucina-6/fisiologia , Diferenciação Celular , Receptores de Interleucina-6/fisiologia , Receptores de Interleucina-6/metabolismo , Janus Quinases/metabolismo , Janus Quinases/fisiologia , Fatores de Transcrição STAT/fisiologia , Fatores de Transcrição STAT/metabolismo , Camundongos
14.
Transl Cancer Res ; 13(4): 1786-1806, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38737693

RESUMO

Background: DNMT3A is the main molecule responsible for DNA methylation in cells. DNMT3A affects the progression of inflammation, degenerative diseases, and malignant tumors, and exhibits significant aberrantly expression in tumor tissues. Methods: Transcriptome data and relevant clinical information were downloaded from The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and Gene Expression Omnibus (GEO) datasets. Differential expression analysis and prognostic analysis were conducted based on above statistics. We constructed a clinical prognostic model and identified DNMT3A as an independent prognostic factor to accurately predict patient prognosis. Differential gene enrichment analysis revealed that DNMT3A affects the progression of glioma through multiple pathways, among which the tumor necrosis factor-α (TNF-α)/nuclear factor-kappa B (NF-κB) pathway shows a strong correlation. Immunological analysis also revealed a certain correlation between DNMT3A and tumor immunity. We demonstrated through gene editing that DNMT3A can affect the release of TNF-α in cells, thereby affecting the progression of glioma. Functional experiments have also demonstrated that DNMT3A plays a crucial role in tumors. Results: RNA-sequencing and survival analyses of lower-grade glioma (LGG) patients in TCGA, CGGA, and GEO cohorts showed that high DNMT3A expression correlated with poor prognosis of LGG patients. Univariate and multivariate Cox regression analyses showed that DNMT3A expression was an independent prognostic indicator in LGG. The prognosis prediction nomogram with age, World Health Organization (WHO) grading, and DNMT3A expression showed reliable performance in predicting the 1-, 3-, and 5-year overall survival (OS) of LGG patients. Functional enrichment analysis, gene set enrichment analysis (GSEA), and ESTIMATE algorithm analyses showed that DNMT3A expression was associated with the tumor infiltration of immune cells and predicted response to immunotherapy in two immunotherapy cohorts of pan-cancer patients. Furthermore, short hairpin RNA (shRNA)-mediated knockdown of DNMT3A in the LGG cell lines suppressed proliferation, migration, and invasion of LGG cells by downregulating the TNF-α/NF-κB signaling pathway. Conclusions: Our data showed that DNMT3A was a potential prognostic biomarker in glioma. DNMT3A promoted proliferation and malignancy of LGG cells through the TNF-α/NF-κB signaling pathway. DNMT3A is a promising therapeutic target for treating patients with LGG.

15.
Front Physiol ; 15: 1382238, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737827

RESUMO

Background: Intestinal organoids are stem cell-derived, 3D "mini-guts" with similar functions as the native intestinal epithelium such as electrolyte transport or establishment of an epithelial barrier. During intestinal inflammation, epithelial functions are dysregulated by proinflammatory cytokines like tumor necrosis factor α (TNFα) and other messengers from the immune system resulting in a loss of electrolytes and water due to an impaired epithelial barrier and higher net secretion. Methods: A murine small intestinal organoid model was established to study (long-term) effects of TNFα on the intestinal epithelium in vitro using live imaging, immunohistochemical staining and qPCR. Results: TNFα induced apoptosis in intestinal organoids as indicated by an increased number of cells with immunoreactivity for cleaved caspase 3. Furthermore, TNFα exposure led to swelling of the organoids which was inhibited by bumetanide and was concomitant with an upregulation of the bumetanide-sensitive Na+-K+-2Cl- symporter 1 (NKCC1) as shown by qPCR. Fura-2 imaging experiments revealed time-dependent changes in Ca2+ signaling consisting of a rise in the basal cytosolic Ca2+ concentration at day 1 and an increase of the carbachol-induced Ca2+ response after 3 days TNFα exposure. This was prevented by preincubation with La3+, an inhibitor of non-selective cation channels, or by using a Ca2+-free buffer indicating an enhancement of the Ca2+ influx from the extracellular side by the cytokine. No significant changes in cDNA levels of epithelial barrier proteins could be observed in the presence of TNFα. Conclusion: Intestinal organoids are a useful tool to study the mechanism underlying the TNFα-induced secretion on enterocytes such as the regulation of NKCC1 expression or the modulation of cellular Ca2+ signaling.

16.
Immunobiology ; 229(3): 152808, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38735178

RESUMO

OBJECTIVES: Although tumor necrosis factor-alpha inhibitor (TNFi) treatment may improve pregnancy outcomes in unexplained recurrent miscarriage (URM) patients, evidence for its efficacy and safety is still insufficient. The goal of this study was to evaluate the efficacy and safety of TNFi on pregnancy outcomes in patients with URM. METHODS: This retrospective study was conducted at a single institution in China, involving 121 patients treated with TNFi for URM from 2019 to 2022. Patients enrolled were divided into treatment group (receiving TNFi and heparin therapy) and control group (receiving heparin therapy). The outcome variables were the 24-week live birth rate, miscarriage rate, ectopic pregnancy rate, neonatal outcomes, and adverse events. RESULTS: In our study, patients receiving TNFi treatment exhibited a significant increase in live birth rates, achieving 71.2 % compared to the 50.9 % observed in the control group (OR 2.507, 95 % CI: 1.127-5.579). Concurrently, there was a discernible reduction in the miscarriage rate within the TNFi-treated group, marking 24.2 %, in contrast to 43.6 % in the control group (OR 0.387, 95 % CI: 0.170-0.884). Subgroup analyses further illuminated that those under the age of 35 benefitted remarkably from TNFi treatment, with live birth rates soaring to 62.5 % (OR 2.525, 95 % CI: 1.041-6.125). For patients with a history of two miscarriages, the TNFi regimen significantly augmented the live birth rate to 58.9 % (OR 3.044, 95 % CI: 1.039-8.921). Patients with a normal weight range registered a 58.4 % live birth rate post-TNFi treatment (OR 4.261, 95 % CI: 1.539-11.397). Notably, an evident interaction between BMI and TNFi treatment was identified, suggesting a potential modulatory role of BMI on the therapeutic efficacy of TNFi. About safety assessments, neither the TNFi-treated group nor the control manifested any significant disparities in liver function abnormalities, platelet count anomalies, or other pregnancy-related complications. CONCLUSIONS: TNFi, alongside basic therapy, notably enhances the live birth rate in URM patients under 35, with two prior miscarriages or a normal BMI, without increasing adverse event risk. Further prospective studies are essential to validate these observations.

17.
Cell J ; 26(4): 243-249, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38736408

RESUMO

OBJECTIVE: Endometriosis, as a common inflammatory chronic disease is characterized by endometrial tissue growth outside the uterine cavity. It was reported that lipopolysaccharides (LPS) activate a transcription factor called LPSinduced tumor necrosis factor-alpha (LITAF) in macrophages, which induced transcription of cytokine genes such as tumor necrosis factor alpha (TNF-α). B-cell lymphoma 6 protein (BCL6) is a transcription factor which expression was increased in endometrial tissues of infertile women with endometriosis. In addition, it was shown that mRNA and protein of LITAF and BCL6 were inversely related in mature B lymphocytes and B-Cell lymphomas. Accordingly, we investigated gene expression of LITAF, BCL6 and ,TNF-α in eutopic and ectopic endometrial tissues of women with endometriosis compared to the controls. MATERIALS AND METHODS: In this case-control study, 10 women with endometriosis (endometriosis group) and 10 women without endometriosis (control group) enrolled after diagnostic laparoscopy. Real-time polymerase chain reaction (PCR) technique was used to quantitatively analyze gene expression. One-Way ANOVA was used for data analysis. RESULTS: This study showed that LITAF gene expression was significantly higher in ectopic endometrial tissues compared to the control samples. Expression level of BCL6 gene was significantly increased in the ectopic tissues of women with endometriosis compared to the control and eutopic samples. Although TNF-ɑ gene expression was increased in the ectopic lesions compared to the eutopic and control endometrial samples, these differences were not significant. CONCLUSION: The results suggested that over-expression of these inflammatory genes in ectopic endometrial lesions can be considered as a molecular scenario in pathophysiology of endometriosis by induction of inflammatory cascades and cellular proliferation.

18.
Molecules ; 29(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675685

RESUMO

Alantolactone is a eudesmane-type sesquiterpene lactone containing an α-methylene-γ-lactone moiety. Previous studies showed that alantolactone inhibits the nuclear factor κB (NF-κB) signaling pathway by targeting the inhibitor of NF-κB (IκB) kinase. However, in the present study, we demonstrated that alantolactone selectively down-regulated the expression of tumor necrosis factor (TNF) receptor 1 (TNF-R1) in human lung adenocarcinoma A549 cells. Alantolactone did not affect the expression of three adaptor proteins recruited to TNF-R1. The down-regulation of TNF-R1 expression by alantolactone was suppressed by an inhibitor of TNF-α-converting enzyme. Alantolactone increased the soluble forms of TNF-R1 that were released into the culture medium as an ectodomain. The structure-activity relationship of eight eudesmane derivatives revealed that an α-methylene-γ-lactone moiety was needed to promote TNF-R1 ectodomain shedding. In addition, parthenolide and costunolide, two sesquiterpene lactones with an α-methylene-γ-lactone moiety, increased the amount of soluble TNF-R1. Therefore, the present results demonstrate that sesquiterpene lactones with an α-methylene-γ-lactone moiety can down-regulate the expression of TNF-R1 by promoting its ectodomain shedding in A549 cells.


Assuntos
Regulação para Baixo , Lactonas , Receptores Tipo I de Fatores de Necrose Tumoral , Sesquiterpenos , Humanos , Células A549 , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/patologia , Regulação para Baixo/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Lactonas/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , NF-kappa B/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Sesquiterpenos de Eudesmano/farmacologia , Sesquiterpenos de Eudesmano/química , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
19.
Brain Behav Immun ; 119: 261-271, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38570102

RESUMO

Upregulation of soluble tumor necrosis factor (sTNF) cytokine signaling through TNF receptor 1 (TNFR1) and subsequent neuronal hyperexcitability are observed in both animal models and human chronic neuropathic pain (CNP). Previously, we have shown that estrogen modulates sTNF/TNFR1 signaling in CNP, which may contribute to female prevalence of CNP. The estrogen-dependent role of TNFR1-mediated supraspinal neuronal circuitry in CNP remains unknown. In this study, we interrogated the intersect between supraspinal TNFR1 mediated neuronal signaling and sex specificity by selectively removing TNFR1 in Nex + neurons in adult mice (NexCreERT2::TNFR1f/f). We determined that mechanical hypersensitivity induced by chronic constriction injury (CCI) decreases over time in males, but not in females. Subsequently, we investigated two downstream pathways, p38MAPK and NF-κB, important in TNFR1 signaling and injury response. We detected p38MAPK and NF-κB activation in male cortical tissue; however, p38MAPK phosphorylation was reduced in NexCreERT2::TNFR1f/f males. We observed a similar recovery from acute pain in male mice following CCI when p38αMAPK was knocked out of supraspinal Nex + neurons (NexCreERT2::p38αMAPKf/f), while chronic pain developed in female mice. To explore the intersection between estrogen and inflammation in CNP we used a combination therapy of an estrogen receptor ß (ER ß) inhibitor with a sTNF/TNFR1 or general p38MAPK inhibitor. We determined both combination therapies lends therapeutic relief to females following CCI comparable to the response evaluated in male mice. These data suggest that TNFR1/p38αMAPK signaling in Nex + neurons in CNP is male-specific and lack of therapeutic efficacy following sTNF inhibition in females is due to ER ß interference. These studies highlight sex-specific differences in pathways important to pain chronification and elucidate potential therapeutic strategies that would be effective in both sexes.

20.
Artigo em Inglês | MEDLINE | ID: mdl-38652572

RESUMO

OBJECTIVES: Rheumatoid arthritis (RA) and atherosclerosis share many common inflammatory pathways. We studied whether a multi-biomarker panel for RA disease activity (MBDA) would associate with changes in arterial inflammation in an interventional trial. METHODS: In the TARGET Trial, RA patients with active disease despite methotrexate were randomly assigned to the addition of either a TNF inhibitor or sulfasalazine+hydroxychloroquine (triple therapy). Baseline and 24-week follow-up 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography scans were assessed for change in arterial inflammation measured as the maximal arterial target-to-blood background ratio of FDG uptake in the most diseased segment of the carotid arteries or aorta (MDS-TBRmax). The MBDA test, measured at baseline and weeks 6, 18, and 24, was assessed for its association with the change in MDS-TBRmax. RESULTS: Interpretable scans were available at baseline and week 24 for n = 112 patients. The MBDA score at week 24 was significantly correlated with the change in MDR-TBRmax (Spearman's rho = 0.239; p= 0.011) and remained significantly associated after adjustment for relevant confounders. Those with low MBDA at week 24 had a statistically significant adjusted reduction in arterial inflammation of 0.35 units vs no significant reduction in those who did not achieve low MBDA. Neither DAS28-CRP nor CRP predicted change in arterial inflammation. The MBDA component with the strongest association with change in arterial inflammation was serum amyloid A (SAA). CONCLUSIONS: Among treated RA patients, achieved MBDA predicts of changes in arterial inflammation. Achieving low MBDA at 24 weeks was associated with clinically meaningful reductions in arterial inflammation, regardless of treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...