Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34885764

RESUMO

Lactate and isoprene are two common monomers for the industrial production of polyesters and synthetic rubbers. The present study tested the co-production of D-lactate and isoprene by engineered Escherichia coli in microaerobic conditions. The deletion of alcohol dehydrogenase (adhE) and acetate kinase (ackA) genes, along with the supplementation with betaine, improved the co-production of lactate and isoprene from the substrates of glucose and mevalonate. In fed-batch studies, microaerobic fermentation significantly improved the isoprene concentration in fermentation outlet gas (average 0.021 g/L), compared with fermentation under aerobic conditions (average 0.0009 g/L). The final production of D-lactate and isoprene can reach 44.0 g/L and 3.2 g/L, respectively, through fed-batch microaerobic fermentation. Our study demonstrated a dual-phase production strategy in the co-production of isoprene (gas phase) and lactate (liquid phase). The increased concentration of gas-phase isoprene could benefit the downstream process and decrease the production cost to collect and purify the bio-isoprene from the fermentation outlet gas. The proposed microaerobic process can potentially be applied in the production of other volatile bioproducts to benefit the downstream purification process.


Assuntos
Escherichia coli/genética , Hemiterpenos/biossíntese , Ácido Láctico/biossíntese , Engenharia Metabólica , Aerobiose/genética , Butadienos/química , Escherichia coli/metabolismo , Fermentação , Hemiterpenos/química , Ácido Láctico/química , Ácido Mevalônico/química
2.
J Nat Prod ; 84(10): 2749-2754, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34597517

RESUMO

The mevalonate pathway is an upstream terpenoid biosynthetic route of terpenoids for providing the two five-carbon units, dimethylallyl diphosphate, and isopentenyl diphosphate. Recently, trans-anhydromevalonate-5-phosphate (tAHMP) was isolated as a new biosynthetic intermediate of the archaeal mevalonate pathway. In this study, we would like to report the first synthesis of tAHMP and its enzymatic transformation using one of the key enzymes, mevalonate-5-phosphate dehydratase from a hyperthermophilic archaeon, Aeropyrum pernix. Starting from methyl tetrolate, a Cu-catalyzed allylation provided an E-trisubstituted olefin in a stereoselective manner. The resulting E-olefin was transformed to tAHMP by cleavage of the olefin and phosphorylation. The structure of the synthetic tAHMP was unambiguously determined by NOESY analysis.


Assuntos
Aeropyrum/química , Ácido Mevalônico/química , Organofosfatos/química , Terpenos/química , Aeropyrum/enzimologia , Hemiterpenos , Hidroliases/metabolismo , Ácido Mevalônico/análogos & derivados , Estrutura Molecular , Compostos Organofosforados
3.
Med Hypotheses ; 144: 110128, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32758903

RESUMO

It has been proposed that a degraded immune system is (one of) the condition(s) that predispose certain subjects to fatal consequences from infection by SARS-CoV-2. It is unknown whether therapeutic regimens to which these patients may have been subjected to in the months/years preceding the infection could be immunocompromising. Statins are among the most widely prescribed cholesterol-lowering drugs. As competitive inhibitors of HMG-CoA-reductase, the key enzyme of the "mevalonate pathway" through which essential compounds, not only cholesterol, are synthesized, statins decrease the levels of cholesterol, and thus LDLs, as an innate defense mechanism, with controversial results in decreasing mortality from cardiovascular disease. Moreover, statins have pleiotropic, mostly deleterious effects on many cell types, including immune cells. In the attempt to decipher the enigma of SARS-CoV-2 infectivology, the hypothesis should be tested whether the population of subjects who succumbed to Covid-19 may have developed a compromised immunity at sub-clinical levels and have become more susceptible to fatal consequences from SARS-Cov-2 infection due to statin therapy.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/imunologia , Ácido Mevalônico/química , Oxirredução , Selenoproteínas/química , Colesterol/metabolismo , LDL-Colesterol/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Sistema Imunitário , Imunidade Inata , Inflamação , Lipoproteínas LDL/metabolismo , Modelos Teóricos , Estresse Oxidativo
4.
Org Biomol Chem ; 18(3): 518-529, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31854421

RESUMO

Mevalonate diphosphate decarboxylase (MDD) catalyses a crucial step of the mevalonate pathway via Mg2+-ATP-dependent phosphorylation and decarboxylation reactions to ultimately produce isopentenyl diphosphate, the precursor of isoprenoids, which is essential to bacterial functions and provides ideal building blocks for the biosynthesis of isopentenols. However, the metal ion(s) in MDD has not been unambiguously resolved, which limits the understanding of the catalytic mechanism and the exploitation of enzymes for the development of antibacterial therapies or the mevalonate metabolic pathway for the biosynthesis of biofuels. Here by analogizing structurally related kinases and molecular dynamics simulations, we constructed a model of the MDD-substrate-ATP-Mg2+ complex and proposed that MDD requires two Mg2+ ions for maintaining a catalytically active conformation. Subsequent QM/MM studies indicate that MDD catalyses the phosphorylation of its substrate mevalonate diphosphate (MVAPP) via a direct phosphorylation reaction, instead of the previously assumed catalytic base mechanism. The results here would shed light on the active conformation of MDD-related enzymes and their catalytic mechanisms and therefore be useful for developing novel antimicrobial therapies or reconstructing mevalonate metabolic pathways for the biosynthesis of biofuels.


Assuntos
Proteínas de Bactérias/química , Carboxiliases/química , Ácido Mevalônico/análogos & derivados , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Domínio Catalítico , Teoria da Densidade Funcional , Magnésio/química , Ácido Mevalônico/química , Modelos Químicos , Simulação de Dinâmica Molecular , Fosforilação , Staphylococcus epidermidis/enzimologia
5.
J Biotechnol ; 296: 69-74, 2019 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-30885657

RESUMO

Synthetic scaffold systems, which exhibit enzyme clustering effect, have been considered as an important parallel approach for metabolic flux control and pathway enhancement. Here, we described an improved DNA-based scaffold system for synthetic tri-enzymatic pathway in Escherichia coli. With plasmid DNA serving as scaffold and exogenous enzymes fused with rationally designed transcription activator-like effectors (TALEs), our approach successfully clustered three TALE-fused enzymes and significantly increased the production of a mevalonate-producing tri-enzymatic pathway with the optimized scaffold structure and plasmid copy number. These results further suggested the scalability and robustness of the TALE-based scaffold system, and we can assume that it can be used on numerous multi-enzyme metabolic pathways due to its programmable features.


Assuntos
DNA/genética , Engenharia Metabólica , Redes e Vias Metabólicas/genética , Efetores Semelhantes a Ativadores de Transcrição/química , DNA/química , Escherichia coli/genética , Ácido Mevalônico/química , Ácido Mevalônico/metabolismo , Plasmídeos/genética , Efetores Semelhantes a Ativadores de Transcrição/genética
6.
Org Biomol Chem ; 17(9): 2423-2431, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30735219

RESUMO

Mevalonate Kinase (MVK) catalyses the ATP-Mg2+ mediated phosphate transfer of mevalonate to produce mevalonate 5-phosphate and is a key kinase in the mevalonate pathway in the biosynthesis of isopentenyl diphosphate, the precursor of isoprenoid-based biofuels. However, the crystal structure in complex with the native substrate mevalonate, ATP and Mg2+ has not been resolved, which has limited the understanding of its reaction mechanism and therefore its application in the production of isoprenoid-based biofuels. Here using molecular docking, molecular dynamics (MD) simulations and a hybrid QM/MM study, we revisited the location of Mg2+ resolved in the crystal structure of MVK and determined a catalytically competent MVK structure in complex with the native substrate mevalonate and ATP. We demonstrated that significant conformational change on a flexible loop connecting the α6 and α7 helix is induced by the substrate binding. Further, we found that Asp204 is coordinated to the Mg2+ ion. Arg241 plays a crucial role in organizing the triphosphoryl tail of ATP for in-line phosphate transfer and stabilizing the negative charge that accumulates at the ß,γ-bridging oxygen of ATP upon bond cleavage. Remarkably, we revealed that the phosphorylation of mevalonate catalyzed by MVK occurs via a direct phosphorylation mechanism, instead of the conventionally postulated catalytic base mechanism. The catalytically competent complex structure of MVK as well as the mechanism of reaction will pave the way for the rational engineering of MVK to exploit its applications in the production of biofuels.


Assuntos
Ácido Mevalônico/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Animais , Magnésio/química , Magnésio/metabolismo , Ácido Mevalônico/química , Simulação de Acoplamento Molecular , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/química , Ligação Proteica , Conformação Proteica , Conformação Proteica em alfa-Hélice , Teoria Quântica , Ratos
7.
PLoS One ; 13(12): e0208419, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30521590

RESUMO

Mevalonate kinase (MK) is a key enzyme of the mevalonate pathway, which produces the biosynthetic precursors for steroids, including cholesterol, and isoprenoids, the largest class of natural products. Currently available crystal structures of MK from different organisms depict the enzyme in its unbound, substrate-bound, and inhibitor-bound forms; however, until now no structure has yet been determined of MK bound to its product, 5-phosphomevalonate. Here, we present crystal structures of mevalonate-bound and 5-phosphomevalonate-bound MK from Methanosarcina mazei (MmMK), a methanogenic archaeon. In contrast to the prior structure of a eukaryotic MK bound with mevalonate, we find a striking lack of direct interactions between this archaeal MK and its substrate. Further, these two MmMK structures join the prior structure of the apoenzyme to complete the first suite of structural snapshots that depict unbound, substrate-bound, and product-bound forms of the same MK. With this collection of structures, we now provide additional insight into the catalytic mechanism of this biologically essential enzyme.


Assuntos
Methanosarcina/enzimologia , Ácido Mevalônico/análogos & derivados , Ácido Mevalônico/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sítios de Ligação , Catálise , Clonagem Molecular , Cristalografia por Raios X , Methanosarcina/química , Methanosarcina/genética , Ácido Mevalônico/química , Modelos Moleculares , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Ligação Proteica , Conformação Proteica , Multimerização Proteica
8.
BMC Plant Biol ; 18(1): 230, 2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30314459

RESUMO

BACKGROUND: Neem tree serves as a cornucopia for triterpenoids called limonoids that are of profound interest to humans due to their diverse biological activities. However, the biosynthetic pathway that plant employs for the production of limonoids remains unexplored for this wonder tree. RESULTS: Herein, we report the tracing of limonoid biosynthetic pathway through feeding experiments using 13C isotopologues of glucose in neem cell suspension. Growth and development specific limonoid spectrum of neem seedling and time dependent limonoid biosynthetic characteristics of cell lines were established. Further to understand the role of mevalonic acid (MVA) and methylerythritol phosphate (MEP) pathways in limonoid biosynthesis, Ultra Performance Liquid Chromatography (UPLC)- tandem mass spectrometry based structure-fragment relationship developed for limonoids and their isotopologues have been utilized. Analyses of labeled limonoid extract lead to the identification of signature isoprenoid units involved in azadirachtin and other limonoid biosynthesis, which are found to be formed through mevalonate pathway. This was further confirmed by treatment of cell suspension with mevinolin, a specific inhibitor for MVA pathway, which resulted in drastic decrease in limonoid levels whereas their biosynthesis was unaffected with fosmidomycin mediated plastidial methylerythritol 4-phosphate (MEP) pathway inhibition. This was also conspicuous, as the expression level of genes encoding for the rate-limiting enzyme of MVA pathway, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGR) was comparatively higher to that of deoxyxylulose-phosphate synthase (DXS) of MEP pathway in different tissues and also in the in vitro grown cells. Thus, this study will give a comprehensive understanding of limonoid biosynthetic pathway with differential contribution of MVA and MEP pathways. CONCLUSIONS: Limonoid biosynthesis of neem tree and cell lines have been unraveled through comparative quantification of limonoids with that of neem tree and through 13C limonoid isotopologues analysis. The undifferentiated cell lines of neem suspension produced a spectrum of C-seco limonoids, similar to parental tissue, kernel. Azadirachtin, a C-seco limonoid is produced in young tender leaves of plant whereas in the hard mature leaves of tree, ring intact limonoid nimocinol accumulates in high level. Furthermore, mevalonate pathway exclusively contributes for isoprene units of limonoids as evidenced through stable isotope labeling and no complementation of MEP pathway was observed with mevalonate pathway dysfunction, using chemical inhibitors.


Assuntos
Azadirachta/metabolismo , Vias Biossintéticas , Limoninas/biossíntese , Ácido Mevalônico/metabolismo , Terpenos/metabolismo , Azadirachta/química , Células Cultivadas , Eritritol/análogos & derivados , Marcação por Isótopo , Limoninas/química , Limoninas/metabolismo , Ácido Mevalônico/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Plântula/química , Plântula/metabolismo , Fosfatos Açúcares , Terpenos/química
10.
Chembiochem ; 18(23): 2358-2365, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-28944564

RESUMO

Analysis of the volatile terpenes produced by seven fungal strains of the genus Trichoderma by use of a closed-loop stripping apparatus (CLSA) revealed a common production of harzianone, a bioactive, structurally unique diterpenoid consisting of a fused tetracyclic 4,7,5,6-membered ring system. The terpene cyclization mechanism was studied by feeding experiments using selectively 13 C- and 2 H-labeled synthetic mevalonolactone isotopologues, followed by analysis of the incorporation patterns by 13 C NMR spectroscopy and GC/MS. The structure of harzianone was further supported from a 13 C,13 C COSY experiment of the in-vivo-generated fully 13 C-labeled diterpene.


Assuntos
Diterpenos/metabolismo , Trichoderma/metabolismo , Isótopos de Carbono/química , Ciclização , Diterpenos/química , Cromatografia Gasosa-Espectrometria de Massas , Marcação por Isótopo , Espectroscopia de Ressonância Magnética , Ácido Mevalônico/análogos & derivados , Ácido Mevalônico/síntese química , Ácido Mevalônico/química , Conformação Molecular , Estereoisomerismo , Terpenos/química , Terpenos/metabolismo , Trichoderma/química , Trítio/química
11.
J Biotechnol ; 259: 46-49, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-28842180

RESUMO

Mevalonate (MVA) is a key compound of living organisms including bacteria, plants, and humans. MVA and mevalonolactone (MVL), a lactonized form of MVA, are important for pharmaceutical, cosmeceutical, and biotechnological applications. Although (R, S)-MVA with 50% enantiomeric purity is mainly produced by chemical synthesis, recently, microbial fermentation processes for MVA production have been considered as an alternative to the chemical synthesis because of high enantiomeric purity [(R)-MVA] and high titer. In the present study, bio-MVA produced by a fermentative process was decolorized by a charcoal-based method and then chemically transformed into bio-MVL without byproducts by means of phosphoric acid as an acid catalyst. The final bio-MVL was (R)-MVL with over 99% enantiomeric purity according to 1H NMR analysis.


Assuntos
Ácido Mevalônico/análogos & derivados , Ácido Mevalônico/isolamento & purificação , Ácido Mevalônico/metabolismo , Acetatos , Reatores Biológicos , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Engenharia Metabólica , Ácido Mevalônico/química , Ácidos Fosfóricos , Estereoisomerismo
12.
Plant Physiol ; 174(2): 857-874, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28385729

RESUMO

The cooperation of the mevalonate (MVA) and methylerythritol phosphate (MEP) pathways, operating in parallel in plants to generate isoprenoid precursors, has been studied extensively. Elucidation of the isoprenoid metabolic pathways is indispensable for the rational design of plant and microbial systems for the production of industrially valuable terpenoids. Here, we describe a new method, based on numerical modeling of mass spectra of metabolically labeled dolichols (Dols), designed to quantitatively follow the cooperation of MVA and MEP reprogrammed upon osmotic stress (sorbitol treatment) in Arabidopsis (Arabidopsis thaliana). The contribution of the MEP pathway increased significantly (reaching 100%) exclusively for the dominating Dols, while for long-chain Dols, the relative input of the MEP and MVA pathways remained unchanged, suggesting divergent sites of synthesis for dominating and long-chain Dols. The analysis of numerically modeled Dol mass spectra is a novel method to follow modulation of the concomitant activity of isoprenoid-generating pathways in plant cells; additionally, it suggests an exchange of isoprenoid intermediates between plastids and peroxisomes.


Assuntos
Arabidopsis/metabolismo , Dolicóis/química , Modelos Teóricos , Espectrometria de Massas por Ionização por Electrospray/métodos , Terpenos/metabolismo , Isótopos de Carbono , Cromatografia Gasosa/métodos , Dolicóis/metabolismo , Eritritol/análogos & derivados , Eritritol/metabolismo , Marcação por Isótopo/métodos , Redes e Vias Metabólicas , Ácido Mevalônico/análogos & derivados , Ácido Mevalônico/química , Ácido Mevalônico/metabolismo , Pressão Osmótica , Fitosteróis/biossíntese , Sorbitol/metabolismo , Fosfatos Açúcares/metabolismo , Xilulose/análogos & derivados , Xilulose/química
13.
Nat Commun ; 8: 14132, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28098152

RESUMO

Farnesyl pyrophosphate synthase (FPPS) is an enzyme of the mevalonate pathway and a well-established therapeutic target. Recent research has focused around a newly identified druggable pocket near the enzyme's active site. Pharmacological exploitation of this pocket is deemed promising; however, its natural biological function, if any, is yet unknown. Here we report that the product of FPPS, farnesyl pyrophosphate (FPP), can bind to this pocket and lock the enzyme in an inactive state. The Kd for this binding is 5-6 µM, within a catalytically relevant range. These results indicate that FPPS activity is sensitive to the product concentration. Kinetic analysis shows that the enzyme is inhibited through FPP accumulation. Having a specific physiological effector, FPPS is a bona fide allosteric enzyme. This allostery offers an exquisite mechanism for controlling prenyl pyrophosphate levels in vivo and thus contributes an additional layer of regulation to the mevalonate pathway.


Assuntos
Regulação Alostérica , Geraniltranstransferase/química , Geraniltranstransferase/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Sesquiterpenos/metabolismo , Domínio Catalítico , Humanos , Cinética , Ácido Mevalônico/química , Ácido Mevalônico/metabolismo , Fosfatos de Poli-Isoprenil/química , Sesquiterpenos/química
14.
J Biosci Bioeng ; 123(2): 177-182, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27570223

RESUMO

Mevalonate (MVA) is used to produce various useful products such as drugs, cosmetics and food additives. An MVA-producing strain of Escherichia coli (engineered) was constructed by introducing mvaES genes from Enterococcus faecalis. The engineered strain produced 1.84 mmol/gDCW/h yielding 22% (C-mol/C-mol) of MVA from glucose in the aerobic exponential growth phase. The mass balance analysis revealed that the MVA yield of the engineered strain was close to the upper limit at the biomass yield. Since MVA is synthesized from acetyl-CoA using NADPH as a cofactor, the production of MVA affects central metabolism in terms of carbon utilization and NADPH requirements. The reason for this highly efficient MVA production was investigated based on 13C-metabolic flux analysis. The estimated flux distributions revealed that the fluxes of acetate formation and the TCA cycle in the engineered strain were lower than those in the control strain. Although the oxidative pentose phosphate pathway is considered as the NADPH generating pathway in E. coli, no difference of the flux was observed between the control and engineered strains. The production/consumption balance of NADPH suggested that additional requirement of NADPH for MVA synthesis was obtained from the transhydrogenase reaction in the engineered strain. Comparison between the measured flux distribution and the ideal values for MVA production proposes a strategy for further engineering to improve the MVA production in E. coli.


Assuntos
Escherichia coli/metabolismo , Análise do Fluxo Metabólico , Ácido Mevalônico/farmacocinética , Acetilcoenzima A/metabolismo , Biomassa , Isótopos de Carbono/farmacocinética , Enterococcus faecalis/enzimologia , Enterococcus faecalis/genética , Escherichia coli/genética , Glucose/metabolismo , Ácido Mevalônico/química , Ácido Mevalônico/metabolismo , NADP/metabolismo , Organismos Geneticamente Modificados , Oxirredução , Via de Pentose Fosfato
15.
Rev Argent Microbiol ; 48(3): 259-263, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27567521

RESUMO

Endophytic fungi are fungi that colonize internal tissues of plants; several biologically active compounds have been isolated from these fungi. There are few studies of compounds isolated from endophytic fungi of Amazon plants. Thus, this study aimed the isolation and structural identification of ergosterol (1), ergosterol peroxide (2), mevalonolactone (3), cytochalasin B (4) and cytochalasin H (5) from Aspergillus sp. EJC 04, an endophytic fungus from Bauhinia guianensis. The cytochalasin B (4) and the diacetate derivative of cytochalasin B (4a) showed high lethality in the brine shrimp assay. This is the first occurrence of cytochalasins in Amazonian endophytic fungi from B. guianensis.


Assuntos
Artemia/efeitos dos fármacos , Aspergillus/química , Citocalasina B/toxicidade , Citocalasinas/toxicidade , Endófitos/química , Ergosterol/análogos & derivados , Fabaceae/microbiologia , Ácido Mevalônico/análogos & derivados , Acetilação , Animais , Argentina , Aspergillus/isolamento & purificação , Citocalasina B/química , Citocalasina B/isolamento & purificação , Citocalasinas/química , Citocalasinas/isolamento & purificação , Endófitos/isolamento & purificação , Ergosterol/química , Ergosterol/isolamento & purificação , Ergosterol/toxicidade , Dose Letal Mediana , Ácido Mevalônico/química , Ácido Mevalônico/isolamento & purificação , Ácido Mevalônico/toxicidade , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-Atividade
16.
Arch Biochem Biophys ; 604: 1-10, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27242325

RESUMO

In human osteoarthritic chondrocytes, the hyaluronan receptor CD44 undergoes proteolytic cleavage at the cell surface. CD44 cleavage is thought to require transit of CD44 into cholesterol-rich lipid rafts. The purpose of this study was to investigate whether statins exert a protective effect on articular chondrocytes due to diminution of cholesterol. Three model systems of chondrocytes were examined including human HCS-2/8 chondrosarcoma cells, human osteoarthritic chondrocytes and normal bovine articular chondrocytes. Treatment with IL-1ß + Oncostatin M resulted in a substantial increase in CD44 fragmentation in each of the three chondrocyte models. Pre-incubation with simvastatin prior to treatment with IL-1ß + Oncostatin M decreased the level of CD44 fragmentation, decreased the proportion of CD44 that transits into the lipid raft fractions, decreased ADAM10 activity and diminished the interaction between CD44 and ADAM10. In HCS-2/8 cells and bovine articular chondrocytes, fragmentation of CD44 was blocked by the knockdown of ADAM10. Inhibition of CD44 fragmentation by simvastatin also resulted in improved retention of pericellular matrix. Addition of cholesterol and farnesyl-pyrophosphate reversed the protective effects of simvastatin. Thus, the addition of simvastatin exerts positive effects on chondrocytes including reduced CD44 fragmentation and enhanced the retention of pericellular matrix.


Assuntos
Cartilagem Articular/patologia , Condrócitos/metabolismo , Receptores de Hialuronatos/metabolismo , Sinvastatina/química , Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Cartilagem Articular/efeitos dos fármacos , Bovinos , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Colesterol/química , Condrócitos/efeitos dos fármacos , Condrossarcoma/metabolismo , Regulação da Expressão Gênica , Humanos , Interleucina-1beta/metabolismo , Microdomínios da Membrana/química , Proteínas de Membrana/metabolismo , Ácido Mevalônico/química , Oncostatina M/química , Fosfatos de Poli-Isoprenil/química , RNA Interferente Pequeno/metabolismo , Sesquiterpenos/química
17.
Biotechnol Adv ; 34(5): 697-713, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26995109

RESUMO

The cytosol-localised mevalonic acid (MVA) pathway delivers the basic isoprene unit isopentenyl diphosphate (IPP). In higher plants, this central metabolic intermediate is also synthesised by the plastid-localised methylerythritol phosphate (MEP) pathway. Both MVA and MEP pathways conspire through exchange of intermediates and regulatory interactions. Products downstream of IPP such as phytosterols, carotenoids, vitamin E, artemisinin, tanshinone and paclitaxel demonstrate antioxidant, cholesterol-reducing, anti-ageing, anticancer, antimalarial, anti-inflammatory and antibacterial activities. Other isoprenoid precursors including isoprene, isoprenol, geraniol, farnesene and farnesol are economically valuable. An update on the MVA pathway and its interaction with the MEP pathway is presented, including the improvement in the production of phytosterols and other isoprenoid derivatives. Such attempts are for instance based on the bioengineering of microbes such as Escherichia coli and Saccharomyces cerevisiae, as well as plants. The function of relevant genes in the MVA pathway that can be utilised in metabolic engineering is reviewed and future perspectives are presented.


Assuntos
Butadienos , Hemiterpenos , Engenharia Metabólica , Ácido Mevalônico , Pentanos , Butadienos/análise , Butadienos/química , Butadienos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Hemiterpenos/análise , Hemiterpenos/química , Hemiterpenos/metabolismo , Redes e Vias Metabólicas , Ácido Mevalônico/análise , Ácido Mevalônico/química , Ácido Mevalônico/metabolismo , Compostos Organofosforados/análise , Compostos Organofosforados/química , Compostos Organofosforados/metabolismo , Pentanos/análise , Pentanos/química , Pentanos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
18.
Microb Cell Fact ; 15: 46, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26920948

RESUMO

BACKGROUND: Several plant diterpenes have important biological properties. Among them, forskolin is a complex labdane-type diterpene whose biological activity stems from its ability to activate adenylyl cyclase and to elevate intracellular cAMP levels. As such, it is used in the control of blood pressure, in the protection from congestive heart failure, and in weight-loss supplements. Chemical synthesis of forskolin is challenging, and production of forskolin in engineered microbes could provide a sustainable source. To this end, we set out to establish a platform for the production of forskolin and related epoxy-labdanes in yeast. RESULTS: Since the forskolin biosynthetic pathway has only been partially elucidated, and enzymes involved in terpene biosynthesis frequently exhibit relaxed substrate specificity, we explored the possibility of reconstructing missing steps of this pathway employing surrogate enzymes. Using CYP76AH24, a Salvia pomifera cytochrome P450 responsible for the oxidation of C-12 and C-11 of the abietane skeleton en route to carnosic acid, we were able to produce the forskolin precursor 11ß-hydroxy-manoyl oxide in yeast. To improve 11ß-hydroxy-manoyl oxide production, we undertook a chassis engineering effort involving the combination of three heterozygous yeast gene deletions (mct1/MCT1, whi2/WHI2, gdh1/GDH1) and obtained a 9.5-fold increase in 11ß-hydroxy-manoyl oxide titers, reaching 21.2 mg L(-1). CONCLUSIONS: In this study, we identify a surrogate enzyme for the specific and efficient hydroxylation of manoyl oxide at position C-11ß and establish a platform that will facilitate the synthesis of a broad range of tricyclic (8,13)-epoxy-labdanes in yeast. This platform forms a basis for the heterologous production of forskolin and will facilitate the elucidation of subsequent steps of forskolin biosynthesis. In addition, this study highlights the usefulness of using surrogate enzymes for the production of intermediates of complex biosynthetic pathways. The combination of heterozygous deletions and the improved yeast strain reported here will provide a useful tool for the production of numerous other isoprenoids.


Assuntos
Colforsina/metabolismo , Diterpenos/metabolismo , Saccharomyces cerevisiae/enzimologia , Abietanos/biossíntese , Abietanos/química , Alquil e Aril Transferases/metabolismo , Vias Biossintéticas , Colforsina/química , Diterpenos/química , Cinética , Ácido Mevalônico/química , Ácido Mevalônico/metabolismo , Oxirredução , Especificidade por Substrato , Terpenos/química , Terpenos/metabolismo
19.
PLoS One ; 11(1): e0146953, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26752526

RESUMO

The dried body of Mylabris cichorii is well-known Chinese traditional medicine. The sesquiterpenoid cantharidin, which is secreted mostly by adult male beetles, has recently been used as an anti-cancer drug. However, little is known about the mechanisms of cantharidin biosynthesis. Furthermore, there is currently no genomic or transcriptomic information for M. cichorii. In this study, we performed de novo assembly transcriptome of M. cichorii using the Illumina Hiseq2000. A single run produced 9.19 Gb of clean nucleotides comprising 29,247 sequences, including 23,739 annotated sequences (about 81%). We also constructed two expression profile libraries (20-25 day-old adult males and 20-25 day-old adult females) and discovered 2,465 significantly differentially-expressed genes. Putative genes and pathways involved in the biosynthesis of cantharidin were then characterized. We also found that cantharidin biosynthesis in M. cichorii might only occur via the mevalonate (MVA) pathway, not via the methylerythritol 4-phosphate/deoxyxylulose 5-phosphate (MEP/DOXP) pathway or a mixture of these. Besides, we considered that cantharidin biosynthesis might be related to the juvenile hormone (JH) biosynthesis or degradation. The results of transcriptome and expression profiling analysis provide a comprehensive sequence resource for M. cichorii that could facilitate the in-depth study of candidate genes and pathways involved in cantharidin biosynthesis, and may thus help to improve our understanding of the mechanisms of cantharidin biosynthesis in blister beetles.


Assuntos
Cantaridina/química , Besouros/metabolismo , Transcriptoma , Animais , DNA Complementar/metabolismo , Eritritol/análogos & derivados , Eritritol/química , Feminino , Perfilação da Expressão Gênica , Biblioteca Gênica , Genoma de Inseto , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Hormônios Juvenis/química , Masculino , Medicina Tradicional Chinesa , Ácido Mevalônico/química , Análise de Sequência de DNA , Xilose/análogos & derivados , Xilose/química
20.
PLoS One ; 10(11): e0143107, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26566274

RESUMO

BACKGROUND: Juvenile hormones (JH) regulate development and reproductive maturation in insects. JHs are synthesized through the mevalonate pathway (MVAP), an ancient metabolic pathway present in the three domains of life. Mevalonate kinase (MVK) is a key enzyme in the MVAP. MVK catalyzes the synthesis of phosphomevalonate (PM) by transferring the γ-phosphoryl group from ATP to the C5 hydroxyl oxygen of mevalonic acid (MA). Despite the importance of MVKs, these enzymes have been poorly characterized in insects. RESULTS: We functionally characterized an Aedes aegypti MVK (AaMVK) expressed in the corpora allata (CA) of the mosquito. AaMVK displayed its activity in the presence of metal cofactors. Different nucleotides were used by AaMVK as phosphoryl donors. In the presence of Mg(2+), the enzyme has higher affinity for MA than ATP. The activity of AaMVK was regulated by feedback inhibition from long-chain isoprenoids, such as geranyl diphosphate (GPP) and farnesyl diphosphate (FPP). CONCLUSIONS: AaMVK exhibited efficient inhibition by GPP and FPP (Ki less than 1 µM), and none by isopentenyl pyrophosphate (IPP) and dimethyl allyl pyrophosphate (DPPM). These results suggest that GPP and FPP might act as physiological inhibitors in the synthesis of isoprenoids in the CA of mosquitoes. Changing MVK activity can alter the flux of precursors and therefore regulate juvenile hormone biosynthesis.


Assuntos
Corpora Allata/enzimologia , Culicidae/enzimologia , Regulação Enzimológica da Expressão Gênica , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Terpenos/química , Trifosfato de Adenosina/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Catálise , Cátions , Difosfatos/química , Diterpenos/química , Feminino , Concentração de Íons de Hidrogênio , Hormônios Juvenis/metabolismo , Magnésio/química , Ácido Mevalônico/química , Dados de Sequência Molecular , Nucleotídeos/química , Oxigênio/química , Fosfatos de Poli-Isoprenil/química , Conformação Proteica , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos , Sesquiterpenos/química , Tórax/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...