Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 521
Filtrar
1.
Reproduction ; 168(1)2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38758690

RESUMO

In brief: The endocrine disruptor, nonylphenol (NP) increases 20:4n-6 release in Sertoli cells via PKA/cPLA2 activation. Our data show that lipid metabolism could be a target of NP-induced abnormal reproductive outcomes. Abstract: Nonylphenol (NP), an endocrine-disrupting chemical, is an environmental contaminant, and many notorious effects on male fertility have been reported in animal models and wild-type species. Here, we evaluated the effects of NP in follicle-stimulating hormone (FSH) signal transduction pathways and lipid metabolism using an in vitro model of rat Sertoli cell (SC) primary culture. Results show that an acute (1 h) SC exposure to NP (10 µM) increased the intra- and extra-cellular concentrations of free fatty acids (FFAs), mainly arachidonic acid (20:4n-6). Phosphatidylinositol seemed to be the major phospholipid source of this 20:4n-6 release by activation of the protein kinase A (PKA)/cytoplasmic phospholipase A2 (cPLA2) pathway. NP also increased diacylglycerols (DAG) levels and the expression (mRNA) of cyclooxygenase 2 (Cox2) and prostaglandin E2 (PGE2) levels. It is noteworthy that accumulation of lipid droplets took place after 24 h NP exposition, which was prevented by both a PKA inhibitor and a PLA2 inhibitor. Like FSH, NP triggers the release of 20:4n-6, which is a substrate for PGE2 synthesis via PKA/PLA2 activation. In addition, NP induces the formation of DAG, which could be required as a cofactor of the PKC-mediated activation of the COX2 inflammatory pathway. Our findings suggest that NP alters lipid homeostasis in SCs by inducing the activation of pro-inflammatory pathways that may trigger adverse effects in testis physiology over time. Concomitantly, the SC enhances the acylation of surplus FFAs (including 20:4n-6) in neutral lipids as a protective mechanism to shield itself from lipotoxicity and pro-inflammatory signals.


Assuntos
Ácido Araquidônico , Proteínas Quinases Dependentes de AMP Cíclico , Disruptores Endócrinos , Fenóis , Fosfolipases A2 , Células de Sertoli , Animais , Masculino , Células de Sertoli/metabolismo , Células de Sertoli/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fenóis/farmacologia , Ratos , Ácido Araquidônico/metabolismo , Disruptores Endócrinos/farmacologia , Fosfolipases A2/metabolismo , Células Cultivadas , Metabolismo dos Lipídeos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Hormônio Foliculoestimulante/metabolismo
2.
Vitae (Medellín) ; 31(1): 1-8, 2024-05-03. Ilustraciones
Artigo em Inglês | LILACS, COLNAL | ID: biblio-1538067

RESUMO

Background: Potato peel extract has demonstrated the ability to reduce platelet aggregation in vitro, suggesting its potential as a dietary intervention for preventing atherothrombotic disorders. Objective: This study aims to evaluate the impact of a potato peel-rich diet on platelet aggregation. Methods: A randomized, crossover-controlled, open two-period study was carried out with the participation of 12 healthy volunteers. Platelet aggregation was assessed before and after a seven-day dietary intervention. Participants consumed either a diet rich in potato peel (2 g/kg/d) or acetylsalicylic acid (ASA) as a reference (100 mg/d). Platelet aggregation percentages were measured following stimulation with arachidonic acid (AA, 150 µg/mL), adenosine diphosphate (ADP, 10 µM), and collagen (COL, 10 µg/mL). Results: The potato peel-rich diet resulted in a slight but significant reduction in platelet aggregation when stimulated with arachidonic acid compared to baseline values (85.0±2.0% vs. 91.3±1.7%, p<0.05). This effect was less pronounced than the reduction achieved with ASA (16±1.9%, p<0.001). Conclusion: The administration of a diet rich in potato peel reduces platelet aggregation induced by arachidonic acid, suggesting its potential role in the prevention of atherothrombotic disorders.


Introducción: El extracto de cáscara de patata ha demostrado su capacidad para reducir la agregación plaquetaria in vitro, lo que sugiere su potencial como intervención dietética para prevenir trastornos aterotrombóticos. Objetivo: Evaluar el impacto de una dieta rica en cáscara de patata en la agregación plaquetaria. Materiales y métodos: Se llevó a cabo un estudio aleatorizado, controlado, cruzado y abierto con la participación de 12 voluntarios sanos. Se evaluó la agregación plaquetaria antes y después de una intervención dietética de siete días. Los participantes consumieron una dieta rica en cáscara de patata (2 g/kg/d) o ácido acetilsalicílico (ASA) como referente (100 mg/d). Se midieron los porcentajes de agregación plaquetaria después de la estimulación con ácido araquidónico (AA, 150 µg/mL), difosfato de adenosina (ADP, 10 µM) y colágeno (COL, 10 µg/mL). Resultados: La dieta rica en cáscara de patata resultó en una ligera pero significativa reducción en la agregación plaquetaria cuando se estimuló con ácido araquidónico en comparación con los valores iniciales (85,0 ± 2,0% vs. 91,3 ± 1,7%, p <0,05). Este efecto fue menos pronunciado que la reducción lograda con ASA (16 ± 1,9%, p <0,001). Conclusión: La administración de una dieta rica en cáscara de patata reduce la agregación plaquetaria inducida por ácido araquidónico, lo que sugiere su papel potencial en la prevención de trastornos aterotrombóticos.


Assuntos
Humanos , Agregação Plaquetária , Solanum tuberosum , Ácido Clorogênico , Ácido Araquidônico , Dieta
3.
PLoS One ; 19(3): e0300141, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512839

RESUMO

Arachidonic acid (AA) is involved in inflammation and plays a role in growth and brain development in infants. We previously showed that exposure of mouse sires to AA for three consecutive generations induces a cumulative change in fatty acid (FA) involved in inflammation and an increase in body and liver weight in the offspring. Here, we tested the hypothesis that paternal AA exposure changes the progeny's behavioral response to a proinflammatory insult, and asked whether tissue-specific FA are associated with that response. Male BALB/c mice were supplemented daily with three doses of AA for 10 days and crossed to non-supplemented females (n = 3/dose). Two-month-old unsupplemented male and female offspring (n = 6/paternal AA dose) were exposed to Gram-negative bacteria-derived lipopolysaccharides (LPS) or saline control two hours prior to open field test (OFT) behavioral analysis and subsequent sacrifice. We probed for significant effects of paternal AA exposure on: OFT behaviors; individual FA content of blood, hypothalamus and hypothalamus-free brain; hypothalamic expression profile of genes related to inflammation (Tnfa, Il1b, Cox1, Cox2) and FA synthesis (Scd1, Elovl6). All parameters were affected by paternal AA supplementation in a sex-specific manner. Paternal AA primed the progeny for behavior associated with increased anxiety, with a marked sex dimorphism: high AA doses acted as surrogate of LPS in males, realigning a number of OFT behaviors that in females were differential between saline and LPS groups. Progeny hypothalamic Scd1, a FA metabolism enzyme with documented pro-inflammatory activity, showed a similar pattern of differential expression between saline and LPS groups at high paternal AA dose in females, that was blunted in males. Progeny FA generally were not affected by LPS, but displayed non-linear associations with paternal AA doses. In conclusion, we document that paternal exposure to AA exerts long-term behavioral and biochemical effects in the progeny in a sex-specific manner.


Assuntos
Hipotálamo , Lipopolissacarídeos , Humanos , Camundongos , Masculino , Feminino , Animais , Lactente , Ácido Araquidônico/metabolismo , Lipopolissacarídeos/metabolismo , Hipotálamo/metabolismo , Inflamação/metabolismo , Suplementos Nutricionais
4.
Chem Biodivers ; 21(4): e202400187, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38429232

RESUMO

Psidium brownianum Mart is reported in the literature by antinociceptive and antioxidant activities, indicating that this species' secondary metabolites might be used to control inflammatory processes. The present study aimed to characterize the topical antiedematogenic activity of the essential oil of Psidium brownianum Mart. (OEPB) in ear edema models by different inflammatory agents. Female Swiss mice (25-35 g) and Wistar albino rats (200-300 g) were used throughout tests (n=6/group) on acute or chronic edema models induced by single and multiple topical applications. The OEPB is administered topically pure or at a concentration of 100 or 200 mg/mL. The antiedematogenic mechanism of OEPB was analyzed by administering capsaicin, arachidonic acid, histamine, and phenol at the best effective dose (200 mg/mL). The results showed a significant reduction of edema-induced single (28.87 %) and multiple (50.13 %) applications of croton oil compared to the negative control group. Regarding potential mechanisms of action, OEPB (200 mg/mL) inhibited the development of edema triggered by capsaicin (29.95 %), arachidonic acid (22.66 %), phenol (23.35 %), and histamine (75.46 %), suggesting an interference with the histaminergic pathway. These results indicate that OEPB presents a topical antiedematogenic effect in acute and chronic murine models, possibly interfering with inflammatory pathways triggered by mediators such as histamine.


Assuntos
Óleos Voláteis , Psidium , Camundongos , Feminino , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Capsaicina , Histamina/efeitos adversos , Ácido Araquidônico/efeitos adversos , Edema/induzido quimicamente , Edema/tratamento farmacológico , Extratos Vegetais/farmacologia
5.
FEBS J ; 291(4): 722-743, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37947039

RESUMO

Physiologically, renal medullary cells are surrounded by a hyperosmolar interstitium. However, different pathological situations can induce abrupt changes in environmental osmolality, causing cell stress. Therefore, renal cells must adapt to survive in this new condition. We previously demonstrated that, among the mechanisms involved in osmoprotection, renal cells upregulate triglyceride biosynthesis (which helps preserve glycerophospholipid synthesis and membrane homeostasis) and cyclooxygenase-2 (which generates prostaglandins from arachidonic acid) to maintain lipid metabolism in renal tissue. Herein, we evaluated whether hyperosmolality modulates phospholipase A2 (PLA2 ) activity, leading to arachidonic acid release from membrane glycerophospholipid, and investigated its possible role in hyperosmolality-induced triglyceride synthesis and accumulation. We found that hyperosmolality induced PLA2 expression and activity in Madin-Darby canine kidney cells. Cytosolic PLA2 (cPLA2) inhibition, but not secreted or calcium-independent PLA2 (sPLA2 or iPLA2 , respectively), prevented triglyceride synthesis and reduced cell survival. Inhibition of prostaglandin synthesis with indomethacin not only failed to prevent hyperosmolality-induced triglyceride synthesis but also exacerbated it. Similar results were observed with the peroxisomal proliferator activated receptor gamma (PPARγ) agonist rosiglitazone. Furthermore, hyperosmolality increased free intracellular arachidonic acid levels, which were even higher when prostaglandin synthesis was inhibited by indomethacin. Blocking PPARγ with GW-9662 prevented the effects of both indomethacin and rosiglitazone on triglyceride synthesis and even reduced hyperosmolality-induced triglyceride synthesis, suggesting that arachidonic acid may stimulate triglyceride synthesis through PPARγ activation. These results highlight the role of cPLA2 in osmoprotection, since it is essential to provide arachidonic acid, which is involved in PPARγ-regulated triglyceride synthesis, thus guaranteeing cell survival.


Assuntos
PPAR gama , Prostaglandinas , Animais , Cães , PPAR gama/genética , Ácido Araquidônico/metabolismo , Rosiglitazona , Pressão Osmótica , Fosfolipases A2 , Indometacina , Homeostase , Glicerofosfolipídeos , Triglicerídeos
6.
Artigo em Espanhol | LILACS | ID: biblio-1535446

RESUMO

Introducción: Los endocannabinoides son una diana en el tratamiento de la obesidad y se producen a partir de ácidos grasos esenciales, los derivados del ácido linoleico actúan como agonistas de los receptores cannabinoides tipo 1 (CB1), asimismo, los derivados del ácido linolénico ejercen efectos de antagonistas de dichos receptores, por lo cual se plantea que modificar el consumo dietario de los ácidos grasos omega 3 y 6 podría modular la activación del sistema endocannabinoide, lo que podría ser favorable para personas con adicción a la comida, considerando cómo este sistema promueve la actividad de las vías dopaminérgicas que se alteran en la adicción a sustancias psicoactivas. Objetivo: Analizar la correlación entre el puntaje de adicción a la comida por la escala mYFAS 2.0 y los niveles plasmáticos de ácido araquidónico en adultos con obesidad tras modular la ingesta de alimentos fuente de ácidos grasos esenciales. Metodología: Se desarrolló un estudio piloto con diseño de ensayo clínico cruzado en dos tiempos, en donde los participantes recibieron los tratamientos estándar y experimental, en estos se brindaron planes siguiendo recomendaciones para el manejo nutricional de la obesidad, adicionalmente, el tratamiento experimental contó con pautas para disminuir el consumo del Omega 6 y aumentar el consumo de Omega 3 para obtener una relación menor a 5:1 entre estos ácidos grasos. Resultados: Se observó una disminución significativa en el puntaje de adicción a la comida y los niveles plasmáticos de ácido araquidónico en los participantes tras recibir el tratamiento experimental, presentando una correlación directamente proporcional entre estas, por otro lado, el tratamiento estándar estuvo asociado a una correlación inversamente proporcional entre estos. Conclusiones: El descenso en las concentraciones plasmáticas del ácido araquidónico fue asociado a un menor puntaje en la escala mYFAS 2.0 de adicción a la comida en los participantes de este estudio tras su exposición al tratamiento experimental.


Introduction: Endocannabinoids are a target in obesity treatment and they are produced from the essential fatty acids, the metabolites of linoleic acid act as agonists of the cannabinoid receptors type 1 (CB1), likewise, the metabolites of the linolenic acid act as inverse agonists of such receptors, hence, it is proposed that modifying the dietary intake of the essential fatty acids (Omega 6 and 3) may modulate the activation of the endocannabinoid system, this could be favorable for people with food addiction, considering how this system promotes the activity of the dopaminergic pathways that are altered in the psychoactive substances addiction. Objective: To analyze the correlation between the food addiction score and plasmatic levels of arachidonic acid in adults with obesity following a modulation of the dietary intake of essential fatty acids n-6 and n-3 food sources. Methods: A pilot study was carried out with a two-period crossover clinical trial design, in which the participants received standard and experimental treatments, in these programs, plans were provided following guidelines for the nutritional management of obesity, in addition, the experimental treatment included recommendations to reduce the intake of linoleic acid and to increase the intake of linolenic acid to obtain a ratio lower to 5:1 between these fatty acids. Results: A significant decrease in the food addiction score and plasmatic levels of arachidonic acid was observed in the participants exposed to the experimental treatment, showing a directly proportional correlation, moreover, the standard treatment was associated to inverse correlations between these variables. Conclusion: The decrease in plasmatic arachidonic acid levels was associated with lower scores on the mYFAS 2.0 of food addiction in the participants of this study following their exposure to the experimental treatment.


Assuntos
Humanos , Ácido Araquidônico , Ciências da Nutrição , Dependência de Alimentos , Obesidade , Ácidos Graxos Ômega-6 , Endocanabinoides
7.
J Chromatogr A ; 1711: 464426, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37862751

RESUMO

A high throughput method was developed to detect bioactive molecules with inhibitory activity over cyclooxygenase (COX-2) enzyme applying effect-directed analysis and planar chromatography hyphenated with bioassay and mass spectrometry. The assay was based on the indirect measurement of arachidonic acid transformation into prostaglandin with the colorimetric co-substrate N,N,N',N'-tetramethyl-p-phenylenediamine. Inhibitory zones were observed as colorless bands over a blue background. Using a central composite design the critical factors like substrate concentration, enzyme: substrate ratio, reaction time, and co-substrate concentration were optimized. Optimal conditions were achieved with 0.03 mg/mL of arachidonic acid, 0.15 U/mL of COX-2, and 8.21 mg/mL of chromogenic reagent. Method usefulness was challenged analyzing fresh Chiloe's giant garlic (Allium ampeloprasum L) ethanol: water (8:2 v/v) extract, finding COX-2 inhibitors that were preliminarily identified as the isomers γ-glutamyl-S-allyl-l-cysteine and γ-glutamyl-S-(trans-1-propenyl)-L- cysteine.


Assuntos
Bioensaio , Inibidores de Ciclo-Oxigenase 2 , Ciclo-Oxigenase 2 , Inibidores de Ciclo-Oxigenase 2/farmacologia , Cromatografia em Camada Fina/métodos , Ácido Araquidônico , Espectrometria de Massas , Bioensaio/métodos , Extratos Vegetais/farmacologia , Extratos Vegetais/química
8.
Int J Mol Sci ; 24(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37762512

RESUMO

The renal system is engaged in metabolic syndrome (MS) and metabolites of arachidonic acid (AA) participate in renal homeostasis and disruption of functionality. Hibiscus sabdariffa L (HSL) is used as a diuretic and could improve renal function. The aim of this study was to assess if treatment with HSL at 2% improves renal function in MS through the metabolites of AA. A total of 24 male Wistar rats were divided into four groups: Group 1, control (C); Group 2, MS with 30% sucrose in drinking water, Group 3, MS plus HSL infusion at 2% (MS+HSL); and Group 4, C+HSL. We evaluated the perfusion pressure changes (∆-PP), the activities of cyclooxygenases (COXs), the percentage of AA, the expressions of PLA2, COX2, COX1, 5-LOX, TAXS and CYP450, and the concentrations of prostaglandins in the kidney from rats with MS. There was a decrease in the ∆-PP, in the activities of COXs, and the expressions of COX2 and CYP450 (p ≤ 0.03, respectively)as well asPGE2, TxB2, and LKB4 (p ≤ 0.01, respectively). However, the percentage of AA and expressions of PLA2 and PGE1 (p = 0.01, respectively) were increased in C and MS+HSL. The HSL treatment improved the function and anatomical structure of the kidneys in the MS rats, through antioxidant molecules, and inhibited the pathways that metabolize the AA including that of PLA2, COX2, 5-LOX, TAXS, and CYP450 while favoring the COX1 pathway. This improves the vascular resistance of renal arterioles.


Assuntos
Hibiscus , Síndrome Metabólica , Masculino , Ratos , Animais , Ácido Araquidônico , Ratos Wistar , Ciclo-Oxigenase 2 , Síndrome Metabólica/tratamento farmacológico , Rim/fisiologia , Fosfolipases A2
9.
Biomed Pharmacother ; 166: 115249, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37597323

RESUMO

Edema is one of the obvious indicators of inflammation and a crucial factor to take into account when assessing a substance's capacity to reduce inflammation. We aimed to evaluate the antiedematogenic and anti-inflammatory profile of the hydroethanolic barks extract of Ximenia americana (HEXA). The possible antiedematogenic and anti-inflammatory effect of EHXA (50, 100 mg/kg and 250 mg/kg v.o) was evaluated using the paw edema induced by carrageenan, zymosan, dextran, CFA and by different agents inflammatory (serotonin, histamine, arachidonic acid and PGE2), and pleurisy model induced by carrageenan and its action on IL-1ß and TNF-α levels was also evaluated. HEXA demonstrated a significant antiedematogenic effect at concentrations of 50, 100 and 250 mg/kg on paw edema induced by carrageenan, zymosan and dextran. However, the concentration of 50 mg/kg as standard, demonstrating the effect in the subchronic model, induced CFA with inhibition of 59.06 %. In models of histamine-induced paw edema, HEXA showed inhibition of - 30 min: 40.49 %, 60 min: 44.70 % and 90 min: 48.98 %; serotonin inhibition - 30 min: 57.09 %, 60 min: 66.04 % and 90 min: 61.79 %; arachidonic acid inhibition - 15 min: 36.54 %, 30 min: 51.10 %, 45 min: 50.32 % and 60 min: 76.17 %; and PGE2 inhibition - 15 min: 67.78 %, 30 min: 62.30 %, 45 min: 54.25 % and 60 min: 47.92 %. HEXA significantly reduced (p < 0.01) leukocyte migration in the pleurisy model and reduced TNF-α and IL-1ß levels in pleural lavage (p < 0.0001). The results showed that HEXA has the potential to have an antiedematogenic impact in both acute and chronic inflammation processes, with a putative mode of action including the suppression or regulation of inflammatory mediators.


Assuntos
Olacaceae , Pleurisia , Ácido Araquidônico , Carragenina , Dextranos , Histamina , Casca de Planta , Serotonina , Fator de Necrose Tumoral alfa , Zimosan , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Pleurisia/induzido quimicamente , Pleurisia/tratamento farmacológico , Dinoprostona , Modelos Teóricos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
10.
J Appl Oral Sci ; 31: e20230006, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37283330

RESUMO

OBJECTIVE: To explore the potential for development of Thai propolis extract as a pulp capping agent to suppress pulpal inflammation from dental pulp infections. This study aimed to examine the anti-inflammatory effect of the propolis extract on the arachidonic acid pathway, activated by interleukin (IL)-1ß, in cultured human dental pulp cells. METHODOLOGY: Dental pulp cells, isolated from three freshly extracted third molars, were first characterized for their mesenchymal origin and treated with 10 ng/ml of IL-1ß in the presence or absence of non-toxic concentrations of the extract from 0.08 to 1.25 mg/ml, as determined by the PrestoBlue cytotoxic assay. Total RNA was harvested and analyzed for mRNA expressions of 5-lipoxygenase (5-LOX) and cyclooxygenase-2 (COX-2). Western blot hybridization was performed to investigate COX-2 protein expression. Culture supernatants were assayed for released prostaglandin E2 levels. Immunofluorescence was conducted to determine involvement of nuclear factor-kappaB (NF-kB) in the inhibitory effect of the extract. RESULTS: Stimulation of the pulp cells with IL-1ß resulted in the activation of arachidonic acid metabolism via COX-2, but not 5-LOX. Incubation with various non-toxic concentrations of the propolis extract significantly inhibited upregulated COX-2 mRNA and protein expressions upon treatment with IL-1ß (p<0.05), resulting in a significant decrease in elevated PGE2 levels (p<0.05). Nuclear translocation of the p50 and the p65 subunits of NF-kB upon treatment with IL-1ß was also blocked by incubation with the extract. CONCLUSIONS: Upregulated COX-2 expression and enhanced PGE2 synthesis upon treatment with IL-1ß in human dental pulp cells were suppressed by incubation with non-toxic doses of Thai propolis extract via involvement of the NF-kB activation. This extract could be therapeutically used as a pulp capping material due to its anti-inflammatory properties.


Assuntos
Anti-Inflamatórios , Polpa Dentária , Própole , Humanos , Anti-Inflamatórios/farmacologia , Ácido Araquidônico/farmacologia , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Polpa Dentária/citologia , Polpa Dentária/efeitos dos fármacos , Dinoprostona/metabolismo , NF-kappa B , Extratos Vegetais , Própole/farmacologia , RNA Mensageiro/metabolismo
11.
Front Endocrinol (Lausanne) ; 14: 1175677, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223023

RESUMO

Hormone-receptor signal transduction has been extensively studied in adrenal gland. Zona glomerulosa and fasciculata cells are responsible for glucocorticoid and mineralocorticoid synthesis by adrenocorticotropin (ACTH) and angiotensin II (Ang II) stimulation, respectively. Since the rate-limiting step in steroidogenesis occurs in the mitochondria, these organelles are key players in the process. The maintenance of functional mitochondria depends on mitochondrial dynamics, which involves at least two opposite events, i.e., mitochondrial fusion and fission. This review presents state-of-the-art data on the role of mitochondrial fusion proteins, such as mitofusin 2 (Mfn2) and optic atrophy 1 (OPA1), in Ang II-stimulated steroidogenesis in adrenocortical cells. Both proteins are upregulated by Ang II, and Mfn2 is strictly necessary for adrenal steroid synthesis. The signaling cascades of steroidogenic hormones involve an increase in several lipidic metabolites such as arachidonic acid (AA). In turn, AA metabolization renders several eicosanoids released to the extracellular medium able to bind membrane receptors. This report discusses OXER1, an oxoeicosanoid receptor which has recently arisen as a novel participant in adrenocortical hormone-stimulated steroidogenesis through its activation by AA-derived 5-oxo-ETE. This work also intends to broaden knowledge of phospho/dephosphorylation relevance in adrenocortical cells, particularly MAP kinase phosphatases (MKPs) role in steroidogenesis. At least three MKPs participate in steroid production and processes such as the cellular cycle, either directly or by means of MAP kinase regulation. To sum up, this review discusses the emerging role of mitochondrial fusion proteins, OXER1 and MKPs in the regulation of steroid synthesis in adrenal cortex cells.


Assuntos
Dinâmica Mitocondrial , Hormônios Peptídicos , Humanos , Transdução de Sinais , Eicosanoides , Ácido Araquidônico , Hormônio Adrenocorticotrópico , Angiotensina II
12.
Open Vet J ; 13(3): 348-351, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37026078

RESUMO

Background: In dogs, dietary omega 3 polyunsaturated fatty acids (n-3 PUFA) affect the fatty acid (FA) profile of blood plasma, erythrocyte membrane (EM), and semen, but their correlation has not yet been investigated. Aim: In this study, we evaluated the association between dietary PUFA and their profile in blood plasma, EM, and semen of dogs, with the possibility to predict the semen profile using the values of the three first. Methods: Twelve male dogs received the same standard commercial diet for 4 weeks. The FA profile was analyzed by gas chromatography in paired diet, blood (plasma and EM determinations), and semen samples. Data were analyzed with SAS Proc Corr version 9.4. Pearson´s correlation coefficient (significant if p < 0.05) was used to assess the association of dietary FA profiles with those in blood plasma, EM, and semen. Results: There was a positive correlation between dietary eicosapentaenoic acid (EPA) and blood plasma (r = 0.97), EM (r = 0.94) and semen (r = 0.92) EPA, and between dietary docosahexaenoic acid (DHA) and arachidonic acid (ARA) and semen DHA (r = 0.93) and ARA (r = 0.92), respectively. There was a negative correlation between dihomo-gamma-linolenic acid (DGLA) in the diet and EM DGLA (r = -0.94). Conclusion: The dietary EPA is correlated with blood plasma, EM, and semen EPA concentrations, and dietary DHA and ARA are associated with semen DHA and ARA concentrations in dogs. These findings suggest that dietary EPA, DHA, and ARA concentrations could be helpful to predictive markers for such concentrations in the semen of dogs.


Assuntos
Ácidos Graxos Ômega-3 , Sêmen , Masculino , Cães , Animais , Sêmen/metabolismo , Ácidos Graxos Insaturados/análise , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos Ômega-3/análise , Ácidos Graxos Ômega-3/metabolismo , Dieta/veterinária , Ácido Eicosapentaenoico/análise , Ácido Eicosapentaenoico/metabolismo , Ácidos Docosa-Hexaenoicos/análise , Ácidos Docosa-Hexaenoicos/metabolismo , Eritrócitos/química , Eritrócitos/metabolismo , Ácido Araquidônico/análise , Ácido Araquidônico/metabolismo , Plasma/metabolismo
13.
Int J Mol Sci ; 24(6)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36982461

RESUMO

High-density lipoproteins (HDLs) are known to enhance vascular function through different mechanisms, including the delivery of functional lipids to endothelial cells. Therefore, we hypothesized that omega-3 (n-3) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) content of HDLs would improve the beneficial vascular effects of these lipoproteins. To explore this hypothesis, we performed a placebo-controlled crossover clinical trial in 18 hypertriglyceridemic patients without clinical symptoms of coronary heart disease who received highly purified EPA 460 mg and DHA 380 mg, twice a day for 5 weeks or placebo. After 5 weeks of treatment, patients followed a 4-week washout period before crossover. HDLs were isolated using sequential ultracentrifugation for characterization and determination of fatty acid content. Our results showed that n-3 supplementation induced a significant decrease in body mass index, waist circumference as well as triglycerides and HDL-triglyceride plasma concentrations, whilst HDL-cholesterol and HDL-phospholipids significantly increased. On the other hand, HDL, EPA, and DHA content increased by 131% and 62%, respectively, whereas 3 omega-6 fatty acids significantly decreased in HDL structures. In addition, the EPA-to-arachidonic acid (AA) ratio increased more than twice within HDLs suggesting an improvement in their anti-inflammatory properties. All HDL-fatty acid modifications did not affect the size distribution or the stability of these lipoproteins and were concomitant with a significant increase in endothelial function assessed using a flow-mediated dilatation test (FMD) after n-3 supplementation. However, endothelial function was not improved in vitro using a model of rat aortic rings co-incubated with HDLs before or after treatment with n-3. These results suggest a beneficial effect of n-3 on endothelial function through a mechanism independent of HDL composition. In conclusion, we demonstrated that EPA and DHA supplementation for 5 weeks improved vascular function in hypertriglyceridemic patients, and induced enrichment of HDLs with EPA and DHA to the detriment of some n-6 fatty acids. The significant increase in the EPA-to-AA ratio in HDLs is indicative of a more anti-inflammatory profile of these lipoproteins.


Assuntos
Ácidos Graxos Ômega-3 , Animais , Ratos , Ácido Araquidônico , Estudos Cross-Over , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Ácido Eicosapentaenoico/farmacologia , Células Endoteliais , Ácidos Graxos , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Lipoproteínas , Triglicerídeos , Humanos
14.
Artigo em Inglês | MEDLINE | ID: mdl-36608621

RESUMO

We investigated whether gestational diabetes mellitus (GDM) associated with maternal obesity modifies the placental profile of F4-Neuroprostanes and F2-Isoprostanes, metabolites of non-enzymatic oxidation of docosahexaenoic acid (DHA) and arachidonic acid (AA), respectively. Twenty-five placental samples were divided into lean (n=11), obesity (n=7) and overweight/obesity+GDM (n=7) groups. F4-Neuroprostanes and F2-Isoprostanes were higher in obesity compared to lean controls, but reduced to levels similar to lean women when obesity is further complicated with GDM. Lower content of F2-Isoprostanes suggests adaptive placental responses in GDM attenuating oxidative stress. However, low levels of placental F4-Neuroprostanes may indicate impaired DHA metabolism in GDM, affecting fetal development and offspring health. These results were not related to differences in placental content of DHA, AA and polyunsaturated fatty acids status nor to maternal diet or gestational weight gain. Placental DHA and AA metabolism differs in obesity and GDM, highlighting the importance of investigating the signalling roles of F4-Neuroprostanes and F2-Isoprostanes in the human term placenta.


Assuntos
Diabetes Gestacional , Neuroprostanos , Obesidade Materna , Humanos , Feminino , Gravidez , Neuroprostanos/metabolismo , Isoprostanos , Diabetes Gestacional/metabolismo , Placenta/metabolismo , F2-Isoprostanos/metabolismo , Obesidade Materna/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Araquidônico/metabolismo , Obesidade/metabolismo
15.
Clin Transl Oncol ; 25(5): 1389-1401, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36520383

RESUMO

BACKGROUND: Adipose tissue is a major component of breast stroma. This study focused on delineating the effects of adipose stem cells (ASCs) derived from breast of healthy women and cancer patients with normal or tumor breast cells. METHODS: The ASCs were induced to differentiate into adipocytes, and the subsequent adipocyte conditioned media (ACM) were evaluated for their fatty acid profile, adipokine secretion and influence on proliferation, migration and invasion on tumoral (MCF-7 and SUM159) and normal (HMEC) human breast cell lines. RESULTS: An enrichment of arachidonic acid was observed in ACM from tumor tissues. Adipose tissues from tumor free secrete twice as much leptin than those from proximal or distal to the tumor. All ACMs display proliferative activity and favor invasiveness of SUM159 cells compared to MCF-7 and HMEC. All ACMs induced lipid droplets accumulation in MCF-7 cells and increased CD36 expression in tumor cells. CONCLUSION: We conclude that among secreted factors analyzed, only arachidonic acid and leptin levels did discriminate ASCs from tumor-bearing and tumor-free breasts emphasizing the importance that other cell types could contribute to the adipose tissue secretome in a tumor context.


Assuntos
Neoplasias da Mama , Leptina , Feminino , Humanos , Leptina/metabolismo , Leptina/farmacologia , Ácido Araquidônico/metabolismo , Ácido Araquidônico/farmacologia , Neoplasias da Mama/patologia , Secretoma , Adipócitos/metabolismo , Adipócitos/patologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Células MCF-7 , Proliferação de Células , Meios de Cultivo Condicionados/farmacologia , Linhagem Celular Tumoral
16.
PLoS One ; 17(9): e0274623, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36129929

RESUMO

Three-dimensional (3D) cell culture technologies, which more closely mimic the complex microenvironment of tissue, are being increasingly evaluated as a tool for the preclinical screening of clinically promising new molecules, and studying of tissue metabolism. Studies of metabolites released into the extracellular space (secretome) allow understanding the metabolic dynamics of tissues and changes caused by therapeutic interventions. Although quite advanced in the field of proteomics, studies on the secretome of low molecular weight metabolites (< 1500 Da) are still very scarce. We present an untargeted metabolomic protocol based on the hybrid technique of liquid chromatography coupled with high-resolution mass spectrometry for the analysis of low-molecular-weight metabolites released into the culture medium by 3D cultures and co-culture (secretome model). For that we analyzed HT-29 human colon carcinoma cells and 3T3-L1 preadipocytes in 3D-monoculture and 3D-co-culture. The putative identification of the metabolites indicated a sort of metabolites, among them arachidonic acid, glyceric acid, docosapentaenoic acid and beta-Alanine which are related to cancer and obesity. This protocol represents a possibility to list metabolites released in the extracellular environment in a comprehensive and untargeted manner, opening the way for the generation of metabolic hypotheses that will certainly contribute to the understanding of tissue metabolism, tissue-tissue interactions, and metabolic responses to the most varied interventions. Moreover, it brings the potential to determine novel pathways and accurately identify biomarkers in cancer and other diseases. The metabolites indicated in our study have a close relationship with the tumor microenvironment in accordance with the literature review.


Assuntos
Neoplasias do Colo , Secretoma , Ácido Araquidônico , Biomarcadores/metabolismo , Cromatografia Líquida/métodos , Técnicas de Cocultura , Humanos , Espectrometria de Massas/métodos , Metabolômica/métodos , Microambiente Tumoral , beta-Alanina/metabolismo
17.
Sci Rep ; 12(1): 11541, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798803

RESUMO

This study aimed to determine the changes of lipidome in obese women undergoing combined physical exercise training. Fourteen adult women with obesity (mean BMI and age, 33 kg/m2 and 34 ± 5 years), were submitted to combined physical training (aerobic and strength exercises, alternately, 55 min at 75-90% of the maximum heart rate, 3 times a week) for 8 weeks. All participants were evaluated before and after the training intervention for lipidome, anthropometric measurements, muscle strength, and maximum oxygen consumption (VO2max). Untargeted liquid chromatography-mass spectrometry analyses allowed the identification of 1252 variables, of which 160 were significant (p < 0.05), and 61 were identified as molecular species of lipids. Volcano plot analysis revealed LPC(16:0p), LPC(18:0p), LPC(20:2), and arachidonic acid upregulated and PC(38:1p), PC(40:4), PC(40:4p) downregulated after combined physical exercise. From the results of the overall Principal component analysis (PCA), the major finding was SM(d18:1/20:0), arachidonic acid, and PC(40:6) species. Other changes included a reduction in waist circumference (Δ = - 2 cm) (p < 0.05), with no weight loss. In conclusion, 8-week of combined exercise training in obese women brought changes in different classes of lipids. This study provides further information to understand the effect of combined physical exercise on lipids related to obesity.


Assuntos
Lipidômica , Obesidade , Adulto , Ácido Araquidônico , Índice de Massa Corporal , Exercício Físico/fisiologia , Feminino , Humanos , Circunferência da Cintura
18.
J Immunol ; 209(2): 250-261, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35768148

RESUMO

Lipid and cholinergic mediators are inflammatory regulators, but their role in the immunopathology of COVID-19 is still unclear. Here, we used human blood and tracheal aspirate (TA) to investigate whether acetylcholine (Ach), fatty acids (FAs), and their derived lipid mediators (LMs) are associated with COVID-19 severity. First, we analyzed the perturbation profile induced by SARS-CoV-2 infection in the transcriptional profile of genes related to the ACh and FA/LM pathways. Blood and TA were used for metabolomic and lipidomic analyses and for quantification of leukocytes, cytokines, and ACh. Differential expression and coexpression gene network data revealed a unique transcriptional profile associated with ACh and FA/LM production, release, and cellular signaling. Transcriptomic data were corroborated by laboratory findings: SARS-CoV-2 infection increased plasma and TA levels of arachidonic acid, 5-hydroxy-6E,8Z,11Z,14Z-eicosatetraenoic acid, 11-hydroxy-5Z,8Z,12E,14Z-eicosatetraenoic acid, and ACh. TA samples also exhibited high levels of PGE2, thromboxane B2, 12-oxo-5Z,8Z,10E,14Z-eicosatetraenoic acid, and 6-trans-leukotriene B4 Bioinformatics and experimental approaches demonstrated robust correlation between transcriptional profile in Ach and FA/LM pathways and parameters of severe COVID-19. As expected, the increased neutrophil-to-lymphocyte ratio, neutrophil counts, and cytokine levels (IL-6, IL-10, IL-1ß, and IL-8) correlated with worse clinical scores. Glucocorticoids protected severe and critical patients and correlated with reduced Ach levels in plasma and TA samples. We demonstrated that pulmonary and systemic hyperinflammation in severe COVID-19 are associated with high levels of Ach and FA/LM. Glucocorticoids favored the survival of patients with severe/critical disease, and this effect was associated with a reduction in ACh levels.


Assuntos
Acetilcolina , COVID-19 , Ácido Araquidônico , Ácidos Araquidônicos/farmacologia , Ácidos Graxos , Glucocorticoides , Humanos , SARS-CoV-2
19.
Cells ; 11(6)2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35326508

RESUMO

Apart from the known associations between arachidonic acid (AA), weight gain, and neurological and immune function, AA exposure leads to alterations in global and gene-specific DNA methylation (DNAm) and fatty acid (FA) content in human cultured cells. However, it is unknown as to whether the latter effects occur in vivo and are maintained over extended periods of time and across generations. To address this issue, we asked whether AA supplementation for three consecutive generations (prior to coitus in sires or in utero in dams) affected offspring growth phenotypes, in addition to liver DNAm and FA profiles in mice. Twelve-week-old BALB/c mice were exposed daily to AA dissolved in soybean oil (vehicle, VH), or VH only, for 10 days prior to mating or during the entire pregnancy (20 days). On average, 15 mice were supplemented per generation, followed by analysis of offspring body weight and liver traits (x average = 36 and 10 per generation, respectively). Body weight cumulatively increased in F2 and F3 offspring generations and positively correlated with milligrams of paternal or maternal offspring AA exposure. A concomitant increase in liver weight was observed. Notably, akin to AA-challenged cultured cells, global DNAm and cis-7-hexadecenoic acid (16:1n-9), an anti-inflammatory FA that is dependent on stearoyl-CoA desaturase 1 (SCD1) activity, increased with milligrams of AA exposure. In accordance, liver Scd1 promoter methylation decreased with milligrams of germline AA exposure and was negatively correlated with liver weight. Our results show that mice retain cellular memories of AA exposure across generations that could potentially be beneficial to the innate immune system.


Assuntos
Suplementos Nutricionais , Aumento de Peso , Animais , Ácido Araquidônico , Epigênese Genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Gravidez
20.
Prostaglandins Other Lipid Mediat ; 160: 106631, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35272056

RESUMO

Obesity leads to chronic oxidative stress promoting the development of cardiovascular diseases including coronary artery disease and endothelial dysfunction. Increased reactive oxygen species production associated with obesity might lead to endothelial dysfunction through cyclooxygenase (COX) pathway. We evaluated arachidonic acid (AA)-dependent coronary vascular responses and explored COX metabolism in obese C57BL/6 mice. In response to arachidonic acid (AA), isolated hearts from obese mice showed increased vasoconstriction compared with control mice. Released thromboxane (TX) A2 during AA-induced vasoconstriction phase was increased in heart perfusates from obese mice. Indomethacin and 1-benzylimidazole, both reduced vasoconstriction response in control and obese mice. Vasoconstriction response to TXA2 mimetic analog U46619 was 2.7 higher in obese mice. Obesity increased COX-2, TXS and TX receptor protein expression as well as oxidative stress evaluated by nitrotyrosine and peroxynitrite levels, compared with control mice. Obese mice treated with FeTMPyP, a peroxynitrite scavenger, reversed all these parameters to control levels. These data suggest that alterations in COX pathway may be associated with increased generation of free radicals, including peroxynitrite, that result from the oxidative stress observed in obesity.


Assuntos
Tromboxanos , Vasoconstrição , Animais , Ácido Araquidônico/metabolismo , Ciclo-Oxigenase 2 , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo , Ácido Peroxinitroso/farmacologia , Tromboxano A2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA