Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.310
Filtrar
1.
Biochem Pharmacol ; 212: 115537, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37019184

RESUMO

Lung cancer is characterized by high incidence and mortality. 90% of cancer deaths are caused by metastases. The epithelial-mesenchymal transition (EMT) process in cancer cells is a prerequisite for the metastatic process. Ethacrynic acid (ECA) is a loop diuretic that inhibits the EMT process in lung cancer cells. EMT has been related to the tumour immunemicroenvironment. However, the effect of ECA on immune checkpoint molecules in the context of cancer has not been fully identified. In the present study, we found that sphingosylphosphorylcholine (SPC) and TGF-ß1, awell-known EMT inducer, induced the expression of B7-H4 in lung cancer cells. We also investigated the involvement of B7-H4 in the SPC-induced EMT process. Knockdown of B7-H4 suppressed SPC-induced EMT, while B7-H4 overexpression enhanced EMT of lung cancer cells. ECA inhibited SPC/TGF-ß1-induced B7-H4 expression via suppression of STAT3 activation. Moreover, ECA inhibits the colonization of mice lung by tail vein-injected LLC1 cells. ECA-treated mice increased the CD4-positive T cells in lung tumour tissues. In summary, these results suggested that ECA inhibits B7-H4 expression via STAT3 inhibition, leading to SPC/TGF-ß1-induced EMT. Therefore, ECA might be an immune oncological drug for B7-H4-positive cancer, especially lung cancer.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Animais , Camundongos , Fator de Crescimento Transformador beta1/metabolismo , Ácido Etacrínico/farmacologia , Ácido Etacrínico/uso terapêutico , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral , Movimento Celular , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo
2.
Molecules ; 28(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36677966

RESUMO

The present study aims to report the design, synthesis, and biological activity of new ethacrynic acid (EA) analogs (6-10) obtained by the double modulation of the carboxylic acid moiety and the aromatic ring with the aim to increase the chemical reactivity of Michael acceptor of EA. All obtained compounds were characterized by 1H and 13C NMR, IR, and high-resolution mass spectrometry. The antiproliferative activity was evaluated in vitro using MMT test, in a first step, against HL60 cell line and in a second step, on a panel of human cancer cell lines such as HCT116, A549, MCF7, PC3, U87-MG, and SKOV3, and normal cell line MRC5 in comparison with positive control doxorubicin. Among all the tested compounds, the product 8 containing a propargyl and a hydroxyl groups, allowing an intramolecular hydrogen bond with the keto group of EA, exhibited a pronounced and selective activity in a nanomolar range against HL60, A549, PC3, and MCF7 with IC50 values of 15, 41.2, 68.7, and 61.5 nM, respectively. Compound 8 also showed a good selectivity index (SI) against HL60 and moderate SI against the other three human cancer cells (A549, PC3, and MCF7). The study of the structure-activity relationship showed that both modifications of the carboxylic group and the introduction of an intramolecular hydrogen bond are highly required to improve the antiproliferative activities. The molecular modeling studies of compound 8 revealed that it favorably binds to the glutathione S-transferase active site, which may explain its interesting anticancer activity. These new compounds have potential to be developed as novel therapeutic agents against various cancer types.


Assuntos
Antineoplásicos , Ácido Etacrínico , Humanos , Linhagem Celular Tumoral , Ácido Etacrínico/farmacologia , Antineoplásicos/química , Proliferação de Células , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular
3.
BMC Pharmacol Toxicol ; 23(1): 35, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35642005

RESUMO

BACKGROUND: Ethacrynic acid (EA) is a loop diuretic that is approved orally and parenterally to manage edema-associated diseases. Nevertheless, it was earlier reported that it is also associated with bleeding upon its parenteral administration. In this report, we investigated the effects of EA on human factor XIIIa (FXIIIa) of the coagulation process using a variety of techniques. METHODS: A series of biochemical and computational methods have been used in this study. The potency and efficacy of human FXIIIa inhibition by EA was evaluated using a bisubstrate-based fluorescence trans-glutamination assay under near physiological conditions. To establish the physiological relevance of FXIIIa inhibition by EA, the effect on FXIIIa-mediated polymerization of fibrin(ogen) as well as the formation of fibrin(ogen) - α2-antiplasmin complex was evaluated using SDS-PAGE experiments. The selectivity profile of EA against other coagulation proteins was assessed by evaluating EA's effect on human clotting times in the activated partial thromboplastin time (APTT) and the prothrombin time (PT) assays. We also used molecular modeling studies to put forward a putative binding mode for EA in the active site of FXIIIa. Results involving EA were the average of at least three experiments and the standard error ± 1 was provided. In determining the inhibition parameters, we used non-linear regression analysis. RESULTS: FXIIIa is a transglutaminase that works at the end of the coagulation process to form an insoluble, rigid, and cross-linked fibrin rich blood clot. In fact, inhibition of FXIIIa-mediated biological processes has been reported to result in a bleeding diathesis. Inhibition of FXIIIa by EA was investigated given the nucleophilic nature of the thiol-containing active site of the enzyme and the Michael acceptor-based electrophilicity of EA. In a bisubstrate-based fluorescence trans-glutamination assay, EA inhibited FXIIIa with a moderate potency (IC50 ~ 105 µM) and efficacy (∆Y ~ 66%). In SDS-PAGE experiments, EA appears to significantly inhibit the FXIIIa-mediated polymerization of fibrin(ogen) as well as the formation of fibrin(ogen) - α2-antiplasmin complex which indicates that EA affects the physiological functions of FXIIIa. Interestingly, EA did not affect the clotting times of human plasma in the APTT and the PT assays at the highest concentration tested of 2.5 mM suggesting the lack of effects on the coagulation serine proteases and potentially the functional selectivity of EA with respect to the clotting process. Molecular modeling studies demonstrated that the Michael acceptor of EA forms a covalent bond with catalytic residue of Cys314 in the active site of FXIIIa. CONCLUSIONS: Overall, our studies indicate that EA inhibits the physiological function of human FXIIIa in vitro which may potentially contribute to the bleeding complications that were reported with the association of the parenteral administration of EA.


Assuntos
Antifibrinolíticos , Ácido Etacrínico , Fator XIIIa , Antifibrinolíticos/farmacologia , Coagulação Sanguínea , Ácido Etacrínico/farmacologia , Fator XIIIa/antagonistas & inibidores , Fibrina/química , Humanos
4.
Mol Biol Rep ; 49(8): 7521-7530, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35585382

RESUMO

BACKGROUND: Despite the recent advances in chemotherapy, the outcomes and the success of these treatments still remain insufficient. Novel combination treatments and treatment strategies need to be developed in order to achieve more effective treatment. This study was designed to investigate the combined effect of ethacrynic acid and cinnamic acid on cancer cell lines. METHODS: The anti-proliferative effect of ethacrynic acid and cinnamic acid was investigated by MTT cell viability assay in three different cancer cell lines. Combination indexes were calculated using CompuSyn software. Apoptosis was assessed by flow cytometric Annexin V-FITC/PI double-staining. The effect of the inhibitors on cell cycle distribution was measured by propidium iodide staining. RESULTS: The combination treatment of ethacrynic acid and cinnamic acid decreased cell proliferation significantly, by 63%, 75% and 70% for K562, HepG2 and TFK-1 cells, respectively. A 5.5-fold increase in the apoptotic cell population was observed after combination treatment of K562 cells. The population of apoptotic cells increased by 9.3 and 0.4% in HepG2 and TFK-1 cells, respectively. Furthermore, cell cycle analysis shows significant cell cycle arrest in S and G2/M phase for K562 cells and non-significant accumulation in G0/G1 phase for TFK-1 and HepG2 cells. CONCLUSIONS: Although there is a need for further investigation, our results suggest that the inhibitors used in this study cause a decrease in cellular proliferation, induce apoptosis and cause cell cycle arrest.


Assuntos
Ácido Etacrínico , Leucemia Mielogênica Crônica BCR-ABL Positiva , Apoptose , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Cinamatos , Ácido Etacrínico/farmacologia , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico
5.
J Enzyme Inhib Med Chem ; 37(1): 728-742, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35176963

RESUMO

The linking of ethacrynic acid with ethylenediamine and 1,4-butanediamine gave EDEA and BDEA, respectively, as membrane-permeable divalent pro-inhibitors of glutathione S-transferase (GST). Their divalent glutathione conjugates showed subnanomolar inhibition and divalence-binding to GSTmu (GSTM) (PDB: 5HWL) at ∼0.35 min-1. In cisplatin-resistant SK-OV-3, COC1, SGC7901 and A549 cells, GSTM activities probed by 15 nM BDEA or EDEA revealed 5-fold and 1.0-fold increases in cisplatin-resistant SK-OV-3 and COC1 cells, respectively, in comparison with the susceptible parental cells. Being tolerable by HEK293 and LO2 cells, BDEA at 0.2 µM sensitised resistant SK-OV-3 and COC1 cells by ∼3- and ∼5-folds, respectively, released cytochrome c and increased apoptosis; EDEA at 1.0 µM sensitised resistant SK-OV-3 and A549 cells by ∼5- and ∼7-fold, respectively. EDEA at 1.7 µg/g sensitised resistant SK-OV-3 cells to cisplatin at 3.3 µg/g in nude mouse xenograft model. BDEA and EDEA are promising leads for probing cellular GSTM and sensitising cisplatin-resistant ovarian cancers.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Ácido Etacrínico/farmacologia , Etilenodiaminas/farmacologia , Glutationa Transferase/antagonistas & inibidores , Neoplasias Ovarianas/tratamento farmacológico , Putrescina/farmacologia , Animais , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Cisplatino/química , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Ácido Etacrínico/química , Etilenodiaminas/química , Feminino , Glutationa Transferase/metabolismo , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Camundongos , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Putrescina/química , Relação Estrutura-Atividade
6.
Bioorg Chem ; 115: 105293, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34426162

RESUMO

For unmet clinical needs, a novel class of ethacrynic acid (EA) derivatives containing triazole moieties (3a-i and 8) were designed, synthesized and evaluated as new anticancer agents. The in vitro anti-proliferative activities were assessed first on HL60 cell line and in a second stage, the two selected compounds 3a and 3c were tested on a panel of human cancer cell lines (A549, MCF7, PC3, U87-MG, SKOV3 and HCT116) and on a normal cell line (MCR5). Compound3c exhibited very good antitumor activities with IC50 values of 20.2, 56.5 and 76.8 nM against A549, PC3 and U87-MG cell lines respectively, which is 2.8- and 1.3-fold more active than doxorubicin on A549 and U87-MG cancer cells, respectively. In addition, compound 3c displays a very good safety index (SI) of 82 fold for A549. Compound 3a showed also good IC50 values of 50 nM on both A549 and PC3 cells and lower selectivity compared to 3c for A549 and PC3 vs. MCR5 with SI of 33 and 18 fold, respectively. The measurement of mitochondrial membrane potential on HCT116 cells after treatments by either 3a or 3c showed that both compounds induced mitochondrial dysfunctions causing thus caspase-induced apoptosis.


Assuntos
Antineoplásicos/farmacologia , Ácido Etacrínico/farmacologia , Triazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Ácido Etacrínico/síntese química , Ácido Etacrínico/química , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade , Triazóis/química
7.
Dis Markers ; 2021: 5530673, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122668

RESUMO

Background. Despite afatinib as a new first-line treatment for EGFR L858R and exon 19 deletion or other rare EGFR-mutation patients, the acquired resistance or toxic effects associated with it limited its use clinically. The controlling of acquired resistance or optimization of the afatinib dosage in EGFR/T790M mutation-positive non-small-cell lung cancer (NSCLC) is still an important fundamental problem. Ethacrynic acid (EA) has been proved as a dual inhibitor of GST and WNT, and the α, ß-unsaturated-keto structure of it is similar to that of irreversible tyrosine kinase inhibitors (TKIs). However, these beneficial effects of EA combined with afatinib have never been reported in NSCLC. Therefore, the antitumor effects of afatinib combined with EA in EGFR L858R/T790M-mutated NSCLC cells and related mechanisms were analyzed. Our in vitro and in vivo results showed that EA has strong synergistic antitumor effects with afatinib in EGFR L858R/T790M-mutated NSCLC cells, but has no cytotoxic effects in NSCLC cells when used it alone, i.e., the cytotoxic effects of afatinib (IC30) plus EA (IC30) were stronger than the effects of afatinib (IC50) alone. Our functional studies found that the antitumor mechanisms of afatinib when combined with EA mainly occurred by inhibiting WNT/ß-catenin pathway activation and suppression of the secretion of anti-inflammatory factors. These results revealed that combination of afatinib with EA derivatives not only provided a new therapeutic approach for EGFR/T790M-mutated NSCLC patients but also offered a new idea for developing new drugs or optimizing the dose of afatinib in clinical use in future antitumor therapy.


Assuntos
Afatinib/farmacologia , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Ácido Etacrínico/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Via de Sinalização Wnt/efeitos dos fármacos , Células A549 , Afatinib/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Ácido Etacrínico/uso terapêutico , Genes erbB-1 , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Distribuição Aleatória
8.
Viruses ; 13(1)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33451132

RESUMO

In 2019 an outbreak occurred which resulted in a global pandemic. The causative agent has been identified in a virus belonging to theCoronaviridae family, similar to the agent of SARS, referred to as SARS-CoV-2. This epidemic spread rapidly globally with high morbidity and mortality. Although vaccine development is at a very advanced stage, there are currently no truly effective antiviral drugs to treat SARS-CoV-2 infection. In this study we present systematic and integrative antiviral drug repurposing effort aimed at identifying, among the drugs already authorized for clinical use, some active inhibitors of the SARS-CoV-2 main protease. The most important result of this analysis is the demonstration that ethacrynic acid, a powerful diuretic, is revealed to be an effective inhibitor of SARS-CoV-2 main protease. Even with all the necessary cautions, given the particular nature of this drug, these data can be the starting point for the development of an effective therapeutic strategy against SARS-CoV-2.


Assuntos
Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Ácido Etacrínico/farmacologia , Inibidores de Proteases/farmacocinética , SARS-CoV-2/efeitos dos fármacos , Antivirais/química , Domínio Catalítico , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Bases de Dados Factuais , Reposicionamento de Medicamentos , Ácido Etacrínico/química , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Inibidores de Proteases/química , SARS-CoV-2/enzimologia
10.
Biochem Pharmacol ; 183: 114339, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33189676

RESUMO

Lung cancer is one of the leading causes of death in cancer patients. Epithelial-mesenchymal transition (EMT) plays an important role in lung cancer progression. Therefore, for lung cancer treatment, it is crucial to find substances that inhibit EMT. Ethacrynic acid (ECA) is a diuretic that inhibits cellular ion flux and exerts anticancer effects. However, the effects of ECA on EMT in lung cancer remain unclear. We examined the effects of ECA on sphingosylphosphorylcholine (SPC) or TGF-ß1-induced EMT process in A549 and H1299 cells via reverse transcription polymerase chain reaction and Western blotting. We found that ECA inhibited SPC-induced EMT and SPC-induced WNT signalling in EMT. We observed that SPC induces the expression of NDP [Norrie disease protein] and WNT-2, whereas ECA suppressed their expression. SPC-induced WNT activation, EMT, migration, and invasion were suppressed by NDP small-interfering RNA (siNDP), but NDP overexpression (pNDP) enhanced these events in A549 and H1299 cells. Accordingly, NDP expression may influence lung cancer prognosis. In summary, our results revealed that ECA inhibited SPC or TGF-ß1-induced EMT in A549 and H1299 lung cancer cells by downregulating NDP expression and inhibiting WNT activation. Therefore, ECA might be a new drug candidate for lung cancer treatment.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Ácido Etacrínico/farmacologia , Proteínas do Olho/farmacologia , Neoplasias Pulmonares/metabolismo , Proteínas do Tecido Nervoso/farmacologia , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Células A549 , Animais , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Relação Dose-Resposta a Droga , Transição Epitelial-Mesenquimal/fisiologia , Ácido Etacrínico/uso terapêutico , Proteínas do Olho/antagonistas & inibidores , Proteínas do Olho/biossíntese , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/biossíntese , RNA Interferente Pequeno/farmacologia , Inibidores de Simportadores de Cloreto de Sódio e Potássio/uso terapêutico , Via de Sinalização Wnt/fisiologia
11.
Chemistry ; 26(72): 17525-17535, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33252170

RESUMO

A facile route to PtII complexes doubly functionalized with bioactive molecules through a bipyridine-type ligand is described. Initially, ligands LEE (containing two ethacrynic acid units), LEF (ethacrynic acid+flurbiprofen) and LEB (ethacrynic acid+biotin) were obtained in moderate to good yields from 2,2'-bipyridine-4,4'-dicarboxylic acid. Subsequent reaction of the ligands with [PtCl2 (DMSO)2 ] afforded complexes [PtCl2 (LEE )] (2), [PtCl2 (LEF )] (3) and [PtCl2 (LEB )] (4) in high yields. All compounds were fully characterized by analytical and spectroscopic methods. Complexes 2-4 are highly stable in water/DMSO solution at 37 °C after 72 h, whereas progressive release of the bioactive fragments was detected in a cell culture medium. The compounds were assessed for their in vitro antiproliferative activity towards tumorigenic A2780, A2780cisR and Y79 cells and non-tumourigenic HEK293 cells. In particular, the combination of ethacrynic acid and flurbiprofen in 3 overcomes cisplatin-based resistance and provides strong cancer cell selectivity. Enzyme inhibition assays on human GST P1 and human COX-2 and cross-experiments with complex 1, analogous to 2-4 but lacking bio-groups, revealed a clear synergy between the PtII frame and the bioactive organic components.


Assuntos
2,2'-Dipiridil/química , Antineoplásicos , Cisplatino/farmacologia , Ácido Etacrínico/farmacologia , Neoplasias Ovarianas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Cisplatino/uso terapêutico , Ácido Etacrínico/uso terapêutico , Feminino , Flurbiprofeno/uso terapêutico , Células HEK293 , Humanos , Neoplasias Ovarianas/tratamento farmacológico
12.
J Vis Exp ; (164)2020 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-33104076

RESUMO

Glutathione S-transferases (GSTs) are metabolic enzymes responsible for the elimination of endogenous or exogenous electrophilic compounds by glutathione (GSH) conjugation. In addition, GSTs are regulators of mitogen-activated protein kinases (MAPKs) involved in apoptotic pathways. Overexpression of GSTs is correlated with decreased therapeutic efficacy among patients undergoing chemotherapy with electrophilic alkylating agents. Using GST inhibitors may be a potential solution to reverse this tendency and augment treatment potency. Achieving this goal requires the discovery of such compounds, with an accurate, quick, and easy enzyme assay. A spectrophotometric protocol using 1-chloro-2,4-dinitrobenzene (CDNB) as the substrate is the most employed method in the literature. However, already described GST inhibition experiments do not provide a protocol detailing each stage of an optimal inhibition assay, such as the measurement of the Michaelis-Menten constant (Km) for CDNB or indication of the employed enzyme concentration, crucial parameters to assess the inhibition potency of a tested compound. Hence, with this protocol, we describe each step of an optimized spectrophotometric GST enzyme assay, to screen libraries of potential inhibitors. We explain the calculation of both the half-maximal inhibitory concentration (IC50) and the constant of inhibition (Ki)-two characteristics used to measure the potency of an enzyme inhibitor. The method described can be implemented using a pool of GSTs extracted from cells or pure recombinant human GSTs, namely GST alpha 1 (GSTA1), GST mu 1 (GSTM1) or GST pi 1 (GSTP1). However, this protocol cannot be applied to GST theta 1 (GSTT1), as CDNB is not a substrate for this isoform. This method was used to test the inhibition potency of curcumin using GSTs from equine liver. Curcumin is a molecule exhibiting anti-cancer properties and showed affinity towards GST isoforms after in silico docking predictions. We demonstrated that curcumin is a potent competitive GST inhibitor, with an IC50 of 31.6 ± 3.6 µM and a Ki of 23.2 ± 3.2 µM. Curcumin has potential to be combined with electrophilic chemotherapy medication to improve its efficacy.


Assuntos
Citosol/enzimologia , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/análise , Inibidores Enzimáticos/farmacologia , Glutationa Transferase/antagonistas & inibidores , Espectrofotometria/métodos , Animais , Curcumina/farmacologia , Dinitrobenzenos/metabolismo , Ácido Etacrínico/farmacologia , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Cavalos , Concentração Inibidora 50 , Isoenzimas/metabolismo , Cinética , Fígado/enzimologia , Especificidade por Substrato/efeitos dos fármacos
13.
Bioorg Med Chem Lett ; 30(19): 127426, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32755677

RESUMO

A series of ethacrynic acid (2-[2,3-dichloro-4-(2-methylidenebutanoyl)phenoxy]acetic acid) (EA, Edecrin) containing sulfonamides linked via three types of linkers namely 1,2-ethylenediamine, piperazine and 4-aminopiperidine was synthesized and subsequently evaluated in vitro against HL60 and HCT116 cancer cell lines. All the EA analogs, excluding 6a and 6c, showed anti-proliferative activity with IC50s in the micromolar range (less than 4 uM). Three derivatives 6b, 7b and 7e were selected for their interesting dual activity on HL60 cell line in order to be further evaluated against a panel of cancer cell lines (HCT116, A549, MCF7, PC3, U87-MG and SKOV3) as well as on MRC5 as a normal cell line. These compounds displayed IC50 values in nanomolar range against A549, MCF7, PC3 and HCT116 cell lines, deducing the discovery that piperazine or 4-aminopiperidine is the linker's best choice to develop EA analogs with highly potent anti-proliferative activities own up to 24 nM. Besides, in terms of selectivity, those linkers are more suitable offering safety ratios of up to 63.8.


Assuntos
Antineoplásicos/farmacologia , Ácido Etacrínico/análogos & derivados , Ácido Etacrínico/farmacologia , Sulfonamidas/farmacologia , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/síntese química
14.
Biochem Pharmacol ; 175: 113920, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32201212

RESUMO

To identify signal transducer and activator of transcription factor 3 (STAT3) inhibitors, we generated STAT3-dependent gene expression signature by analyzing gene expression profiles of DU145 cancer cells treated with STAT3 inhibitor, piperlongumine and 2-hydroxycinnamaldehyde. Then we explored gene expression signature-based strategies using a connectivity map database and identified several STAT3 inhibitors, including ethacrynic acid (EA). EA is currently used as a diuretic drug. EA inhibited STAT3 activation in DU145 prostate cancer cells and consequently decreased the levels of STAT3 target genes such as cyclin A and MCL-1. Furthermore, EA treatment inhibited tumor growth in mice xenografted with DU145 cells and decreased p-STAT3 expression in tumor tissues. Knockdown of Src homology region 2 domain-containing phosphatase-2 (SHP2) or Protein tyrosine phosphatase 1B (PTP1B) gene expression by siRNA suppressed the ability of EA to inhibit STAT3 activation. When EA was combined with an activator of SHP2 or PTP1B, p-STAT3 expression was synergistically decreased; when EA was combined with an inhibitor of SHP2 or PTP1B, p-STAT3 expression was rescued. By using an affinity pulldown assay with biotinyl-EA, EA was shown to associate with SHP2 and PTP1B in vitro. Additionally, the drug affinity responsive target stability (DARTS) assay confirmed the direct binding of EA to SHP2 and PTP1B. SHP2 is activated by EA through active phosphorylation at Y580 and direct binding to SHP2. Collectively, our results suggest that EA inhibits STAT3 activity through the modulation of phosphatases such as SHP2 and PTP1B and may be a potential anticancer drug to target STAT3 in cancer progression.


Assuntos
Ácido Etacrínico/farmacologia , Neoplasias da Próstata/enzimologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Ácido Etacrínico/uso terapêutico , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias da Próstata/tratamento farmacológico , Fator de Transcrição STAT3/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
15.
Sheng Li Xue Bao ; 71(6): 863-873, 2019 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-31879742

RESUMO

The aim of this study was to investigate the inhibitory effect and the underlying mechanism of ethacrynic acid (EA) on the contraction in mice. BL-420S force measuring system was used to measure the tension of mouse tracheal rings. The whole cell patch clamp technique was utilized to record the channel currents of airway smooth muscle (ASM) cells. The calcium imaging system was used to determine the intracellular Ca2+ concentration ([Ca2+]i) in ASM cells. The results showed that EA significantly inhibited the high K+ (80 mmol/L) and acetylcholine (ACh, 100 µmol/L)-induced contraction of mouse tracheal rings in a dose-dependent manner. The maximal relaxation percentages were (97.02 ± 1.56)% and (85.21 ± 0.03)%, and the median effective concentrations were (40.28 ± 2.20) µmol/L and (56.22 ± 7.62) µmol/L, respectively. EA decreased the K+ and ACh-induced elevation of [Ca2+]i from 0.40 ± 0.04 to 0.16 ± 0.01 and from 0.50 ± 0.01 to 0.39 ± 0.01, respectively. In addition, EA inhibited L-type voltage-dependent calcium channel (LVDCC) and store-operated calcium channel (SOCC) currents in ASM cells, and Ca2+ influx. Moreover, EA decreased the resistance of the respiratory system (Rrs) in vivo in mice. These results indicated that EA inhibits LVDCC and SOCC, which results in termination of Ca2+ influx and decreases of [Ca2+]i, leading to relaxation of ASM. Taken together, EA might be a potential bronchodilator.


Assuntos
Ácido Etacrínico , Contração Muscular , Músculo Liso , Sistema Respiratório , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo L , Inibidores Enzimáticos/farmacologia , Ácido Etacrínico/farmacologia , Camundongos , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Sistema Respiratório/citologia , Sistema Respiratório/efeitos dos fármacos
16.
Redox Biol ; 26: 101235, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31202080

RESUMO

Glutathione (GSH), the most abundant vertebrate endogenous redox buffer, plays key roles in organogenesis and embryonic development, however, organ-specific GSH utilization during development remains understudied. Monochlorobimane (MCB), a dye conjugated with GSH by glutathione-s-transferase (GST) to form a fluorescent adduct, was used to visualize organ-specific GSH utilization in live developing zebrafish (Danio rerio) embryos. Embryos were incubated in 20 µM MCB for 1 h and imaged on an epifluorescence microscope. GSH conjugation with MCB was high during early organogenesis, decreasing as embryos aged. The heart had fluorescence 21-fold above autofluorescence at 24 hpf, dropping to 8.5-fold by 48 hpf; this increased again by 72 hpf to 23.5-fold, and stayed high till 96 hpf (18-fold). The brain had lower fluorescence (10-fold) at 24 and 48 hpf, steadily increasing to 30-fold by 96 hpf. The sensitivity and specificity of MCB staining was then tested with known GSH modulators. A 10-min treatment at 48 hpf with 750 µM tert-butylhydroperoxide, caused organ-specific reductions in staining, with the heart losing 30% fluorescence, and, the brain ventricle losing 47% fluorescence. A 24 h treatment from 24-48 hpf with 100 µM of N-Acetylcysteine (NAC) resulted in significantly increased fluorescence, with the brain ventricle and heart showing 312% and 240% increases respectively, these were abolished upon co-treatment with 5 µM BSO, an inhibitor of the enzyme that utilizes NAC to synthesize GSH. A 60 min 100 µM treatment with ethacrynic acid, a specific GST inhibitor, caused 30% reduction in fluorescence across all measured structures. MCB staining was then applied to test for GSH disruptions caused by the toxicants perfluorooctanesulfonic acid and mono-(2-ethyl-hexyl)phthalate; MCB fluorescence responded in a dose, structure and age-dependent manner. MCB staining is a robust, sensitive method to detect spatiotemporal changes in GSH utilization, and, can be applied to identify sensitive target tissues of toxicants.


Assuntos
Encéfalo/metabolismo , Corantes Fluorescentes/química , Glutationa/metabolismo , Pirazóis/química , Coloração e Rotulagem/métodos , Peixe-Zebra/metabolismo , Acetilcisteína/farmacologia , Ácidos Alcanossulfônicos/toxicidade , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Dietilexilftalato/análogos & derivados , Dietilexilftalato/toxicidade , Embrião não Mamífero , Ácido Etacrínico/farmacologia , Fluorocarbonos/toxicidade , Glutationa Transferase/antagonistas & inibidores , Glutationa Transferase/metabolismo , Coração/efeitos dos fármacos , Coração/crescimento & desenvolvimento , Organogênese/efeitos dos fármacos , Organogênese/fisiologia , Testes de Toxicidade Crônica , Peixe-Zebra/embriologia , Peixe-Zebra/crescimento & desenvolvimento , terc-Butil Hidroperóxido/farmacologia
17.
PLoS One ; 14(3): e0214160, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30897163

RESUMO

Equine glutathione transferase A3-3 (EcaGST A3-3) belongs to the superfamily of detoxication enzymes found in all higher organisms. However, it is also the most efficient steroid double-bond isomerase known in mammals. Equus ferus caballus shares the steroidogenic pathway with Homo sapiens, which makes the horse a suitable animal model for investigations of human steroidogenesis. Inhibition of the enzyme has potential for treatment of steroid-hormone-dependent disorders. Screening of a library of FDA-approved drugs identified 16 out of 1040 compounds, which at 10 µM concentration afforded at least 50% inhibition of EcaGST A3-3. The most potent inhibitors, anthralin, sennoside A, tannic acid, and ethacrynic acid, were characterized by IC50 values in the submicromolar range when assayed with the natural substrate Δ5-androstene-3,17-dione.


Assuntos
Inibidores Enzimáticos/farmacologia , Glutationa Transferase/antagonistas & inibidores , Animais , Antralina/farmacologia , Ácido Etacrínico/farmacologia , Glutationa Transferase/metabolismo , Cavalos , Senosídeos/farmacologia , Especificidade por Substrato , Taninos/farmacologia
18.
Clinics (Sao Paulo) ; 73: e332, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30365818

RESUMO

OBJECTIVES: Several compounds characterized by an olefin linkage conjugated to a carbonyl group have anti-inflammatory properties. The diuretic ethacrynic acid (EA) is a compound of this type. Herein, we tested the hypothesis that ethacrynic acid can modulate the development of ileus after bowel manipulation. METHODS: Groups (n=9) of male C57Bl/6 mice underwent surgical manipulation of the small intestine using a pair of cotton-tipped applicators (MAN). Control animals (CONT) did not undergo any surgical intervention or receive treatment. MAN mice were pre- and post-treated with four intraperitoneal doses of phosphate buffered saline (PBS), EA1 (1mg/kg per dose), or EA10 (10mg/kg per dose). Gastrointestinal transit of non-absorbable FITC-labeled dextran was assessed by gavaging the mice with the tracer 24h after operation and assessing FD70 concentration 120 min later in the bowel contents from the stomach, 10 equally long segments of small intestine, cecum, and two equally long segments of colon. The geometric center for the tracer was calculated for each animal. Expression of interleukin-6 (IL-6) and inducible nitric oxide synthase (iNOS) transcripts in the ileal muscularis propria was assessed using semiquantitative reverse transcriptase-polymerase chain reaction. RESULTS: In control animals, the mean (±SE) geometric center for the transit marker was 9.89±0.47, whereas it was 4.59±0.59 for PBS-treated animals (p<0.05 vs CONT). The geometric center for pre- post treatment with low (1mg/kg) and high (10mg/kg) doses of ethacrynic acid were 7.23±0.97 and 5.15±0.57, respectively. Compared to PBS, treatment with ethacrynic acid (1mg/kg) significantly decreased manipulation-induced IL-6 and iNOS mRNA expression in the wall of the small bowel. CONCLUSIONS: Pre- and post-treatment with ethacrynic acid ameliorates ileus and modulates inflammation in the gut wall induced by bowel manipulation.


Assuntos
Ácido Etacrínico/farmacologia , Trânsito Gastrointestinal/efeitos dos fármacos , Íleus/patologia , Mediadores da Inflamação/antagonistas & inibidores , Interleucina-6/antagonistas & inibidores , Intestino Delgado/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Íleus/cirurgia , Intestino Delgado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Complicações Pós-Operatórias , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Mol Pharm ; 15(6): 2413-2422, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29763317

RESUMO

Ethacrynic acid (EA) is a diuretic drug that is widely used to treat high-blood pressure and swelling caused by congestive heart failure or kidney failure. It acts through noncovalent inhibition of the Na+-K+-2Cl- cotransporter in the thick ascending limb of Henle's loop. Chemically, EA contains a Michael acceptor group that can react covalently with nucleophilic residues in proteins; however, the proteome reactivity of EA remains unexplored. Herein, we took a quantitative chemoproteomic approach to globally profile EA's targets in cancer cells. We discovered that EA induces impaired mitochondrial function accompanied by increased ROS production. Our profiling revealed that EA targets functional proteins on mitochondrial membranes, including adenine nucleotide translocases (ANTs). Site-specific mapping identified that EA covalently modifies a functional cysteine in ANTs, a mutation of which resulted in the rescuing effect on EA-induced mitochondrial dysfunction. The newly discovered modes of action offer valuable information to repurpose EA for cancer treatment.


Assuntos
Reposicionamento de Medicamentos , Ácido Etacrínico/farmacologia , Mitocôndrias/efeitos dos fármacos , Translocases Mitocondriais de ADP e ATP/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Cisteína/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Mitocôndrias/metabolismo , Translocases Mitocondriais de ADP e ATP/química , Translocases Mitocondriais de ADP e ATP/metabolismo , Neoplasias/patologia , Proteoma/química , Proteoma/efeitos dos fármacos , Proteômica , Espécies Reativas de Oxigênio/metabolismo
20.
Naunyn Schmiedebergs Arch Pharmacol ; 391(6): 657-667, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29666895

RESUMO

Phenethyl isothiocyanate (PEITC) is a potential cancer prevention agent that is found in cruciferous vegetables. Previous studies have shown that the effect of PEITC-induced cell death declines rapidly after administration. The metabolic fate of PEITC is modulated by glutathione S-transferases (GST). In this study, we investigated whether GST activity modulates PEITC-induced cytotoxicity on cholangiocarcinoma (CCA) cells. The sensitivity of KKU-M214 and KKU-100 cells to PEITC was associated with GST activity. Two GST inhibitors, ethacrynic acid (EA) and cibacron blue, potentiated the cytotoxic effect of PEITC in CCA cells. PEITC-induced glutathione (GSH) depletion and redox stress, whereas EA itself or in combination with PEITC did not alter GSH redox status. The enhanced cytotoxic effect of EA may be due to inhibition of GST activity. This idea was validated by using siRNA directed against GSTP1 mRNA in KKU-M214 cells, and GSTP1 and GSTT1 mRNA in KKU-100 cells. These GST isoforms were abundantly expressed in the cell lines. Knockdown of GSTs in CCA cell lines potentiated the cytotoxic effect of PEITC. The present study shows that the antitumor effect of PEITC was potentiated by the suppression of GST activity. The inhibition of GST could be a crucial strategy to potentiate chemotherapeutic effect of PEITC on CCA.


Assuntos
Antineoplásicos/farmacologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Colangiocarcinoma/tratamento farmacológico , Glutationa Transferase/antagonistas & inibidores , Isotiocianatos/farmacologia , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Sinergismo Farmacológico , Ácido Etacrínico/farmacologia , Glutationa/metabolismo , Glutationa Transferase/genética , Humanos , Sefarose/análogos & derivados , Sefarose/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...