Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.347
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38674101

RESUMO

Betulonic acid (B(O)A) is a pentacyclic lupane-type triterpenoid that widely exists in plants. There are scientific reports indicating anticancer activity of B(O)A, as well as the amides and esters of this triterpenoid. In the first step of the study, the synthesis of novel amide derivatives of B(O)A containing an acetylenic moiety was developed. Subsequently, the medium-soluble compounds (EB171 and EB173) and the parent compound, i.e., B(O)A, were investigated for potential cytotoxic activity against breast cancer (MCF-7 and MDA-MB-231) and melanoma (C32, COLO 829 and A375) cell lines, as well as normal human fibroblasts. Screening analysis using the WST-1 test was applied. Moreover, the lipophilicity and ADME parameters of the obtained derivatives were determined using experimental and in silico methods. The toxicity assay using zebrafish embryos and larvae was also performed. The study showed that the compound EB171 exhibited a significant cytotoxic effect on cancer cell lines: MCF-7, A-375 and COLO 829, while it did not affect the survival of normal cells. Moreover, studies on embryos and larvae showed no toxicity of EB171 in an animal model. Compared to EB171, the compound EB173 had a weaker effect on all tested cancer cell lines and produced less desirable effects against normal cells. The results of the WST-1 assay obtained for B(O)A revealed its strong cytotoxic activity on the examined cancer cell lines, but also on normal cells. In conclusion, this article describes new derivatives of betulonic acid-from synthesis to biological properties. The results allowed to indicate a promising direction for the functionalization of B(O)A to obtain derivatives with selective anticancer activity and low toxicity.


Assuntos
Amidas , Antineoplásicos , Ácido Betulínico , Ácido Oleanólico , Peixe-Zebra , Humanos , Animais , Amidas/química , Amidas/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacologia , Ácido Oleanólico/química , Ácido Oleanólico/síntese química , Ácido Oleanólico/farmacocinética , Linhagem Celular Tumoral , Simulação por Computador , Células MCF-7 , Sobrevivência Celular/efeitos dos fármacos
2.
Food Chem ; 449: 139254, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38583403

RESUMO

The study investigated Chenopodium berlandieri to analyze its oleanolic acid (OA) content. Response surface methodology with central composite design was used to improve saponin extraction, varying temperature, ethanol, and sample-to-solvent ratio. Best conditions (65 °C, 50% ethanol, 1:10 ratio) yielded 53.45 ± 0.63 mg/g of extract from Huauzontle seeds. Temperature linearly impacted extract yield, while temperature and ethanol influenced total saponin content. Hydrolyzing saponin-rich extracts produced OA-rich extracts. Characterization via HPLC-ELSD and LC-MS identified OA4 as the most concentrated OA saponin (5.54 ± 0.16 mg/g). OA alone reached 2.02 ± 0.12 mg/g. Acid hydrolysis increased OA content by up to 3.27×, highlighting the potential of hydrolyzed Huauzontle extracts as a natural ingredient for various industries due to enhanced OA content.


Assuntos
Chenopodium , Ácido Oleanólico , Extratos Vegetais , Saponinas , Ácido Oleanólico/química , Ácido Oleanólico/análise , Saponinas/química , Hidrólise , Extratos Vegetais/química , Chenopodium/química , Cromatografia Líquida de Alta Pressão , Sementes/química
3.
Chem Pharm Bull (Tokyo) ; 72(3): 330-335, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38522899

RESUMO

A 12-keto-type oleanolic acid derivative (4) has been identified as a potent anti-human immunodeficiency virus type-1 (HIV-1) compound that demonstrates synergistic effects with several types of HIV-1 neutralizing antibodies. In the present study, we used a common key synthetic intermediate to carry out the late-stage derivatization of an anti-HIV compound based on the chemical structure of a 12-keto-type oleanolic acid derivative. To execute this strategy, we designed a diketo-type oleanolic acid derivative (5) for chemoselective transformation, targeting the carboxy group and the hydroxyl group on the statine unit, as well as the 3-carbonyl group on the oleanolic acid unit, as orthogonal synthetic handles. We carried out four types of chemoselective transformations, leading to identification of the indole-type derivative (16) as a novel potent anti-HIV compound. In addition, further optimization of the ß-hydroxyl group on the statine unit provided the R-4-isobutyl γ-amino acid-type derivative (6), which exhibited potent anti-HIV activity comparable to that of 4 but with reduced cytotoxicity.


Assuntos
HIV-1 , Ácido Oleanólico , Ácido Oleanólico/química
4.
J Chem Ecol ; 50(3-4): 168-184, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38443712

RESUMO

Many plant species, particularly legumes, protect themselves with saponins. Previously, a correlation was observed between levels of oleanolic acid-derived saponins, such as hederagenin-derived compounds, in the legume Medicago truncatula and caterpillar deterrence. Using concentrations that reflect the foliar levels of hederagenin-type saponins, the sapogenin hederagenin was not toxic to 4th instar caterpillars of the cabbage looper Trichoplusia ni nor did it act as a feeding deterrent. Female caterpillars consumed more diet than males, presumably to obtain the additional nutrients required for oogenesis, and are, thus, exposed to higher hederagenin levels. When fed the hederagenin diet, male caterpillars expressed genes encoding trypsin-like proteins (LOC113500509, LOC113501951, LOC113501953, LOC113501966, LOC113501965, LOC113499659, LOC113501950, LOC113501948, LOC113501957, LOC113501962, LOC113497819, LOC113501946, LOC113503910) as well as stress-responsive (LOC113503484, LOC113505107) proteins and cytochrome P450 6B2-like (LOC113493761) at higher levels than females. In comparison, female caterpillars expressed higher levels of cytochrome P450 6B7-like (LOC113492289). Bioinformatic tools predict that cytochrome P450s could catalyze the oxygenation of hederagenin which would increase the hydrophilicity of the compound. Expression of a Major Facilitator Subfamily (MFS) transporter (LOC113492899) showed a hederagenin dose-dependent increase in gene expression suggesting that this transporter may be involved in sapogenin efflux. These sex-related differences in feeding and detoxification should be taken into consideration in insecticide evaluations to minimize pesticide resistance.


Assuntos
Mariposas , Ácido Oleanólico , Ácido Oleanólico/análogos & derivados , Saponinas , Transcriptoma , Animais , Feminino , Masculino , Saponinas/metabolismo , Saponinas/química , Ácido Oleanólico/metabolismo , Ácido Oleanólico/farmacologia , Ácido Oleanólico/química , Mariposas/efeitos dos fármacos , Mariposas/fisiologia , Mariposas/genética , Transcriptoma/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/genética , Caracteres Sexuais
5.
Int J Biol Macromol ; 266(Pt 1): 131211, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552688

RESUMO

Our study aimed at developing polymer micelles that possess redox sensitivity and excellent controlled release properties. 3,3'-dithiodipropionic acid (DTDPA, Abbreviation in synthetic polymers: SS) was introduced as ROS (Reactive oxygen species)response bond and connecting arm to couple hydroxyethyl starch (HES) with oleanolic acid (OA), resulting in the synthesis of four distinct grafting ratios of HES-SS-OA. FTIR (Fourier Transform infrared spectroscopy) and 1H NMR (1H Nuclear magnetic resonance spectra) were used to verify the triumphant combination of HES-SS-OA. Polymer micelles were found to encapsulate OA in an amorphous form, as indicated by the results of XRD (X-ray diffraction) and DSC (Differential scanning calorimetry). When the OA grafting rate on HES increased from 7.72 % to 11.75 %, the particle size decreased from 297.79 nm to 201.39 nm as the polymer micelles became compact due to enhanced hydrophobicity. In addition, the zeta potential changed from -16.42 mv to -25.78 mv, the PDI (polydispersity index) decreased from 0.3649 to 0.2435, and the critical micelle concentration (CMC) decreased from 0.0955 mg/mL to 0.0123 mg/mL. Results of erythrocyte hemolysis, cytotoxicity and cellular uptake illustrated that HES-SS-OA had excellent biocompatibility and minimal cytotoxicity for AML-12 cells. Disulfide bond breakage of HES-SS-OA in the presence of H2O2 and GSH confirmed the redox sensitivity of the HES-SS-OA micelles and their excellent controlled release properties for OA. These findings suggest that HES-SS-OA can be potentially used in the future as a healthcare drug and medicine for the prevention or adjuvant treatment of inflammation.


Assuntos
Derivados de Hidroxietil Amido , Micelas , Ácido Oleanólico , Oxirredução , Derivados de Hidroxietil Amido/química , Ácido Oleanólico/química , Polímeros/química , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Humanos , Hemólise/efeitos dos fármacos , Técnicas de Química Sintética , Animais , Tamanho da Partícula
6.
Bioorg Chem ; 145: 107230, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387397

RESUMO

Historically, Astragalus membranaceus Bunge has been used as a beneficial medicinal plant, particularly in the Asian traditional medical systems, for the treatment of various human diseases such as stomach ulcers, diarrhea, and respiratory issues associated with phlegm. In this study, a phytochemical characterization of the aerial parts of A. membranaceusled to the isolation of 29 oleanane-type triterpenoid saponins, including 11 new compounds named astraoleanosides E-P (6-9, 13, 14, 18-22), as well as 18 known ones. The structures of these compounds were elucidated using nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry. Among them, astraoleanoside H (9) and cloversaponin III (15) demonstrated the most potent ß-glucuronidase inhibitory activities, with IC50 values of 21.20 ± 0.75 and 9.05 ± 0.47 µM, respectively, compared to the positive control d-saccharic acid 1,4-lactone (IC50 = 20.62 ± 1.61 µM). Enzyme kinetics studies were then conducted to investigate the type of inhibition exhibited by these active compounds. In addition, the binding mechanism, key interactions, binding stability, and dynamic behavior of protein-ligand complexes were investigated through in silico approaches, such as molecular docking and molecular dynamics simulations. These findings highlight the promising potential of triterpenoid saponins from A. membranaceus as lead compounds for ß-glucuronidase inhibitors, offering new possibilities for the development of therapeutic agents targeting various diseases where ß-glucuronidase plays a crucial role.


Assuntos
Ácido Oleanólico , Ácido Oleanólico/análogos & derivados , Saponinas , Triterpenos , Humanos , Estrutura Molecular , Astragalus propinquus/química , Simulação de Acoplamento Molecular , Saponinas/química , Ácido Oleanólico/química , Componentes Aéreos da Planta/química , Triterpenos/farmacologia , Triterpenos/química
7.
J Asian Nat Prod Res ; 26(6): 739-746, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38329008

RESUMO

A new flavonolignan, sonyamandin (1), along with other known compounds was isolated from the aerial parts and seeds extracts of Silybum marianum (milk thistle) collected from Jordan. The known ones are ursolic acid (2), oleanolic acid (3), maslinic acid (4), oleic acid (5), ß-sitosterol (6), ß-, sitosteryl glucoside (7), apigenin (8), kaempferol-3-O-rhamnoside (9), apigenin-7-O-ß-D-glycoside (10), isosylibin A (11), isosylibin B (12), and silybin B (13). The absolute stereochemistry of 1 was confirmed by 2D NMR and CD analysis.


Assuntos
Flavonolignanos , Silybum marianum , Silybum marianum/química , Estrutura Molecular , Flavonolignanos/química , Flavonolignanos/isolamento & purificação , Jordânia , Sementes/química , Ressonância Magnética Nuclear Biomolecular , Sitosteroides/química , Ácido Oleanólico/química , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/isolamento & purificação , Apigenina/química , Triterpenos/química , Triterpenos/isolamento & purificação
8.
Steroids ; 205: 109381, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38325751

RESUMO

This investigation delves into the inhibitory capabilities of a specific set of triterpenoic acids on diverse isoforms of human carbonic anhydrase (hCA). Oleanolic acid (1), maslinic acid (2), betulinic acid (3), platanic acid (4), and asiatic acid (5) were chosen as representative triterpenoids for evaluation. The synthesis involved acetylation of parent triterpenoic acids 1-5, followed by sequential reactions with oxalyl chloride and benzylamine, de-acetylation of the amides, and subsequent treatment with sodium hydride and sulfamoyl chloride, leading to the formation of final compounds 21-25. Inhibition assays against hCAs I, II, VA, and IX demonstrated noteworthy outcomes. A derivative of betulinic acid, compound 23, exhibited a Ki value of 88.1 nM for hCA VA, and a derivative of asiatic acid, compound 25, displayed an even lower Ki value of 36.2 nM for the same isoform. Notably, the latter compound displayed enhanced inhibitory activity against hCA VA when compared to the benchmark compound acetazolamide (AAZ), which had a Ki value of 63.0 nM. Thus, this compound surpasses the inhibitory potency and isoform selectivity of the standard compound acetazolamide (AAZ). In conclusion, the research offers insights into the inhibitory potential of selected triterpenoic acids across diverse hCA isoforms, emphasizing the pivotal role of structural attributes in determining isoform-specific inhibitory activity. The identification of compound 25 as a robust and selective hCA VA inhibitor prompts further exploration of its therapeutic applications.


Assuntos
Acetazolamida , Anidrases Carbônicas , Triterpenos Pentacíclicos , Humanos , Acetazolamida/farmacologia , Ácido Betulínico , Anidrase Carbônica I/metabolismo , Anidrase Carbônica II/metabolismo , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Estrutura Molecular , Ácido Oleanólico/química , Ácido Oleanólico/metabolismo , Isoformas de Proteínas , Relação Estrutura-Atividade
9.
Steroids ; 201: 109332, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939980

RESUMO

An efficient protocol for the synthesis of novel methotrexate-betulonic acid hybrids with a (tert-butoxycarbonylamino)-3,6-dioxa-8-octanamine (Boc-DOOA) linkage has been developed. Reaction of N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-betulonamide with methotrexate resulted in a mixture of isomeric conjugates which were separated by column chromatography. Their structures and composition have been fully established by 1H NMR, 13C spectra, FAB mass spectrometry and elemental analysis. The identity of conjugates was confirmed by LC-MS data. Membranotropic properties of the new hybrids were assessed on the basis of their interactions with artificial lipid membranes by differential scanning calorimetry (DSC) method. The ability of the conjugates to penetrate Caco-2 cells is inferior to methotrexate. Probably, this is due to the increasing lipophilicity, the affinity of these hybrid molecules for the lipid bilayer increases, which is confirmed by experiments with artificial membranes.


Assuntos
Metotrexato , Ácido Oleanólico , Humanos , Células CACO-2 , Ácido Betulínico , Ácido Oleanólico/química , Membrana Celular , Membranas Artificiais
10.
Aging (Albany NY) ; 15(24): 15267-15286, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38127054

RESUMO

BACKGROUND: Oleanolic acid has important hepatoprotective effects and inhibits liver tissue carcinogenesis. The aim of this study was to investigate the mechanism of action of oleanolic acid in inhibiting liver injury and liver cancer. METHOD: In this study, we applied differential gene analysis and gene enrichment analysis to identify the targets of oleanolic acid for the treatment of liver injury. And this study also applied Cibersort and GSVA methods to investigate the targets of oleanolic acid in liver injury. Based on oleanolic acid targets, we explored the major targets and further explored the role of the major targets in liver cancer. This study used the oncoPredict and the TIDE algorithm to predict the effect of oleanolic acid on drug resistance. Finally, the binding effect of oleanolic acid to relevant targets was explored using molecular docking techniques. RESULT: In this study, oleanolic acid was found to inhibit liver injury and promote liver regeneration mainly by promoting elevated expression of HMOX1. Oleanolic acid can inhibit oxidative stress and promotes Ferroptosis in liver injury. In liver cancer, we identified that the main target of oleanolic acid is HMOX1 and HDAC1. And we determined that HMOX1 promotes Ferroptosis in liver cancer. This reduced the sensitivity of liver cancer to targeted therapies and immunotherapy. Molecular docking showed high binding of oleanolic acid to HDAC1 and HMOX1. CONCLUSIONS: Oleanolic acid is an antioxidant by promoting high expression of HMOX1 and promotes the development of Ferroptosis in liver cancer and liver injury.


Assuntos
Neoplasias Hepáticas , Ácido Oleanólico , Humanos , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Ácido Oleanólico/química , Simulação de Acoplamento Molecular , Transcriptoma , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo
11.
Int J Mol Sci ; 24(19)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37834307

RESUMO

Wound healing is a complex process to restore skin. Plant-derived bioactive compounds might be a source of substances for the treatment of wounds stalled in a non-resolving stage of wound healing. Oleanolic acid (OA), a pentacyclic triterpene, has shown favorable wound healing properties both in vitro and in vivo. Unfortunately, OA cannot be solubilized in aqueous media, and it needs to be helped by the use of dimethyl sulfoxide (DMSO). In this paper, we have shown that cyclodextrins (CDs) are a good alternative to DMSO as agents to deliver OA to cells, providing better features than DMSO. Cyclodextrins are natural macromolecules that show a unique tridimensional structure that can encapsulate a wide variety of hydrophobic compounds. We have studied the cyclodextrin-encapsulated form of OA with OA/DMSO, comparing their stability, biological properties for cell migration, and cell viability. In addition, detailed parameters related to cell migration and cytoskeletal reorganization have been measured and compared. Our results show that OA-encapsulateds compound exhibit several advantages when compared to non-encapsulated OA in terms of chemical stability, migration enhancement, and preservation of cell viability.


Assuntos
Ciclodextrinas , Ácido Oleanólico , Ciclodextrinas/farmacologia , Ciclodextrinas/química , Ácido Oleanólico/farmacologia , Ácido Oleanólico/química , Dimetil Sulfóxido , Pele , Movimento Celular , 2-Hidroxipropil-beta-Ciclodextrina
12.
Molecules ; 28(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37446727

RESUMO

Lysimachia foenum-graecum Hance (Primulaceae) is a medicinal plant used for cold, pain, ascariasis, etc., in China. Triterpenoid saponins have been found to be the main components of this genus. In this work, a pair of oleanane-type triterpenoid saponins with an unprecedented 4/5/6 fused tricyclic skeleton, foegraecumoside O (1) and foegraecumoside P (2) were isolated from the butanol fraction of the aerial parts of L. foenum-graecum. Their structures were determined using chemical methods and extensive spectroscopic analyses, along with quantum chemical calculations. Compound 2 displayed moderate cytotoxicity against HepG2, MGC-803, T24, NCI-H460, A549, and A549/CDDP (drug-resistant lung-cancer cell line) with IC50 at 12.4-19.2 µM in an MTT assay, comparing with the positive control doxorubicin, which had IC50 at 0.53-4.92 µM, but was inactive for A549/CDDP. Furthermore, a possible biosynthetic pathway for forming compounds 1 and 2 was proposed.


Assuntos
Ácido Oleanólico , Saponinas , Triterpenos , Estrutura Molecular , Lysimachia , Saponinas/farmacologia , Saponinas/química , Ácido Oleanólico/farmacologia , Ácido Oleanólico/química , Triterpenos/química
13.
Plant Biotechnol J ; 21(11): 2209-2223, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37449344

RESUMO

Lonicera macranthoides (LM) and L. japonica (LJ) are medicinal plants widely used in treating viral diseases, such as COVID-19. Although the two species are morphologically similar, their secondary metabolite profiles are significantly different. Here, metabolomics analysis showed that LM contained ~86.01 mg/g hederagenin-based saponins, 2000-fold higher than LJ. To gain molecular insights into its secondary metabolite production, a chromosome-level genome of LM was constructed, comprising 9 pseudo-chromosomes with 40 097 protein-encoding genes. Genome evolution analysis showed that LM and LJ were diverged 1.30-2.27 million years ago (MYA). The two plant species experienced a common whole-genome duplication event that occurred ∼53.9-55.2 MYA before speciation. Genes involved in hederagenin-based saponin biosynthesis were arranged in clusters on the chromosomes of LM and they were more highly expressed in LM than in LJ. Among them, oleanolic acid synthase (OAS) and UDP-glycosyltransferase 73 (UGT73) families were much more highly expressed in LM than in LJ. Specifically, LmOAS1 was identified to effectively catalyse the C-28 oxidation of ß-Amyrin to form oleanolic acid, the precursor of hederagenin-based saponin. LmUGT73P1 was identified to catalyse cauloside A to produce α-hederin. We further identified the key amino acid residues of LmOAS1 and LmUGT73P1 for their enzymatic activities. Additionally, comparing with collinear genes in LJ, LmOAS1 and LmUGT73P1 had an interesting phenomenon of 'neighbourhood replication' in LM genome. Collectively, the genomic resource and candidate genes reported here set the foundation to fully reveal the genome evolution of the Lonicera genus and hederagenin-based saponin biosynthetic pathway.


Assuntos
COVID-19 , Lonicera , Ácido Oleanólico , Plantas Medicinais , Saponinas , Humanos , Ácido Oleanólico/química , Ácido Oleanólico/metabolismo , Lonicera/genética , Lonicera/metabolismo , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Saponinas/genética , Saponinas/química , Genômica , Evolução Molecular
14.
Molecules ; 28(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298806

RESUMO

In the field of research on medicinal plants from the Armenian flora, the phytochemical study of two Scabiosa L. species, S. caucasica M. Bieb. and S. ochroleuca L. (Caprifoliaceae), has led to the isolation of five previously undescribed oleanolic acid glycosides from an aqueous-ethanolic extract of the roots: 3-O-α-L-rhamnopyranosyl-(1→3)-ß-D-glucopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→4)-ß-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid 28-O-ß-D-glucopyranosyl-(1→6)-ß-D-glucopyranosyl ester, 3-O-ß-D-xylopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→4)]-ß-D-glucopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→4)-ß-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid 28-O-ß-D-glucopyranosyl-(1→6)-ß-D-glucopyranosyl ester, 3-O-ß-D-xylopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→4)]-ß-D-glucopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→4)-ß-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid, 3-O-ß-D-xylopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→4)]-ß-D-xylopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→4)-ß-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid 28-O-ß-D-glucopyranosyl-(1→6)-ß-D-glucopyranosyl ester, 3-O-α-L-rhamnopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→4)-ß-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid 28-O-ß-D-glucopyranosyl-(1→6)-ß-D-glucopyranosyl ester. Their full structural elucidation required extensive 1D and 2D NMR experiments, as well as mass spectrometry analysis. For the biological activity of the bidesmosidic saponins and the monodesmosidic saponin, their cytotoxicity on a mouse colon cancer cell line (MC-38) was evaluated.


Assuntos
Caprifoliaceae , Dipsacaceae , Ácido Oleanólico , Saponinas , Triterpenos , Animais , Camundongos , Glicosídeos/farmacologia , Glicosídeos/química , Ácido Oleanólico/farmacologia , Ácido Oleanólico/química , Saponinas/química , Caprifoliaceae/química , Triterpenos/farmacologia , Triterpenos/química
15.
Eur J Med Chem ; 258: 115562, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37354741

RESUMO

The influenza pandemic remains a major public health challenge that endangers the lives of many vulnerable and immune-compromised individuals worldwide. The high infectivity and genetic variability of influenza virus make it particularly challenging to design effective drugs to inhibit the virus. In previous studies, we determined that oleanolic acid (OA) and its derivatives block interactions between influenza and host cells, thus endowing OA with anti-viral efficacy. Inspired by the role of cluster glycosides in the interactions between hemagglutinins (HA) and sialic acid receptors (SA), we designed and synthesized a series of OA nonamers via the CuAAC reaction, and evaluated their anti-viral activities in vitro. We determined that among these nonamers, compound 15 displayed the highest potency (IC50 = 5.23 µM), equivalent to the antiviral drug oseltamivir which is routinely prescribed for influenza A virus strain A/WSN/33 (H1N1). In addition, these compounds also displayed antiviral activity against influenza B. Mechanistic experiments indicated that OA nonamers can effectively target the influenza HA protein. This study collectively demonstrates that multivalent structure-activity binding strategy is an effective method for designing influenza virus inhibitors.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Ácido Oleanólico , Animais , Cães , Humanos , Influenza Humana/tratamento farmacológico , Ácido Oleanólico/farmacologia , Ácido Oleanólico/química , Células Madin Darby de Rim Canino , Antivirais/química
16.
J Pharm Biomed Anal ; 231: 115418, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37116317

RESUMO

The osteoinductive effect of crude and salt-processed Achyranthes bidentata is associated with the serum metabolites. Grey relationship analysis between the serum metabolites and osteoinductive effect will help to clarify the bioactive serum metabolites. First, an ultra-high performance liquid chromatography time-of-flight mass spectrometry method was used to develop serum metabolic fingerprint of rats after oral administration of crude and salt-processed Achyranthes bidentata. The MS1 and MS2 data of serum metabolites were scanned in the range of m/z 100-1500 and 50-1200, respectively. The chemical structures of the metabolites were thoroughly elucidated. Two prototypes and twelve metabolites have been identified. Second, osteoblasts were cultured with the drug-containing serum at different time points. The osteoinductive effect of crude and salt-processed Achyranthes bidentata was evaluated by detecting the proliferation rate and alkaline phosphatase activity of osteoblasts. Third, grey correlation analysis was utilized to elucidate the spectral-effect relationship between serum metabolic fingerprints and osteoinductive effect. Finally, the correlation coefficients of ten metabolites, i.e., oleanolic acid, poststerone-M1, chikusetsusaponin V-M1, oleanolic acid-M2, oleanolic acid-M4, spinacoside D-M1, chikusetsusaponin I-M1, betavulgaroside IV-M2, chikusetsusaponin IVa and achyranthoside IV-M1 were above 0.7. Collectively, our work will provide helpful knowledge for the future research on Achyranthes bidentata.


Assuntos
Achyranthes , Ácido Oleanólico , Ratos , Animais , Cromatografia Líquida de Alta Pressão/métodos , Ácido Oleanólico/química , Espectrometria de Massas , Metaboloma , Cloreto de Sódio/química
17.
Chem Biodivers ; 20(4): e202300093, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36869167

RESUMO

Five new triterpenoid glycosides, named campetelosides A-E (1-5), together with three known compounds, chikusetsusaponin IVa (6), umbellatoside B (7), and silvioside E (8) were isolated from the leaves of Camellia petelotii (Merr.) Sealy. Their chemical structures were determined by interpretations of HR-ESI-MS and NMR spectra. In addition, compounds 1-8 were evaluated for their α-glucosidase inhibitory effects. Compounds 1-3 significantly showed α-glucosidase inhibitory activity with IC50 values of 166.7±6.0, 45.9±2.6, and 395.3±10.5 µM, respectively, compared to that of the positive control, acarbose, with an IC50 value of 200.4±10.5 µM.


Assuntos
Camellia , Ácido Oleanólico , Saponinas , Triterpenos , Estrutura Molecular , alfa-Glucosidases , Triterpenos/farmacologia , Triterpenos/química , Camellia/química , Ácido Oleanólico/farmacologia , Ácido Oleanólico/química , Saponinas/farmacologia , Saponinas/química
18.
Molecules ; 28(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36770631

RESUMO

The purpose of this work was to illustrate the effect of processing with vinegar on saikosaponins of Bupleurum chinense DC. (BC) and the protective effects of saikosaponin A (SSA), saikosaponin b1 (SSb1), saikosaponin b2 (SSb2), and saikosaponin D (SSD) in lipopolysaccharide (LPS)-induced acute lung injury (ALI) mice. We comprehensively evaluated the anti-inflammatory effects and potential mechanisms of SSA, SSb1, SSb2, and SSD through an LPS-induced ALI model using intratracheal injection. The results showed that SSA, SSb1, SSb2, and SSD significantly decreased pulmonary edema; reduced the levels of IL-6, TNF-α, and IL-1ß in serum and lung tissues; alleviated pulmonary pathological damage; and decreased the levels of the IL-6, TNF-α, and IL-1ß genes and the expression of NF-κB/TLR4-related proteins. Interestingly, they were similar in structure, but SSb2 had a better anti-inflammatory effect at the same dose, according to a principal component analysis. These findings indicated that it may not have been comprehensive to only use SSA and SSD as indicators to evaluate the quality of BC, especially as the contents of SSb1 and SSb2 in vinegar-processed BC were significantly increased.


Assuntos
Lesão Pulmonar Aguda , Ácido Oleanólico , Saponinas , Animais , Camundongos , Lipopolissacarídeos/efeitos adversos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Ácido Acético , Interleucina-6 , Saponinas/farmacologia , Saponinas/química , Ácido Oleanólico/farmacologia , Ácido Oleanólico/química , NF-kappa B/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/farmacologia
19.
Nat Prod Res ; 37(8): 1292-1299, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34775891

RESUMO

Two new oleanane saponins, hedyocoronin A (1) and hedyocoronin B (2), were isolated from the aerial parts of Hedyotis coronaria (Kurz) Craib, Rubiaceae, collected at Da Oai district, Lam Dong province in Vietnam. Their chemical structures were elucidated by HR-MS, 1D and 2D-NMR spectra, along with the comparison with those reported in the literature. Compounds 1 and 2 showed weak cytotoxicity against KB and HeLa-S3 cancer cell lines with IC50 values of more than 54 µM.


Assuntos
Antineoplásicos Fitogênicos , Hedyotis , Ácido Oleanólico , Rubiaceae , Saponinas , Triterpenos , Saponinas/química , Hedyotis/química , Estrutura Molecular , Ácido Oleanólico/química , Componentes Aéreos da Planta/química , Antineoplásicos Fitogênicos/química , Triterpenos/química
20.
Bioorg Chem ; 129: 106203, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36265352

RESUMO

Farnesoid X receptor (FXR) ligands have been actively pursued to treat metabolic disorders, liver and bile diseases, among others. Starting from a widely occurring natural product, oleanolic acid (OA), we discovered potent and selective FXR modulator from the 12ß-oxygenated OA alkyl esters, with the assistance of molecular modeling. The representative compound 7b modulated some FXR downstream genes involved in glucose and lipid metabolism in cells, and significantly improved hyperglycemia in KKay fat mice fed with high fat diet, through the reduction of mRNA expression of gluconeogenesis genes PEPCK and G6Pase. This study provides a new series of selective FXR modulator, as well as the in vitro and in vivo evidence for their potential to improve hyperglycemia in diabetic mice through FXR antagonism.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hiperglicemia , Hipoglicemiantes , Ácido Oleanólico , Receptores Citoplasmáticos e Nucleares , Animais , Camundongos , Ácidos e Sais Biliares/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Ésteres/química , Ésteres/farmacologia , Ésteres/uso terapêutico , Hiperglicemia/tratamento farmacológico , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Ácido Oleanólico/química , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Gluconeogênese/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...