Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39125690

RESUMO

Sterols play important structural and regulatory roles in numerous intracellular processes. Unlike animals, plants contain a distinctive and diverse variety of sterols. Recently, information has emerged showing that stigmasterol is a "stress sterol". Stigmasterol is synthesized via the mevalonate biosynthesis pathway and has structural similarity to ß-sitosterol but differs in the presence of a trans-oriented double bond in the side chain. In plants, the accumulation of stigmasterol has been observed in response to various stresses. However, the precise ways that stigmasterol is involved in the stress responses of plants remain unclear. This comprehensive review provides an update on the biology of stigmasterol, particularly the physicochemical properties of this ethylsterol, its biosynthesis, and its occurrence in higher plants and extremophilic organisms, e.g., mosses and lichens. Special emphasis is given to the evolutionary aspects of stigmasterol biosynthesis, particularly the variations in the gene structure of C22-sterol desaturase, which catalyzes the formation of stigmasterol from ß-sitosterol, in a diversity of evolutionarily distant organisms. The roles of stigmasterol in the tolerance of plants to hostile environments and the prospects for its biomedical applications are also discussed. Taken together, the available data suggest that stigmasterol plays important roles in plant metabolism, although in some aspects, it remains an enigmatic compound.


Assuntos
Plantas , Estigmasterol , Estresse Fisiológico , Estigmasterol/metabolismo , Plantas/metabolismo , Sitosteroides/metabolismo
2.
Nutrients ; 16(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39064685

RESUMO

The organic anion transporters OAT1 (SLC22A6) and OAT3 (SLC22A8) are drug transporters that are expressed in the kidney, with well-established roles in the in vivo transport of drugs and endogenous metabolites. A comparatively unexplored potential function of these drug transporters is their contribution to the in vivo regulation of natural products (NPs) and their effects on endogenous metabolism. This is important for the evaluation of potential NP interactions with other compounds at the transporter site. Here, we have analyzed the NPs present in several well-established databases from Asian (Chinese, Indian Ayurvedic) and other traditions. Loss of OAT1 and OAT3 in murine knockouts caused serum alterations of many NPs, including flavonoids, vitamins, and indoles. OAT1- and OAT3-dependent NPs were largely separable based on a multivariate analysis of chemical properties. Direct binding to the transporter was confirmed using in vitro transport assays and protein binding assays. Our in vivo and in vitro results, considered in the context of previous data, demonstrate that OAT1 and OAT3 play a pivotal role in the handling of non-synthetic small molecule natural products, NP-derived antioxidants, phytochemicals, and nutrients (e.g., pantothenic acid, thiamine). As described by remote sensing and signaling theory, drug transporters help regulate redox states by meditating the movement of endogenous antioxidants and nutrients between organs and organisms. Our results demonstrate how dietary antioxidants and other NPs might feed into these inter-organ and inter-organismal pathways.


Assuntos
Antioxidantes , Produtos Biológicos , Proteína 1 Transportadora de Ânions Orgânicos , Transportadores de Ânions Orgânicos Sódio-Independentes , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Proteína 1 Transportadora de Ânions Orgânicos/genética , Animais , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Camundongos , Nutrientes/metabolismo , Camundongos Knockout , Humanos , Transporte Biológico , Rim/metabolismo , Flavonoides/farmacocinética , Flavonoides/metabolismo
3.
Toxins (Basel) ; 16(4)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38668617

RESUMO

The control of crop diseases caused by fungi remains a major problem and there is a need to find effective fungicides that are environmentally friendly. Plants are an excellent source for this purpose because they have developed defense mechanisms to cope with fungal infections. Among the plant proteins that play a role in defense are ribosome-inactivating proteins (RIPs), enzymes obtained mainly from angiosperms that, in addition to inactivating ribosomes, have been studied as antiviral, fungicidal, and insecticidal proteins. In this review, we summarize and discuss the potential use of RIPs (and other proteins with similar activity) as antifungal agents, with special emphasis on RIP/fungus specificity, possible mechanisms of antifungal action, and the use of RIP genes to obtain fungus-resistant transgenic plants. It also highlights the fact that these proteins also have antiviral and insecticidal activity, which makes them very versatile tools for crop protection.


Assuntos
Antifúngicos , Proteínas Inativadoras de Ribossomos , Proteínas Inativadoras de Ribossomos/farmacologia , Antifúngicos/farmacologia , Proteínas de Plantas/farmacologia , Proteínas de Plantas/genética , Fungos/efeitos dos fármacos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Plantas Geneticamente Modificadas , Animais , Fungicidas Industriais/farmacologia
4.
Autophagy ; 20(5): 1208-1209, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38293799

RESUMO

Selective degradation of the endoplasmic reticulum (ER) by macroautophagy/autophagy (reticulophagy) is essential for maintaining ER morphology and homeostasis under environmental stresses. Several reticulophagy receptors have been identified in mammals and yeast, but their counterparts in plants have not been extensively explored yet. Recently, we demonstrated that the HVA22-family protein OsHLP1 is a reticulophagy receptor in rice plants, and its orthologs function similarly in Arabidopsis plants. In this punctum, we discuss why the HVA22 family proteins are the reticulophagy receptors in plants and how reticulophagy is highly associated with plant immune response.


Assuntos
Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Autofagia/fisiologia , Proteínas de Plantas/metabolismo , Macroautofagia/fisiologia , Arabidopsis/metabolismo , Arabidopsis/genética , Plantas/metabolismo , Animais
5.
Biochem Biophys Rep ; 24: 100805, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32984558

RESUMO

Delonix regia (Bojer ex Hook.) Raf., Cassia fistula L. and Lagerstroemia speciosa L. are three ornamental plants that produce colorful flowers. The present study aimed to evaluate the phytochemicals and bioactivities of methanolic extracts of flowers from Delonix regia (DrFME), Cassia fistula (CfFME), and Lagerstroemia speciosa (LsFME). The presence of ten different chemical classes in varying degrees was confirmed while qualitatively screened. During quantitative determination, LsFME possesses the highest amount of total phenolic (418.0 mg/g), flavonoid (50.8 mg/g), and tannin (256.3 mg/g) contents. The extracts showed excellent antioxidant capacity in a concentration-dependent manner with the lowest IC50 value (41.51 µg/mL) displayed by LsFME. LsFME paralyzed the experimental worms at 2.95 min and killed at 3.96 min. DrFME was found to be more effective in thrombolytic (35.5% clot lysis) and anticoagulant activities. Negligible hemolytic activity (IC50 > 200 µg/mL) found for all extracts which suggest their less potential toxicity. The in vivo experiments revealed that the CfFME has the highest analgesic (64.34% pain inhibition) activity while LsFME has the highest antidiarrheal (70.27% inhibition) and antihyperglycemic (46.94% inhibition) activities at 400 mg/kg of body weight doses. This study has shown the presence of phytochemicals and potential bioactivities which indicates the possibility of these flowers to be used as a source of phytochemicals as well as safe and effective natural medicine.

6.
Mol Plant Microbe Interact ; 33(3): 519-527, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31973654

RESUMO

Xylella fastidiosa is a worldwide multihost pathogen that causes diseases in different crops. It is considered a new global threat and substantial efforts have been made in order to identify sources of resistance. Indeed, many genes have been associated with resistance to X. fastidiosa, but without functional validation. Here, we describe a C. reticulata gene homologous to the transcriptional factor RAP2.2 from Arabidopsis thaliana that increases resistance to citrus variegated chlorosis (CVC). This gene was previously detected in C. reticulata challenged with X. fastidiosa. Bioinformatics analysis together with subcellular localization and auto-activation assays indicated that RAP2.2 from C. reticulata (CrRAP2.2) is a transcriptional factor orthologous to AtRAP2.2. Thus, we used A. thaliana as a model host to evaluate the functional role of CrRAP2.2 in X. fastidiosa resistance. The inoculation of X. fastidiosa in the A. thaliana rap2.2 mutant resulted in a larger bacterial population, which was complemented by CrRAP2.2. In addition, symptoms of anthocyanin accumulation were higher in the mutant, whose phenotype was restored by CrRAP2.2, indicating that they have conserved functions in plant defense response. We therefore transformed C. sinensis with CrRAP2.2 and verified a positive correlation between CVC resistance and gene expression in transgenic lines. This is the first study using A. thaliana as model host that characterizes the function of a gene related to X. fastidiosa defense response and its application in genetic engineering to obtain citrus resistance to CVC.


Assuntos
Citrus/genética , Resistência à Doença/genética , Doenças das Plantas/genética , Fatores de Transcrição/genética , Xylella/patogenicidade , Arabidopsis , Proteínas de Arabidopsis , Citrus/microbiologia , Proteínas de Ligação a DNA , Doenças das Plantas/microbiologia
7.
Trends Environ Anal Chem ; 28: e00103, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38620429

RESUMO

Humans are nowadays exposed to numerous chemicals in our day-to-day life, including parabens, UV filters, phosphorous flame retardants/plasticizers, bisphenols, phthalates and alternative plasticizers, which can have different adverse effects to human health. Estimating human's exposure to these potentially harmful substances is, therefore, of paramount importance. Human biomonitoring (HBM) is the existing approach to assess exposure to environmental contaminants, which relies on the analysis of specific human biomarkers (parent compounds and/or their metabolic products) in biological matrices from individuals. The main drawback is its implementation, which involves complex cohort studies. A novel approach, wastewater-based epidemiology (WBE), involves estimating exposure from the analysis of biomarkers in sewage (a pooled urine and feces sample of an entire population). One of the key challenges of WBE is the selection of biomarkers which are specific to human metabolism, excreted in sufficient amounts, and stable in sewage. So far, literature data on potential biomarkers for estimating exposure to these chemicals are scattered over numerous pharmacokinetic and HBM studies. Hence, this review provides a list of potential biomarkers of exposure to more than 30 widely used chemicals and report on their urinary excretion rates. Furthermore, the potential and challenges of WBE in this particular field is discussed through the review of pioneer WBE studies, which for the first time explored applicability of this novel approach to assess human exposure to environmental contaminants. In the future, WBE could be potentially applied as an "early warning system", which could promptly identify communities with the highest exposure to environmental contaminants.

8.
J Integr Med ; 16(5): 358-366, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30120077

RESUMO

OBJECTIVE: Myanmar has a long history of using medicinal plants for treatment of various diseases. To the best of our knowledge there are no previous reports on antiglycation activities of medicinal plants from Myanmar. Therefore, this study was aimed to evaluate the antioxidant, antiglycation and antimicrobial properties of 20 ethanolic extracts from 17 medicinal plants indigenous to Myanmar. METHODS: In vitro scavenging assays of 2,2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO), superoxide (SO) radicals were used to determine the antioxidant activities. Folin-Ciocalteu's method was performed to determine the total phenolic content. Antiglycation and antimicrobial activities were detected by bovine serum albumin-fluorescent assay and agar well diffusion method. RESULTS: Terminalia chebula Retz. (Fruit), containing the highest total phenolic content, showed high antioxidant activities with inhibition of 77.98% ±â€¯0.92%, 88.95% ±â€¯2.42%, 88.56% ±â€¯1.87% and 70.74%±â€¯2.57% for DPPH, NO, SO assays and antiglycation activity respectively. It also showed the antimicrobial activities against Staphylococcus aureus, Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans with inhibition zone of 19, 18, 17, 25 and 15 mm, respectively. Garcinia mangostana Linn. showed the strongest activities for SO and antiglycation assays with inhibition of 93.68% ±â€¯2.63% and 82.37% ±â€¯1.78%. Bark of Melia sp. was the best NO radical scavenger with inhibition rate of 89.39%±â€¯0.60%. CONCLUSION: The results suggest that these plants are potential sources of antioxidants with free radical-scavenging and antiglycation activities and could be useful for decreasing the oxidative stress and glycation end-product formation in glycation-related diseases.


Assuntos
Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Garcinia , Produtos Finais de Glicação Avançada/metabolismo , Melia , Extratos Vegetais/farmacologia , Terminalia , Antibacterianos/análise , Antibacterianos/farmacologia , Anti-Infecciosos/análise , Antioxidantes/análise , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Compostos de Bifenilo/metabolismo , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Frutas , Garcinia/química , Humanos , Magnoliopsida/química , Medicina Tradicional , Melia/química , Mianmar , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fenóis/análise , Fenóis/farmacologia , Fitoterapia , Picratos/metabolismo , Casca de Planta , Extratos Vegetais/química , Plantas Medicinais , Superóxidos , Terminalia/química
9.
Journal of Integrative Medicine ; (12): 358-366, 2018.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-691054

RESUMO

<p><b>OBJECTIVE</b>Myanmar has a long history of using medicinal plants for treatment of various diseases. To the best of our knowledge there are no previous reports on antiglycation activities of medicinal plants from Myanmar. Therefore, this study was aimed to evaluate the antioxidant, antiglycation and antimicrobial properties of 20 ethanolic extracts from 17 medicinal plants indigenous to Myanmar.</p><p><b>METHODS</b>In vitro scavenging assays of 2,2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO), superoxide (SO) radicals were used to determine the antioxidant activities. Folin-Ciocalteu's method was performed to determine the total phenolic content. Antiglycation and antimicrobial activities were detected by bovine serum albumin-fluorescent assay and agar well diffusion method.</p><p><b>RESULTS</b>Terminalia chebula Retz. (Fruit), containing the highest total phenolic content, showed high antioxidant activities with inhibition of 77.98% ± 0.92%, 88.95% ± 2.42%, 88.56% ± 1.87% and 70.74%± 2.57% for DPPH, NO, SO assays and antiglycation activity respectively. It also showed the antimicrobial activities against Staphylococcus aureus, Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans with inhibition zone of 19, 18, 17, 25 and 15 mm, respectively. Garcinia mangostana Linn. showed the strongest activities for SO and antiglycation assays with inhibition of 93.68% ± 2.63% and 82.37% ± 1.78%. Bark of Melia sp. was the best NO radical scavenger with inhibition rate of 89.39%± 0.60%.</p><p><b>CONCLUSION</b>The results suggest that these plants are potential sources of antioxidants with free radical-scavenging and antiglycation activities and could be useful for decreasing the oxidative stress and glycation end-product formation in glycation-related diseases.</p>


Assuntos
Humanos , Antibacterianos , Farmacologia , Anti-Infecciosos , Farmacologia , Antioxidantes , Farmacologia , Bactérias , Compostos de Bifenilo , Metabolismo , Candida albicans , Frutas , Garcinia , Química , Produtos Finais de Glicação Avançada , Metabolismo , Magnoliopsida , Química , Medicina Tradicional , Melia , Química , Mianmar , Óxido Nítrico , Metabolismo , Estresse Oxidativo , Fenóis , Farmacologia , Fitoterapia , Picratos , Metabolismo , Casca de Planta , Extratos Vegetais , Química , Farmacologia , Plantas Medicinais , Superóxidos , Terminalia , Química
10.
Molecules ; 20(12): 22411-21, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26694328

RESUMO

A method for the determination of total reducing capacity (TRC) based on the reduction of Cu(II) to Cu(I) by antioxidants in a buffered solution (pH 7.0) containing 4,4'-dicarboxy-2,2'-biquinoline acid (BCA) was developed. Absorbance values at 558 nm characteristic of the Cu(I)/BCA complexes formed were used to determine the TRC of aqueous extracts of twelve Brazilian plants. The TRC values obtained with the suggested method correlated well with values obtained using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method (r² = 0.959). They were also compared with the total polyphenol content (using the Folin-Ciocalteu reagent) and the good agreement (r² = 0.919) indicates that the polyphenols should be responsible for this reducing capacity. The method proposed here (and successfully applied in plant extracts) can be used to measure the TRC of aqueous samples derived from other plants (e.g., teas, juices, beers and wines) and even in biological samples (e.g., serum, urine and follicular fluid). To achieve a structure-activity relationship of the proposed reaction, the reduction capability of 25 standard antioxidants (phenolic derivatives, flavonoids, stilbenoids, vitamins, etc.) was individually evaluated and the apparent molar absorptivity values (at 558 nm) obtained were compared and discussed.


Assuntos
Antioxidantes/análise , Complexos de Coordenação/química , Cobre/química , Plantas Medicinais/química , Polifenóis/análise , Quinolinas/química , Antioxidantes/química , Antioxidantes/isolamento & purificação , Compostos de Bifenilo/química , Brasil , Soluções Tampão , Cátions Monovalentes , Humanos , Oxirredução , Picratos/química , Extratos Vegetais/química , Polifenóis/química , Polifenóis/isolamento & purificação , Soluções , Espectrofotometria , Água
11.
Asian Pac J Trop Biomed ; 4(Suppl 1): S118-28, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-25183066

RESUMO

OBJECTIVE: To screen, isolate and optimize anti-white spot syndrome virus (WSSV) drug derived from various terrestrial plants and to evaluate the efficacy of the same in host-pathogen interaction model. METHODS: Thirty plants were subjected to Soxhlet extraction using water, ethanol, methanol and hexane as solvents. The 120 plant isolates thus obtained were screened for their in vivo anti-WSSV property in Litopenaeus vannamei. The best anti-WSSV plant isolate, TP22C was isolated and further analyzed. The drug was optimized at various concentrations. Viral and immune genes were analysed using reverse transcriptase PCR to confirm the potency of the drug. RESULTS: Seven plant isolates exhibited significant survivability in host. The drug TP22C thus formulated showed 86% survivability in host. The surviving shrimps were nested PCR negative at the end of the 15 d experimentation. The lowest concentration of TP22C required intramuscularly for virucidal property was 10 mg/mL. The oral dosage of 750 mg/kg body weight/day survived at the rate of 86%. Neither VP28 nor ie 1 was expressed in the test samples at 42nd hour and 84th hour post viral infection. CONCLUSIONS: The drug TP22C derived from Momordica charantia is a potent anti-white spot syndrome virus drug.

12.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-499620

RESUMO

Objective: To screen, isolate and optimize anti-white spot syndrome virus (WSSV) drug derived from various terrestrial plants and to evaluate the efficacy of the same in host–pathogen interaction model.Methods:Thirty plants were subjected to Soxhlet extraction using water, ethanol, methanol and hexane as solvents. The 120 plant isolates thus obtained were screened for their in vivo anti–WSSV property in Litopenaeus vannamei. The best anti–WSSV plant isolate, TP22C was isolated and further analyzed. The drug was optimized at various concentrations. Viral and immune genes were analysed using reverse transcriptase PCR to confirm the potency of the drug.Results: Seven plant isolates exhibited significant survivability in host. The drug TP22C thus formulated showed 86% survivability in host. The surviving shrimps were nested PCR negative at the end of the 15 d experimentation. The lowest concentration of TP22C required intramuscularly for virucidal property was 10 mg/mL. The oral dosage of 750 mg/kg body weight/day survived at the rate of 86%. Neither VP28 nor ie 1 was expressed in the test samples at 42nd hour and 84th hour post viral infection.Conclusions:The drug TP22C derived from Momordica charantia is a potent anti-white spot syndrome virus drug.

13.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-233300

RESUMO

<p><b>OBJECTIVE</b>To screen, isolate and optimize anti-white spot syndrome virus (WSSV) drug derived from various terrestrial plants and to evaluate the efficacy of the same in host-pathogen interaction model.</p><p><b>METHODS</b>Thirty plants were subjected to Soxhlet extraction using water, ethanol, methanol and hexane as solvents. The 120 plant isolates thus obtained were screened for their in vivo anti-WSSV property in Litopenaeus vannamei. The best anti-WSSV plant isolate, TP22C was isolated and further analyzed. The drug was optimized at various concentrations. Viral and immune genes were analysed using reverse transcriptase PCR to confirm the potency of the drug.</p><p><b>RESULTS</b>Seven plant isolates exhibited significant survivability in host. The drug TP22C thus formulated showed 86% survivability in host. The surviving shrimps were nested PCR negative at the end of the 15 d experimentation. The lowest concentration of TP22C required intramuscularly for virucidal property was 10 mg/mL. The oral dosage of 750 mg/kg body weight/day survived at the rate of 86%. Neither VP28 nor ie 1 was expressed in the test samples at 42nd hour and 84th hour post viral infection.</p><p><b>CONCLUSIONS</b>The drug TP22C derived from Momordica charantia is a potent anti-white spot syndrome virus drug.</p>

14.
J Ethnopharmacol ; 149(2): 557-61, 2013 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-23892203

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Pelargonium sidoides DC (Geraniaceae), a popular medicinal plant used in folk medicine in the treatment of respiratory-related infections has gained international prominence due to its usage in several herbal formulations. This has led to high demand and the subsequent decimation of wild populations. AIM OF THE STUDY: Using plant tissue culture techniques, Pelargonium sidoides plants were cloned in vitro, acclimatized under greenhouse conditions and evaluated for their phytochemical content and pharmacological activity. METHODS: Phenolic content in extracts of in vitro-derived, greenhouse-acclimatized and wild Pelargonium sidoides plants were analyzed using UPLC-MS/MS. The oxygen radical absorbance capacity (ORAC), 2,2-diphenyl-1-picryl hydrazyl (DPPH) radical scavenging activity and minimum inhibitory concentration (MIC) of the extracts against bacterial and fungal strains were evaluated. RESULTS: Similarities in phenolic profiles were identified confirming the chemical signatures that characterize Pelargonium sidoides plants. Extracts of greenhouse-acclimatized and wild plants exhibited comparable antimicrobial and antioxidant properties. CONCLUSIONS: Overall, the study highlights the potential of integrating plant tissue culture technologies in conservation strategies of medicinal plants. In particular, the results strongly suggest the feasibility of both large-scale cultivation and plant part substitution as alternative solutions to the current destructive overharvesting practices of wild Pelargonium sidoides populations.


Assuntos
Ácidos Carbocíclicos/farmacologia , Anti-Infecciosos/farmacologia , Pelargonium , Ácidos Carbocíclicos/isolamento & purificação , Anti-Infecciosos/isolamento & purificação , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Compostos de Bifenilo/metabolismo , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Picratos/metabolismo , Componentes Aéreos da Planta , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Tubérculos , Técnicas de Cultura de Tecidos
15.
J Plant Physiol ; 170(15): 1303-8, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23747061

RESUMO

Merwilla plumbea (Lindl.) Speta is an important medicinal plant widely used in traditional medicine. We evaluated the effect of five cytokinins [benzyladenine (BA), 2-isopentenyladenine (2iP), meta-topolin (mT), meta-topolin riboside (mTR), and meta-methoxy-9-tetrahydropyran-2-yl-topolin (MemTTHP)] on the level of phenolic acids and antioxidant activity of M. plumbea during the tissue culture and acclimatization stages. Two cytokinins (mT and mTR) significantly improved the antioxidant activity of tissue culture plantlets while the control plantlets were better after acclimatization. Using UPLC-MS/MS, the levels of hydroxybenzoic and hydroxycinnamic acid derivatives (phenolic acids) varied significantly during tissue culture and acclimatization, depending on the cytokinin and plant part analyzed. Vanillic acid (24.9 µg g⁻¹) detected in underground parts of tissue culture plants supplemented with BA was the most abundant phenolic acid detected. The current findings indicate that the phytochemicals together with the bioactivity during in vitro propagation of M. plumbea is influenced by the cytokinin type used and the stage of plant material collection.


Assuntos
Antioxidantes/metabolismo , Citocininas/farmacologia , Hidroxibenzoatos/metabolismo , Liliaceae/efeitos dos fármacos , Liliaceae/metabolismo , Isopenteniladenosina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA