Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 450
Filtrar
1.
Assay Drug Dev Technol ; 22(2): 53-62, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38150562

RESUMO

This study aimed to develop a nanoparticle drug delivery system using poly (lactic-co-glycolic acid) (PLGA) for enhancing the therapeutic efficacy of lurasidone hydrochloride (LH) in treatment of schizophrenia through intramuscular injection. LH-loaded PLGA nanoparticles (LH-PNPs) were prepared using the nanoprecipitation technique and their physicochemical characteristics were assessed. Particle size (PS), zeta potential, morphology, % encapsulation efficiency, % drug loading, drug content, and solid-state properties were analyzed. Stability, in vitro release, and in vivo pharmacokinetic studies were conducted to evaluate the therapeutic efficacy of the developed LH-PNPs. The optimized batch of LH-PNPs exhibited a narrow and uniform PS distribution before and after lyophilization, with sizes of 112.7 ± 1.8 nm and 115.0 ± 1.3 nm, respectively, and a low polydispersity index. The PNPs showed high drug entrapment efficiency, drug loading, and drug content uniformity. Solid-state characterization indicated good stability and compatibility, with a nonamorphous state. The drug release profile demonstrated sustained release behavior. Intramuscular administration of LH-PNPs in rats resulted in a significantly prolonged mean residence time compared with the drug suspension. These findings highlight that intramuscular delivery of the LH-PNP formulation is a promising approach for enhancing the therapeutic efficacy of LH in treatment of schizophrenia.


Assuntos
Cloridrato de Lurasidona , Nanopartículas , Ratos , Animais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Disponibilidade Biológica , Portadores de Fármacos/química , Ácido Poliglicólico/química , Ácido Poliglicólico/metabolismo , Ácido Láctico/química , Ácido Láctico/farmacocinética , Nanopartículas/química , Resultado do Tratamento
2.
Food Funct ; 12(22): 11250-11261, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34708849

RESUMO

Microbial fermentation with lactic acid bacteria (LAB) is a natural food biopreservation method. Yellow mustard and milk whey are optimum substrates for LAB fermentation. The aim of the present study was to evaluate the bioaccessibility and bioavailability of bioactive compounds from yellow mustard flour and milk whey both with and without LAB fermentation. All extracts were subjected to a simulated digestion process. Total polyphenols, DL-3-phenyllactic acid (PLA), lactic acid, and the antioxidant activity were determined in the studied matrices before and after simulated digestion. Yellow mustard flour was significantly richer in total polyphenols, whereas significantly higher concentrations of PLA and lactic acid were observed in milk whey. Similar antioxidant activity was determined in both ingredients being in all cases strongly reduced after in vitro digestion. Higher bioaccessibility was found for polyphenols and PLA in milk whey. Transepithelial transport of total polyphenols was higher in yellow mustard flour compared to milk whey, reaching bioavailability values between 3-7% and 1-2%, respectively. PLA transepithelial transport was only significant in both fermented matrices with bioavailability around 4-6%. Transepithelial transport of lactic acid reached values of 31-34% (bioavailability ∼ 22%) and 15-78% (bioavailability ∼ 3%) in milk whey and yellow mustard flour, respectively. LAB fermentation showed beneficial effects on enriching extracts with PLA, lactic acid, and antioxidant activity, as well as increasing bioaccessibility of these acids in yellow mustard flour and total polyphenol bioavailability in milk whey. Results pointed to yellow mustard flour and milk whey as natural preservative ingredients used in the food industry, especially when fermented with LAB.


Assuntos
Antioxidantes , Lactobacillales/metabolismo , Leite/metabolismo , Mostardeira/química , Soro do Leite/metabolismo , Animais , Antioxidantes/química , Antioxidantes/farmacocinética , Disponibilidade Biológica , Células CACO-2 , Fermentação/fisiologia , Humanos , Lactatos/química , Lactatos/farmacocinética , Ácido Láctico/química , Ácido Láctico/farmacocinética
3.
Medicine (Baltimore) ; 100(7): e24835, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33607851

RESUMO

ABSTRACT: The 2016 Surviving Sepsis Campaign guidelines suggest guiding resuscitation to normalize lactate levels in patients with sepsis-associated hyperlactatemia as a marker of tissue hypoperfusion. This study evaluated the prognostic value of lactate levels and lactate clearance for 30-day mortality in patients with sepsis and septic shock diagnosed in the emergency department.We performed a retrospective cohort study of sepsis patients with initial lactate levels of ≥2 mmol/L. All patients met the Sepsis-3 definitions. The prognostic value of 6-hour lactate levels, 6-hour lactate clearance, 6-hour lactate metrics (≥2 mmol/L), and lactate clearance metrics (<10%, <20%, and <30%) was evaluated. We compared the sensitivity and specificity between metrics.Of the 363 sepsis and septic shock patients, 148 died (30-day mortality: 40.8%). Nonsurvivors had significantly higher 6-hour lactate levels and lower 6-hour lactate clearance than those of survivors. Six-hour lactate levels and 6-hour lactate clearance were associated with 30-day mortality after adjusting for potential confounders (odds ratio, 1.191 [95% confidence interval (CI), 1.097-1.294] and 0.989 [0.983-0.995], respectively). Six-hour lactate levels had better prognostic value than 6-hour lactate clearance (area under the curve, 0.720 [95% CI, 0.670-0.765] vs 0.656 [0.605-0.705]; P = .02). Six-hour lactate levels of ≥3.5 mmol/L and 6-hour lactate clearance of <24.4% were the optimal cut-off value in predicting the 30-day mortality. The prognostic value of 6-hour lactate metrics and 6-hour lactate clearance metrics did not differ. Six-hour lactate levels (≥2 mmol/L) had the highest sensitivity (89.2%).Six-hour lactate levels proved to be more accurate in predicting 30-day mortality than 6-hour lactate clearance and initial lactate levels.


Assuntos
Hiperlactatemia/complicações , Ácido Láctico/metabolismo , Sepse/metabolismo , Choque Séptico/metabolismo , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Estudos de Casos e Controles , Serviço Hospitalar de Emergência , Feminino , Humanos , Ácido Láctico/farmacocinética , Masculino , Taxa de Depuração Metabólica , Pessoa de Meia-Idade , Escores de Disfunção Orgânica , República da Coreia/epidemiologia , Ressuscitação/normas , Estudos Retrospectivos , Sensibilidade e Especificidade , Sepse/epidemiologia , Sepse/mortalidade , Choque Séptico/epidemiologia , Choque Séptico/mortalidade
4.
Crit Care ; 24(1): 46, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32041652

RESUMO

BACKGROUND: Plasma lactate concentrations and their trends over time are used for clinical prognosis, and to guide treatment, in critically ill patients. Although heavily relied upon for clinical decision-making, lactate kinetics of these patients is sparsely studied. AIM: To establish and validate a feasible method to study lactate kinetics in critically ill patients. METHODS: Healthy volunteers (n = 6) received a bolus dose of 13C-labeled lactate (20 µmol/kg body weight), and 43 blood samples were drawn over 2 h to determine the decay in labeled lactate. Data was analyzed using non-compartmental modeling calculating rates of appearance (Ra) and clearance of lactate. The area under the curve (AUC) was calculated using a linear-up log-down trapezoidal approach with extrapolation beyond 120 min using the terminal slope to obtain the whole AUC. After evaluation, the same protocol was used in an unselected group of critically ill patients (n = 10). RESULTS: Ra for healthy volunteers and ICU patients were 12.8 ± 3.9 vs 22.7 ± 11.1 µmol/kg/min and metabolic clearance 1.56 ± 0.39 vs 1.12 ± 0.43 L/min, respectively. ICU patients with normal lactate concentrations showed kinetics very similar to healthy volunteers. Simulations showed that reducing the number of samples from 43 to 14 gave the same results. Our protocol yielded results on lactate kinetics very similar to previously published data using other techniques. CONCLUSION: This simple and user-friendly protocol using an isotopically labeled bolus dose of lactate was accurate and feasible for studying lactate kinetics in critically ill ICU patients. TRIAL REGISTRATION: ANZCTR, ACTRN12617000626369, registered 8 March 2017. https://anzctr.org.au/Trial/Registration/TrialReview.aspx?id=372507&isReview=true.


Assuntos
Estado Terminal , Ácido Láctico , Área Sob a Curva , Líquidos Corporais , Cuidados Críticos , Voluntários Saudáveis , Humanos , Unidades de Terapia Intensiva , Cinética , Ácido Láctico/administração & dosagem , Ácido Láctico/farmacocinética , Prognóstico
5.
Nucl Med Biol ; 71: 11-18, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31108463

RESUMO

BACKGROUND: [166Ho]Ho-acetylacetonate-poly(L-lactic acid) microspheres were used in radioembolization of liver malignancies by intra-arterial administration. The primary aim of this study was to assess the stability and biodistribution of these microspheres. MATERIALS AND METHODS: Peripheral blood and urine samples were obtained from two clinical studies. Patient and in vitro experiment samples were analyzed using inductively coupled plasma mass spectrometry (ICP-MS), gamma-ray spectroscopy, light microscopy, Coulter particle counting, and high performance liquid chromatography (HPLC). RESULTS: The median percentage holmium compared to the total amount injected into the hepatic artery was 0.19% (range 0.08-2.8%) and 0.32% (range 0.03-1.8%) in the 1 h blood plasma and 24 h urine, respectively. Both the blood plasma and urine were correlated with the neutron irradiation exposure required for [166Ho]Ho-AcAc-PLLA microsphere production (ρ = 0.616, p = 0.002). After a temporary interruption of the phase 2 clinical study, the resuspension medium was replaced to precipitate [166Ho]Ho3+ pre-administration using phosphate. The in vitro near-maximum neutron irradiation experiments showed significant [166Ho]Ho-AcAc-PLLA microsphere damage. CONCLUSION: The amount of holmium in the peripheral blood and urine samples after [166Ho]Ho-AcAc-PLLA microsphere intrahepatic infusion was low. A further decrease was observed after reformulation of the resuspension solution but minimization of production damage is necessary.


Assuntos
Embolização Terapêutica , Hidroxibutiratos/química , Hidroxibutiratos/uso terapêutico , Lactatos/química , Lactatos/uso terapêutico , Ácido Láctico/química , Ácido Láctico/uso terapêutico , Neoplasias Hepáticas/radioterapia , Microesferas , Pentanonas/química , Pentanonas/uso terapêutico , Estabilidade de Medicamentos , Humanos , Hidroxibutiratos/farmacocinética , Lactatos/farmacocinética , Ácido Láctico/farmacocinética , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/urina , Pentanonas/farmacocinética , Distribuição Tecidual
6.
Drug Deliv Transl Res ; 9(3): 694-706, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30825078

RESUMO

Diabetes mellitus is a chronic metabolic disorder characterized by insulin deficiency and impaired glucose metabolism. Overexpression of cAMP response element binding protein (CREB)-regulated transcriptional coactivator 2 (CRTC2) plays an important role in high gluconeogenesis in patients with diabetes type II. Using RNA interference technology for silencing CRTC2 gene expression could be helpful in controlling the level of blood glucose and gluconeogenesis. In this study, we designed a siRNA delivery platform comprising blended chitosan lactate (CT) and polyethylene glycol (PEG) conjugated with glycyrrhetinic acid (GA) for controlling gluconeogenesis. The nanoparticles showed spherical and smooth surface with ~ 189-nm size and + 5.1 zeta potential. Targeted nanoparticles were efficiently stable in serum and different levels of heparin media over 48 h. The gene knockdown efficiency of nanoparticles was comparable to Lipofectamine®, while they had no significant in vitro and in vivo toxicity. The in vivo therapeutic efficacy of targeted nanoparticles was also confirmed by reduced amount of fasting blood sugar in diabetic rat models. Furthermore, the nanoparticles were mostly accumulated in the liver after 2 h indicating the significant targeting ability of the prepared nanoparticles. Therefore, CT/PEG-GA nanoparticles can be considered as a potential candidate for targeted delivery of siRNA into hepatocytes in order to regulate gluconeogenesis in diabetes.


Assuntos
Quitosana/administração & dosagem , Gluconeogênese/efeitos dos fármacos , Ácido Glicirretínico/administração & dosagem , Ácido Láctico/administração & dosagem , Fígado/efeitos dos fármacos , Nanopartículas/administração & dosagem , Polietilenoglicóis/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Fatores de Transcrição/genética , Animais , Quitosana/farmacocinética , Quitosana/toxicidade , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/terapia , Expressão Gênica , Ácido Glicirretínico/farmacocinética , Ácido Glicirretínico/toxicidade , Células Hep G2 , Humanos , Ácido Láctico/farmacocinética , Ácido Láctico/toxicidade , Fígado/metabolismo , Fígado/patologia , Masculino , Nanopartículas/toxicidade , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/toxicidade , RNA Interferente Pequeno/farmacocinética , RNA Interferente Pequeno/toxicidade , Ratos Wistar , Distribuição Tecidual
7.
Mol Pharm ; 15(12): 5546-5555, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30376629

RESUMO

Brain microvascular endothelial cells derived from human induced pluripotent stem cells (hiPS-BMECs) have been proposed as a new blood-brain barrier model, but their transport function has not been fully clarified. Therefore, in this study, we investigated the gene expression and function of transporters in hiPS-BMECs by means of quantitative reverse transcription-PCR, in vitro transcellular transport studies, and uptake experiments. mRNAs encoding ABC and SLC transporters, such as BCRP, MCT1, CAT1, and GLAST, were highly expressed in hiPS-BMECs. Transcellular transport studies showed that prazosin, [14C]l-lactate, [3H]l-arginine, and [3H]l-glutamate (substrates of BCRP, MCT1, CAT1, and GLAST, respectively) were transported asymmetrically across the hiPS-BMEC monolayer. Substrates of LAT1, OCTN2, CAT1, GLAST, MCT1, and proton-coupled organic cation (H+/OC) antiporter were taken up by hiPS-BMECs in a time-, temperature-, and concentration-dependent manner, and the uptakes were markedly decreased by inhibitors of the corresponding transporter. These results indicate that hiPS-BMECs express multiple nutrient and drug transporters.


Assuntos
Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Arginina/farmacocinética , Diferenciação Celular , Linhagem Celular , Permeabilidade da Membrana Celular/efeitos dos fármacos , Ácido Glutâmico/farmacocinética , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Ácido Láctico/farmacocinética , Proteínas de Membrana Transportadoras/genética , Microvasos/citologia , Prazosina/farmacocinética , RNA Mensageiro/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Nucl Med Biol ; 64-65: 28-33, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30015093

RESUMO

INTRODUCTION: Lactate could serve as an energy source and signaling molecule in the brain, although there is insufficient in vivo evidence to support this possibility. Here we aimed to use a one-pot enzymatic synthetic procedure to synthesize l-[3-11C]lactate that can be used to evaluate chemical forms in the blood after intravenous administration, and as a probe for pharmacokinetic analysis of lactate metabolism in in vivo positron emission tomography (PET) scans with normal and fasted rats. METHODS: Racemic [3-11C]alanine obtained from 11C-methylation of a precursor and deprotection was reacted with an enzyme mixture consisting of alanine racemase, d-amino acid oxidase, catalase, and lactate dehydrogenase to yield l-[3-11C]lactate via [3-11C]pyruvate. The optical purity was measured by HPLC. Radioactive chemical forms in the arterial blood of Sprague Dawley rats with or without insulin pretreatment were evaluated by HPLC 10 min after bolus intravenous injection of l-[3-11C]lactate. PET scans were performed on normal and fasted rats administered with l-[3-11C]lactate. RESULTS: l-[3-11C]Lactate was synthesized within 50 min and had decay corrected radiochemical yield, radiochemical purity, and optical purity of 13.4%, >95%, and >99%, respectively. The blood radioactivity peaked immediately after l-[3-11C]lactate injection, rapidly decreased to the minimum value within 90 s, and slowly cleared thereafter. HPLC analysis of blood samples revealed the presence of [11C]glucose (78.9%) and l-[3-11C]lactate (12.1%) 10 min after administration of l-[3-11C]lactate. Insulin pretreatment partly inhibited glyconeogenesis conversion leading to 55.4% as [11C]glucose and 38.9% as l-[3-11C]lactate simultaneously. PET analysis showed a higher SUV in the brain tissue of fasted rats relative to non-fasted rats. CONCLUSIONS: We successfully synthesized l-[3-11C]lactate in a one-pot enzymatic synthetic procedure and showed rapid metabolic conversion of l-[3-11C]lactate to [11C]glucose in the blood. PET analysis of l-[3-11C]lactate indicated the possible presence of active lactate usage in rat brains in vivo.


Assuntos
Encéfalo/metabolismo , Radioisótopos de Carbono , Enzimas/metabolismo , Ácido Láctico/síntese química , Ácido Láctico/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Técnicas de Química Sintética , Ácido Láctico/farmacocinética , Masculino , Tomografia por Emissão de Pósitrons , Radioquímica , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
9.
Int J Biol Macromol ; 118(Pt A): 932-937, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29966670

RESUMO

In present study, HEP was successfully encapsulated into the Poly (lactic-coglycolicacid) (PLGA) to constitute the HEP-PLGA. The effects of three independent factors (the proper range of ratio of organic phase (o) to internal water phase (w1) (X1), ratio of external water phase (w2) to the primary emulsion (PE) (X2), and the concentration of PLGA (X3) on the extraction yield of encapsulation efficiency (EE) from the HEP was optimized using response surface methodology. The optimal extraction conditions for HEP-PLGA were determined as follows: X1: 8:1, X2: 7:1 and X3: 20 mg·mL-1. Under these optimal conditions, the mean experimental EE 90.86 ±â€¯0.576% was corresponded well with the predicted value of 91.81%. In addition, to investigate the transport properties of HEP and HEP-PLGA using a Caco-2 cell monolayer, and study the roles of the efflux transporters (P-gp) during the transport process. These results suggested that HEP can be absorbed more efficiently when encapsulated within the PLGA. These findings highlight the potential to the application of HEP in the formulation of functional foods. These results provide strategies in designing high absorbed polysaccharides with bioactive benefits.


Assuntos
Basidiomycota/química , Polissacarídeos Fúngicos , Ácido Láctico , Nanopartículas/química , Ácido Poliglicólico , Células CACO-2 , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/farmacocinética , Polissacarídeos Fúngicos/farmacologia , Humanos , Ácido Láctico/química , Ácido Láctico/farmacocinética , Ácido Láctico/farmacologia , Ácido Poliglicólico/química , Ácido Poliglicólico/farmacocinética , Ácido Poliglicólico/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
10.
Int J Pharm ; 547(1-2): 10-23, 2018 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-29751140

RESUMO

Resistance to antiepileptic drugs (AEDs) is a major clinical problem. The overexpression of P-glycoprotein (Pgp), one of the main transporters limiting the entry of xenobiotics into the brain, is among the factors contributing to the AED resistance. Presently, there is no consensus on the interaction of carbamazepine (CBZ) with the Pgp. This study investigates the effect of the Pgp inhibitor verapamil on the anticonvulsant effect of CBZ and its nanoparticulate formulation in the rat model of isoniazid-induced epilepsy. Verapamil significantly increased the anticonvulsant effect of CBZ and reduced its effective dose by at least 30% (from 30 mg/kg to 20 mg/kg). Binding of carbamazepine to the poloxamer 188-coated PLGA nanoparticles enabled a 30-fold increase of its anticonvulsive effect, as compared to the free drug. The inhibition of Pgp did not influence the effectivity of carbamazepine encapsulated in nanoparticles.


Assuntos
Anticonvulsivantes/administração & dosagem , Carbamazepina/administração & dosagem , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Nanopartículas/administração & dosagem , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Animais , Anticonvulsivantes/química , Anticonvulsivantes/farmacocinética , Anticonvulsivantes/uso terapêutico , Encéfalo/fisiopatologia , Carbamazepina/química , Carbamazepina/farmacocinética , Carbamazepina/uso terapêutico , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos , Epilepsia Resistente a Medicamentos/induzido quimicamente , Epilepsia Resistente a Medicamentos/fisiopatologia , Eletrocorticografia , Isoniazida , Ácido Láctico/administração & dosagem , Ácido Láctico/química , Ácido Láctico/farmacocinética , Ácido Láctico/uso terapêutico , Masculino , Nanopartículas/química , Nanopartículas/uso terapêutico , Poloxâmero/administração & dosagem , Poloxâmero/química , Poloxâmero/farmacocinética , Poloxâmero/uso terapêutico , Ácido Poliglicólico/administração & dosagem , Ácido Poliglicólico/química , Ácido Poliglicólico/farmacocinética , Ácido Poliglicólico/uso terapêutico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos Wistar , Verapamil/farmacologia
11.
Int J Biol Macromol ; 116: 648-663, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29723623

RESUMO

PURPOSE: Enhancing the ocular hypotensive effect of forskolin (FK) by means of biodegradable chitosan (CS) coated poly lactic-co-glycolic acid (PLGA) nanoparticles (NP's). METHODS: One step emulsion-sonication process was employed for the formulation of CS-PLGA NP's with optimization being carried out by employing a four factor four level Box Behnken Design. The physical and spectral characterization, drug release, permeation, confocal and ocular tolerance studies (ex-vivo &in vivo) were performed. The corneal retention was assessed by gamma scintigraphic analysis and dexamethasone induced glaucamotous rabbit's intraocular pressure (IOP) was measured by means of Schiotz tonometer. RESULTS AND DISCUSSION: Particle size of optimized CS-PLGA NP's was found as 201.56 ±â€¯10.92 nm with a good PDI and positive zeta potential value. Entrapment efficiency and drug loading were found to be 72.32 ±â€¯1.12% and 28.39 ±â€¯1.67% respectively. Spectral characterization confirmed the purity and encapsulation of the drug within polymeric system. Sustained drug release and enhanced permeation profile was observed with maximum depth penetration. Ocular tolerance studies explicated its safe use. Scintigraphy studies indicated longer retention of CS-PLGA NP's while increased effectiveness after single instillation in reducing the intraocular pressure was observed. CONCLUSION: CS-PLGA-NP's could be successfully formulated and are an excellent vehicle for FK in ocular delivery.


Assuntos
Quitosana , Colforsina/efeitos adversos , Córnea/metabolismo , Dexametasona , Portadores de Fármacos , Ácido Láctico , Nanopartículas , Hipotensão Ocular , Ácido Poliglicólico , Animais , Linhagem Celular , Quitosana/química , Quitosana/farmacocinética , Quitosana/farmacologia , Colforsina/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Dexametasona/química , Dexametasona/farmacocinética , Dexametasona/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Cabras , Ácido Láctico/química , Ácido Láctico/farmacocinética , Ácido Láctico/farmacologia , Nanopartículas/química , Nanopartículas/uso terapêutico , Hipotensão Ocular/induzido quimicamente , Hipotensão Ocular/tratamento farmacológico , Hipotensão Ocular/metabolismo , Ácido Poliglicólico/química , Ácido Poliglicólico/farmacocinética , Ácido Poliglicólico/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Coelhos
12.
Drug Des Devel Ther ; 12: 711-719, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29670329

RESUMO

BACKGROUND: Norquetiapine (N-desalkyl quetiapine, NQ) is an active metabolite of quetiapine with stable pharmacokinetic and pharmacological properties. However, its short half-life is a drawback for clinical applications, and long-acting formulations are required. PURPOSE: The objectives of this study were to prepare improved entrapment efficiency NQ freebase microspheres by the solvent evaporation method with poly(d,l-lactic-co-glycolic acid) (PLGA) as a release modulator and to evaluate their physicochemical and in vitro/in vivo release properties. METHODS: NQ freebase PLGA (1:5 w/w) formulations were prepared by the oil-in-water (o/w) emulsion-solvent evaporation method. A solution of the drug and PLGA in 9:1 v/v dichloromethane:ethanol was mixed with 0.2% polyvinyl alcohol and homogenized at 2,800 rpm. The emulsion was stirred for 3 h to dilute and evaporate the solvent. After that, the resulting product was freeze-dried. Drug-loading capacity was measured by the validated RP-HPLC method. The surface morphology of the microspheres was observed by scanning electron microscopy (SEM), and the physicochemical properties were evaluated by differential scanning calorimetry, powder X-ray diffraction, and Fourier-transform infrared spectroscopy particle size distribution. The in vitro dissolution test was performed using a rotary shaking bath at 37°C, with constant shaking at 50 rpm in sink condition. RESULTS: The NQ freebase microspheres prepared by o/w emulsion-solvent evaporation showed over 30% efficiency. NQ was confirmed to be amorphous in the microspheres by powder X-ray diffraction and differential scanning calorimetry. Special chemical interaction in the microspheres was not observed by FT-IR. The in vitro dissolution test demonstrated that the prepared microspheres' release properties were maintained for more than 20 days. The in vivo test also confirmed that the particles' long acting properties were maintained. Therefore, good in vitro-in vivo correlation was established. CONCLUSION: In this study, NQ freebase-PLGA microspheres showed potential for the treatment of schizophrenia for long-periods.


Assuntos
Dibenzotiazepinas/farmacocinética , Ácido Láctico/farmacocinética , Microesferas , Ácido Poliglicólico/farmacocinética , Animais , Dibenzotiazepinas/administração & dosagem , Dibenzotiazepinas/química , Ácido Láctico/administração & dosagem , Ácido Láctico/química , Tamanho da Partícula , Ácido Poliglicólico/administração & dosagem , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Ratos Sprague-Dawley , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
13.
Eur J Pharm Sci ; 118: 24-31, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29555501

RESUMO

For patient convenience, sustained release Adefovir Poly-d,l-lactic-co-glycolic acid (PLGA) microspheres were formulated to relieve the daily use of the drug which is a problem for patients treated from chronic hepatitis-B. PLGA microspheres were prepared and characterized by entrapment efficiency, particle size distribution and scanning electron microscopy (SEM). In-vitro release and in-vivo studies were carried out. Factors such as drug: polymer ratio, polymer viscosity and polymer lactide content were found to be important variables for the preparation of PLGA Adefovir microspheres. Fourier transform infrared (FTIR) analysis and differential scanning calorimetry (DSC) were performed to determine any drug-polymer interactions. One way analysis of variance (ANOVA) was employed to analyze the pharmacokinetic parameters after intramuscular injection of the pure drug and the selected PLGA microspheres into rats. FTIR and DSC revealed a significant interaction between the drug and the polymer. Reports of SEM before and after 1 and 24 h release showed that the microspheres had nonporous smooth surface even after 24 h release. The entrapment efficiency ranged between 55.83 and 86.95% and in-vitro release studies were continued for 16, 31 and 90 days. The pharmacokinetic parameters and statistical analysis showed a significant increase in the Tmax, AUC0-t and MRT, and a significant decrease in the Cmax of the tested formulation (p < 0.05). Results demonstrated that PLGA Adefovir microspheres could be used for long-term treatment of chronic hepatitis-B instead of the daily dose used by the patient.


Assuntos
Adenina/análogos & derivados , Antivirais/administração & dosagem , Sistemas de Liberação de Medicamentos , Ácido Láctico/administração & dosagem , Microesferas , Organofosfonatos/administração & dosagem , Ácido Poliglicólico/administração & dosagem , Adenina/administração & dosagem , Adenina/sangue , Adenina/química , Adenina/farmacocinética , Animais , Antivirais/sangue , Antivirais/química , Antivirais/farmacocinética , Liberação Controlada de Fármacos , Hepatite B Crônica/tratamento farmacológico , Ácido Láctico/química , Ácido Láctico/farmacocinética , Masculino , Organofosfonatos/sangue , Organofosfonatos/química , Organofosfonatos/farmacocinética , Tamanho da Partícula , Ácido Poliglicólico/química , Ácido Poliglicólico/farmacocinética , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos
14.
Nat Commun ; 9(1): 1208, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29572438

RESUMO

Lactate exchange between glycolytic and oxidative cancer cells is proposed to optimize tumor growth. Blocking lactate uptake through monocarboxylate transporter 1 (MCT1) represents an attractive therapeutic strategy but may stimulate glucose consumption by oxidative cancer cells. We report here that inhibition of mitochondrial pyruvate carrier (MPC) activity fulfils the tasks of blocking lactate use while preventing glucose oxidative metabolism. Using in vitro 13C-glucose and in vivo hyperpolarized 13C-pyruvate, we identify 7ACC2 as a potent inhibitor of mitochondrial pyruvate transport which consecutively blocks extracellular lactate uptake by promoting intracellular pyruvate accumulation. Also, while in spheroids MCT1 inhibition leads to cytostatic effects, MPC activity inhibition induces cytotoxic effects together with glycolysis stimulation and uncompensated inhibition of mitochondrial respiration. Hypoxia reduction obtained with 7ACC2 is further shown to sensitize tumor xenografts to radiotherapy. This study positions MPC as a control point for lactate metabolism and expands on the anticancer potential of MPC inhibition.


Assuntos
Ácido Láctico/farmacocinética , Mitocôndrias/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/fisiologia , Ácido Pirúvico/metabolismo , Simportadores/genética , Simportadores/fisiologia , Animais , Antineoplásicos/farmacologia , Transporte Biológico , Linhagem Celular Tumoral , Feminino , Inativação Gênica , Glucose/química , Glicólise/efeitos dos fármacos , Humanos , Transporte de Íons/efeitos dos fármacos , Ácido Láctico/química , Células MCF-7 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Musculares/genética , Proteínas Musculares/fisiologia , Transplante de Neoplasias , Oxigênio/química , RNA Interferente Pequeno/metabolismo , Radiossensibilizantes/farmacologia , Ratos , Tiofenos/química , Uracila/análogos & derivados , Uracila/química , Xenopus laevis
15.
J Magn Reson ; 290: 46-59, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29567434

RESUMO

Acceleration of dynamic 2D (T2 Mapping) and 3D hyperpolarized 13C MRI acquisitions using the balanced steady-state free precession sequence was achieved with a specialized reconstruction method, based on the combination of low rank plus sparse and local low rank reconstructions. Methods were validated using both retrospectively and prospectively undersampled in vivo data from normal rats and tumor-bearing mice. Four-fold acceleration of 1-2 mm isotropic 3D dynamic acquisitions with 2-5 s temporal resolution and two-fold acceleration of 0.25-1 mm2 2D dynamic acquisitions was achieved. This enabled visualization of the biodistribution of [2-13C]pyruvate, [1-13C]lactate, [13C, 15N2]urea, and HP001 within heart, kidneys, vasculature, and tumor, as well as calculation of high resolution T2 maps.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Animais , Simulação por Computador , Ácido Láctico/farmacocinética , Camundongos , Neoplasias Experimentais/diagnóstico por imagem , Ácido Pirúvico/farmacocinética , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Distribuição Tecidual , Ureia/farmacocinética
16.
Int J Pharm ; 542(1-2): 47-55, 2018 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-29501738

RESUMO

Oral administration of insulin increases patient comfort and could improve glycemic control thanks to the hepatic first passage. However, challenges remain. The current approach uses poly (d, lactic-co-glycolic) acid (PLGA) nanoparticles (NPs), an effective drug carrier system with a long acting profile. However, this system presents a bioavailability of less than 20% for insulin encapsulation. In this context, physico-chemical parameters like surface charge could play a critical role in NP uptake by the intestinal barrier. Therefore, we developed a simple method to modulate NP surface charge to test its impact on uptake in vitro and finally on NP efficiency in vivo. Various NPs were prepared in the presence (+) or absence (-) of polyvinyl alcohol (PVA), sodium dodecyl sulfate (SDS), and/or coated with chitosan chloride. In vitro internalization was tested using epithelial culture of Caco-2 or using a co-culture (Caco-2/RevHT29MTX) by flow cytometry. NPs were then administered by oral route using a pharmaceutical complex vector (100 or 250 UI/kg) in a diabetic rat model. SDS-NPs (-42 ±â€¯2 mV) were more negatively charged than -PVA-NPs (-22 ±â€¯1 mV) and chitosan-coated NPs were highly positively charged (56 ±â€¯2 mV) compared to +PVA particles (-2 ±â€¯1 mV), which were uncharged. In the Caco-2 model, NP internalization was significantly improved by using negatively charged NPs (SDS NPs) compared to using classical NPs (+PVA NPs) and chitosan-coated NPs. Finally, the efficacy of insulin SDS-NPs was demonstrated in vivo (100 or 250 UI insulin/kg) with a reduction of blood glucose levels in diabetic rats. Formulation of negatively charged NPs represents a promising approach to improve NP uptake and insulin bioavailability for oral delivery.


Assuntos
Portadores de Fármacos/administração & dosagem , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Nanopartículas/administração & dosagem , Dodecilsulfato de Sódio/administração & dosagem , Animais , Disponibilidade Biológica , Glicemia/análise , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/uso terapêutico , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/uso terapêutico , Insulina/química , Insulina/farmacocinética , Insulina/uso terapêutico , Ácido Láctico/administração & dosagem , Ácido Láctico/química , Ácido Láctico/farmacocinética , Ácido Láctico/uso terapêutico , Masculino , Nanopartículas/química , Nanopartículas/uso terapêutico , Ácido Poliglicólico/administração & dosagem , Ácido Poliglicólico/química , Ácido Poliglicólico/farmacocinética , Ácido Poliglicólico/uso terapêutico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos Wistar , Dodecilsulfato de Sódio/química , Dodecilsulfato de Sódio/farmacocinética , Dodecilsulfato de Sódio/uso terapêutico , Propriedades de Superfície
17.
Sci Rep ; 8(1): 2088, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29391429

RESUMO

The type 2 diabetic phenotype results from mixed effects of insulin deficiency and insulin resistance, but the relative contributions of these two distinct factors remain poorly characterized, as do the respective roles of the gluconeogenic organs. The purpose of this study was to investigate localized in vivo metabolic changes in liver and kidneys of contrasting models of diabetes mellitus (DM): streptozotocin (STZ)-treated wild-type Zucker rats (T1DM) and Zucker diabetic fatty (ZDF) rats (T2DM). Intermediary metabolism was probed using hyperpolarized (HP) [1-13C]pyruvate MRI of the liver and kidneys. These data were correlated with gene expression data for key mediators, assessed using rtPCR. Increased HP [1-13C]lactate was detected in both models, in association with elevated gluconeogenesis as reflected by increased expression of phosphoenolpyruvate carboxykinase. In contrast, HP [1-13C]alanine diverged between the two models, increasing in ZDF rats, while decreasing in the STZ-treated rats. The differences in liver alanine paralleled differences in key lipogenic mediators. Thus, HP [1-13C]alanine is a marker that can identify phenotypic differences in kidneys and liver of rats with T1DM vs. T2DM, non-invasively in vivo. This approach could provide a powerful diagnostic tool for characterizing tissue metabolic defects and responses to treatment in diabetic patients with ambiguous systemic manifestations.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Gluconeogênese , Resistência à Insulina , Insulina/deficiência , Lipogênese , Imageamento por Ressonância Magnética/métodos , Alanina/farmacocinética , Animais , Diabetes Mellitus Experimental/diagnóstico por imagem , Rim/diagnóstico por imagem , Rim/metabolismo , Ácido Láctico/farmacocinética , Fígado/diagnóstico por imagem , Fígado/metabolismo , Masculino , Piruvatos/farmacocinética , Ratos , Ratos Zucker
18.
Liver Int ; 38(6): 1117-1127, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29345050

RESUMO

BACKGROUND & AIMS: Despite a number of studies addressing the pathophysiology of hepatic IRI, a gold standard test for early diagnosis and evaluation of IRI remains elusive. This study investigated the metabolic alterations in a rat model of hepatic IRI using the in vivo hyperpolarized ¹³C MRS and metabolic imaging. METHODS: Hyperpolarized 13 C MRS with IVIM-DWI was performed on the liver of 7 sham-operated control rats and 7 rats before and after hepatic IRI. RESULTS: The hepatic IRI-induced rats showed significantly higher ratios of [1-13 C] alanine/pyruvate, [1-13 C] alanine/tC, [1-13 C] lactate/pyruvate and [1-13 C] lactate/tC compared with both sham-operated controls and rats before IRI, whereas [1-13 C] pyruvate/tC ratio was decreased in IRI-induced rats. In IVIM-DWI study, apparent diffusion coefficient (ADC), f and D values in rats after hepatic IRI were significantly lower than those of rats before IRI and sham-operated controls. The levels of [1-13 C] alanine and [1-13 C] lactate were negatively correlated with ADC, f and D values, whereas the level of [1-13 C] pyruvate was positively correlated with these values. CONCLUSIONS: The levels of [1-13 C] alanine, [1-13 C] lactate and [1-13 C] pyruvate in conjunction with IVIM-DWI will be helpful to evaluate the hepatic IRI as well as these findings can be useful in understanding the biochemical mechanism associated with hepatic damage.


Assuntos
Imagem de Difusão por Ressonância Magnética , Hepatopatias/diagnóstico por imagem , Hepatopatias/metabolismo , Traumatismo por Reperfusão/diagnóstico por imagem , Traumatismo por Reperfusão/metabolismo , Animais , Peso Corporal , Isótopos de Carbono/farmacocinética , Modelos Animais de Doenças , Ácido Láctico/farmacocinética , Fígado/patologia , Masculino , Ratos , Ratos Sprague-Dawley
19.
Artif Cells Nanomed Biotechnol ; 46(2): 432-446, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28503995

RESUMO

Docetaxel (DTX), a cytotoxic taxane, is a poor water-soluble drug and exhibits less oral bioavailability. Current research investigates the effective transport, for DTX-loaded chitosan (CS)-coated-poly-lactide-co-glycolide (PLGA)-nanoparticles (NPs) (DTX-CS-PLGA-NPs) and DTX-PLGA-NPs as well as a novel third-generation P-gp inhibitor i.e. GF120918 (Elacridar), across intestinal epithelium with its successive uptake by the tumour cells in an in vitro model. The prepared NPs showed a spherical shape particle size i.e. <123.96 nm with polydispersity index (PDI) of <0.290 whereas for CS-coated NPs, the zeta potential was converted from negative to positive value along with a small modification in particle size distribution. The entrapment efficiency observed for DTX-CS-PLGA-NPs was 74.77%, whereas the in vitro release profile revealed an initial rapid DTX release followed by a sustained release pattern. For apparent permeability, DTX-CS-PLGA-NPs and DTX-PLGA-NPs along with GF120918 showed a five-fold (p < .01) and 2.2-fold enhancement, respectively, as observed in rat ileum permeation study. Similarly, for pharmacokinetic (PK) studies, higher oral bioavailability was observed from DTX-CS-PLGA-NPs (5.11-folds) and DTX-PLGA-NPs (3.29-folds) as compared with DTX-suspension (DTX-S). Cell uptake studies on A549 cells as performed for DTX-CS-PLGA-NPs and DTX-PLGA-NPs loaded with rhodamine 123 dye, exhibited enhanced uptake as compared with plain dye solution. The enhanced uptake for DTX-CS-PLGA-NPs and DTX-PLGA-NPs formulations in the presence of GF120918 was confirmed further with the help of confocal laser scanning microscopic images (CLSM). The potential of the third-generation novel P-gp inhibitor (GF120918) investigated for the effective delivery of DTX as well as investigation of permeability and uptake studies whereby a strong potential of GF120918 for effective oral delivery was established.


Assuntos
Portadores de Fármacos/química , Neoplasias Intestinais/tratamento farmacológico , Ácido Láctico/química , Terapia de Alvo Molecular , Nanopartículas/química , Ácido Poliglicólico/química , Taxoides/química , Células A549 , Animais , Transporte Biológico , Docetaxel , Portadores de Fármacos/metabolismo , Portadores de Fármacos/farmacocinética , Liberação Controlada de Fármacos , Humanos , Ácido Láctico/metabolismo , Ácido Láctico/farmacocinética , Permeabilidade , Ácido Poliglicólico/metabolismo , Ácido Poliglicólico/farmacocinética , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Propriedades de Superfície , Taxoides/uso terapêutico , Distribuição Tecidual
20.
Drug Deliv Transl Res ; 8(2): 329-341, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28417445

RESUMO

Curcumin has shown promising inhibitory activity against HER-2-positive tumor cells in vitro but suffers from poor oral bioavailability in vivo. Our lab has previously developed a polymeric microparticle formulation for sustained delivery of curcumin for chemoprevention. The goal of this study was to examine the anticancer efficacy of curcumin-loaded polymeric microparticles in a transgenic mouse model of HER-2 cancer, Balb-neuT. Microparticles were injected monthly, and mice were examined for tumor appearance and growth. Initiating curcumin microparticle treatment at 2 or 4 weeks of age delayed tumor appearance by 2-3 weeks compared to that in control mice that received empty microparticles. At 12 weeks, abnormal (lobular hyperplasia, carcinoma in situ, and invasive carcinoma) mammary tissue area was significantly decreased in curcumin microparticle-treated mice, as was CD-31 staining. Curcumin treatment decreased mammary VEGF levels significantly, which likely contributed to slower tumor formation. When compared to saline controls, however, blank microparticles accelerated tumorigenesis and curcumin treatment abrogated this effect, suggesting that PLGA microparticles enhance tumorigenesis in this model. PLGA microparticle administration was shown to be associated with higher plasma lactic acid levels and increased activation of NF-κΒ. The unexpected side effects of PLGA microparticles may be related to the high dose of the microparticles that was needed to achieve sustained curcumin levels in vivo. Approaches that can decrease the overall dose of curcumin (for example, by increasing its potency or reducing its clearance rate) may allow the development of sustained release curcumin dosage forms as a practical approach to cancer chemoprevention.


Assuntos
Anticarcinógenos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Curcumina/administração & dosagem , Portadores de Fármacos/administração & dosagem , Ácido Láctico/administração & dosagem , Ácido Poliglicólico/administração & dosagem , Animais , Anticarcinógenos/farmacocinética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Curcumina/farmacocinética , Citocinas/sangue , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética , Modelos Animais de Doenças , Portadores de Fármacos/farmacocinética , Feminino , Genes erbB-2 , Ácido Láctico/sangue , Ácido Láctico/farmacocinética , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , NF-kappa B/metabolismo , Neovascularização Patológica/tratamento farmacológico , Ácido Poliglicólico/farmacocinética , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...