Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
1.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835228

RESUMO

There is growing need to increase the knowledge on the cannabinoid ligands in the treatment of overactive bladder. Among potential candidates, arachidonyl-2'-chloroethylamide (ACEA), a selective cannabinoid CB1 receptor agonist is proposed. The aim of this paper was to determine if ACEA, a selective cannabinoid CB1 receptor agonist, could reverse the effects of corticosterone (CORT), characteristic of depressive and bladder overactivity potential. The animals (48 female rats) were divided into four groups: I-control, II-received CORT, III-received ACEA, and IV-received the combination of CORT and ACEA. The conscious cystometry, forced swim test (FST), and locomotor activity measurements were performed 3 days after the last dose of ACEA, followed by ELISA measurements. In group IV, ACEA restored urodynamic parameters that were altered by CORT. CORT prolonged the immobility time in FST and the values were lowered by ACEA. ACEA normalized the expression of c-Fos in all the analyzed central micturition centers (group IV vs. group II). ACEA restored the CORT-induced changes in the biomarkers in urine (BDNF, NGF), bladder detrusor (VAChT, Rho kinase), bladder urothelium (CGRP, ATP, CRF, OCT-3, TRPV1), and hippocampus (TNF-α, IL-1ß and Il-6, CRF, IL-10, BDNF, NGF). In conclusion, ACEA was proven to reverse CORT-induced changes in both cystometric and biochemical parameters that are determinants of OAB/depression, which represents an example of an existing link between OAB and depression via cannabinoid receptors.


Assuntos
Ácidos Araquidônicos , Agonistas de Receptores de Canabinoides , Canabinoides , Receptor CB1 de Canabinoide , Bexiga Urinária Hiperativa , Animais , Feminino , Ratos , Fator Neurotrófico Derivado do Encéfalo/uso terapêutico , Agonistas de Receptores de Canabinoides/farmacologia , Agonistas de Receptores de Canabinoides/uso terapêutico , Canabinoides/uso terapêutico , Corticosterona , Ligantes , Ratos Wistar , Receptor CB1 de Canabinoide/agonistas , Bexiga Urinária Hiperativa/tratamento farmacológico , Ácidos Araquidônicos/farmacologia , Ácidos Araquidônicos/uso terapêutico
2.
Gene ; 846: 146856, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36067864

RESUMO

Dysregulation of lipid metabolism and diabetes are risk factors for nonalcoholic fatty liver disease (NAFLD), and the gut-liver axis and intestinal microbiome are known to be highly associated with the pathogenesis of this disease. In Japan, the traditional medicine daisaikoto (DST) is prescribed for individuals affected by hepatic dysfunction. Herein, we evaluated the therapeutic potential of DST for treating NAFLD through modification of the liver and stool metabolome and microbiome by using STAM mice as a model of NAFLD. STAM mice were fed a high-fat diet with or without 3 % DST for 3 weeks. Plasma and liver of STAM, STAM with DST, and C57BL/6J ("Normal") mice were collected at 9 weeks, and stools at 4, 6, and 9 weeks of age. The liver pathology, metabolome and stool microbiome were analyzed. DST ameliorated the NAFLD activity score of STAM mice and decreased the levels of several liver lipid mediators such as arachidonic acid and its derivatives. In normal mice, nine kinds of family accounted for 94.1 % of microbiome composition; the total percentage of these family was significantly decreased in STAM mice (45.6 %), and DST administration improved this imbalance in microbiome composition (65.2 %). In stool samples, DST increased ursodeoxycholic acid content and altered several amino acids, which were correlated with changes in the gut microbiome and liver metabolites. In summary, DST ameliorates NAFLD by decreasing arachidonic acid metabolism in the liver; this amelioration seems to be associated with crosstalk among components of the liver, intestinal environment, and microbiome.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Aminoácidos/metabolismo , Animais , Ácidos Araquidônicos/metabolismo , Ácidos Araquidônicos/farmacologia , Ácidos Araquidônicos/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal/fisiologia , Japão , Lipídeos/farmacologia , Fígado/metabolismo , Medicina Tradicional , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/patologia , Ácido Ursodesoxicólico/farmacologia
3.
Neurochem Res ; 47(5): 1226-1242, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35112235

RESUMO

In this research, the involvement of CB1 and TRPV1 receptors in the possible protective effects of anandamide were investigated in the kindling model of epilepsy. The basolateral amygdala of the rat brain was chosen to put stimulating electrodes. Semi-rapid kindling was induced by a repetitive sub-threshold stimulation for 5-9 consecutive days. There were seven groups, six of which were kindled and used for drug testing by intracerebroventricular (i.c.v.) microinjection. (i) Sham, (ii) control group received vehicles, (iii) anandamide (AEA; 100 ng/rat), (iv) capsazepine (TRPV1 antagonist; 100 ng/rat), (v) AM251 (CB1 antagonist; 100 ng/rat), (vi) AM251 + anandamide, and (vii) capsazepine + anandamide. The after-discharge duration, seizure duration, and stage five duration were measured in rats. Moreover, the expressions of the extracellular signal-regulated kinase (ERK) and the cAMP responsive element binding (CREB) proteins in the hippocampus were also studied. The anandamide-treated group showed a significant decrease in seizure scores, while no change was shown in seizure scores in the capsazepine- and AM251-treated groups compared with the control group. Co-administrations of either capsazepine + AEA or AM251 + AEA attenuated the protective effect of AEA against seizure. Furthermore, the group received AEA showed a decrease in the expressions of CREB and p-CREB possibly through the activation of the CB1 and TRPV1 receptors. Activation of CB1 and TRPV1 receptors might be involved in AEA anticonvulsant effect in kindling model of epilepsy. This effect could be due to suppression of CREB phosphorylation in hippocampal neurons.


Assuntos
Ácidos Araquidônicos , Epilepsia , Animais , Ácidos Araquidônicos/farmacologia , Ácidos Araquidônicos/uso terapêutico , Endocanabinoides/farmacologia , Endocanabinoides/uso terapêutico , Epilepsia/tratamento farmacológico , Alcamidas Poli-Insaturadas/farmacologia , Alcamidas Poli-Insaturadas/uso terapêutico , Ratos , Receptor CB1 de Canabinoide/metabolismo , Canais de Cátion TRPV/metabolismo
4.
Life Sci ; 293: 120279, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35032552

RESUMO

BACKGROUND: Curcumin is one of the compounds present in plants of the genus Curcuma sp., being very used not only as condiment but also with medicinal purposes. As an analgesic, papers highlight the efficacy of curcumin in the treatment of various types of pain. AIMS: In this study we evaluated the peripheral antinociceptive effect of curcumin and by which mechanisms this effect is induced. MAIN METHODS: The mice paw pressure test was used on animals which had increased pain sensitivity by intraplantar injection of carrageenan. All the drugs were administered in the right hind paw. KEY FINDINGS: Curcumin was administered to the right hind paw animals induced antinociceptive effect. Non -selective antagonist of opioid receptors naloxone reverted the antinociceptive effect induced by curcumin. Selective antagonists for µ, δ and κ opioid receptors clocinnamox, naltrindole and nor- binaltorphimine, respectively, reverted the antinociceptive effect induced by curcumin. Bestatin, enkephalinases inhibitor that degrade peptides opioids, did not change the nociceptive response. Selective antagonists for CB1 and CB2 cannabinoid receptors, AM251 and AM630, respectively, reversed the antinociceptive effect induced by curcumin. The MAFP inhibitor of the enzyme FAAH which breaks down anandamide, JZL184, enzyme inhibitor MAGL which breaks down the 2-AG, as well as the VDM11 anandamide reuptake inhibitor potentiated the antinociceptive effect of curcumin. SIGNIFICANCE: These results suggest that curcumin possibly peripheral antinociception induced by opioid and cannabinoid systems activation and possibly for endocannabinoids and opioids release.


Assuntos
Analgésicos/uso terapêutico , Agonistas de Receptores de Canabinoides/uso terapêutico , Curcumina/uso terapêutico , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Receptores Opioides/metabolismo , Analgésicos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Ácidos Araquidônicos/farmacologia , Ácidos Araquidônicos/uso terapêutico , Agonistas de Receptores de Canabinoides/farmacologia , Carragenina/toxicidade , Cinamatos/farmacologia , Curcumina/farmacologia , Relação Dose-Resposta a Droga , Endocanabinoides/farmacologia , Endocanabinoides/uso terapêutico , Hiperalgesia/induzido quimicamente , Masculino , Camundongos , Derivados da Morfina/farmacologia , Antagonistas de Entorpecentes/farmacologia , Dor/induzido quimicamente , Dor/tratamento farmacológico , Dor/metabolismo , Alcamidas Poli-Insaturadas/farmacologia , Alcamidas Poli-Insaturadas/uso terapêutico
5.
J Clin Pharm Ther ; 47(1): 33-37, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34263472

RESUMO

WHAT IS KNOWN AND OBJECTIVE: There is limited information on acceptability of solid dosage forms by young patients with neuromuscular disorders such as Duchenne muscular dystrophy (DMD). Capsule size selection and ability to swallow the NF-κB inhibitor edasalonexent were assessed in males 4-7 years of age with DMD enrolled in clinical trials for a new therapeutic. METHODS: The Phase 3 PolarisDMD randomized, double-blind, placebo-controlled trial enrolled 131 patients from 8 countries. The Phase 2 MoveDMD trial enrolled 31 patients in the United States. As part of enrolment criteria, these trials assessed the ability to swallow softgel 100 mg (~10 mm) or 250 mg (~15 mm) capsules formulated with a phosphatidylcholine-containing coating. Supportive strategies included pill-swallowing techniques and aids. RESULTS: Most (97%; 175/181) patients screened were able to swallow capsules. In Phase 2 and 3, respectively, 77% (24/31) and 61% (80/131) of enrolled patients selected the larger capsule and among those selecting the smaller capsule, most transitioned to the larger capsule. There were no obvious geographical differences in ability to swallow capsules and size selection was not correlated with age. Compliance was high (92%-98%) through 52 weeks of dosing with no discontinuations due to capsule burden. WHAT IS NEW AND CONCLUSION: Swallowing of capsules was not a barrier for drug administration in young patients with DMD. Capsule formulations may be an acceptable alternative to liquid formulations for children as young as 4 years of age.


Assuntos
Ácidos Araquidônicos/uso terapêutico , Deglutição/fisiologia , Distrofia Muscular de Duchenne/tratamento farmacológico , Salicilamidas/uso terapêutico , Ácidos Araquidônicos/administração & dosagem , Cápsulas , Criança , Pré-Escolar , Método Duplo-Cego , Humanos , Masculino , Preferência do Paciente , Salicilamidas/administração & dosagem
6.
Life Sci ; 288: 120191, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34856208

RESUMO

Vascular inflammation is one of the main activating stimuli of cardiovascular disease and its uncontrolled development may worsen the progression and prognosis of these pathologies. Therefore, the search for new therapeutic options to treat this condition is undoubtedly needed. In this regard, it may be better to repurpose endogenous anti-inflammatory compounds already known, in addition to synthesizing new compounds for therapeutic purposes. It is well known that vitamin D, anandamide, and melatonin are promising endogenous substances with powerful and wide-spread anti-inflammatory properties. Currently, the epigenetic mechanisms underlying these effects are often unknown. This review summarizes the potential epigenetic mechanisms by which vitamin D, anandamide, and melatonin attenuate vascular inflammation. This information could contribute to the improvement in the therapeutic management of multiple pathologies associated with blood vessel inflammation, through the pharmacological manipulation of new target sites that until now have not been addressed.


Assuntos
Ácidos Araquidônicos/uso terapêutico , Doenças Cardiovasculares/prevenção & controle , Endocanabinoides/uso terapêutico , Epigênese Genética , Inflamação/prevenção & controle , Melatonina/uso terapêutico , Alcamidas Poli-Insaturadas/uso terapêutico , Vitamina D/uso terapêutico , Animais , Antioxidantes/uso terapêutico , Bloqueadores dos Canais de Cálcio/uso terapêutico , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , Humanos , Inflamação/genética , Inflamação/patologia , Vitaminas/uso terapêutico
7.
Cells ; 10(12)2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34943813

RESUMO

Acute respiratory distress syndrome (ARDS) is a serious lung condition characterized by severe hypoxemia leading to limitations of oxygen needed for lung function. In this study, we investigated the effect of anandamide (AEA), an endogenous cannabinoid, on Staphylococcal enterotoxin B (SEB)-mediated ARDS in female mice. Single-cell RNA sequencing data showed that the lung epithelial cells from AEA-treated mice showed increased levels of antimicrobial peptides (AMPs) and tight junction proteins. MiSeq sequencing data on 16S RNA and LEfSe analysis demonstrated that SEB caused significant alterations in the microbiota, with increases in pathogenic bacteria in both the lungs and the gut, while treatment with AEA reversed this effect and induced beneficial bacteria. AEA treatment suppressed inflammation both in the lungs as well as gut-associated mesenteric lymph nodes (MLNs). AEA triggered several bacterial species that produced increased levels of short-chain fatty acids (SCFAs), including butyrate. Furthermore, administration of butyrate alone could attenuate SEB-mediated ARDS. Taken together, our data indicate that AEA treatment attenuates SEB-mediated ARDS by suppressing inflammation and preventing dysbiosis, both in the lungs and the gut, through the induction of AMPs, tight junction proteins, and SCFAs that stabilize the gut-lung microbial axis driving immune homeostasis.


Assuntos
Ácidos Araquidônicos/uso terapêutico , Endocanabinoides/uso terapêutico , Microbioma Gastrointestinal , Trato Gastrointestinal/patologia , Pulmão/patologia , Alcamidas Poli-Insaturadas/uso terapêutico , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/microbiologia , Animais , Peptídeos Antimicrobianos/metabolismo , Ácidos Araquidônicos/farmacologia , Butiratos/metabolismo , Ceco/patologia , Separação Celular , Colo/efeitos dos fármacos , Colo/patologia , Análise Discriminante , Disbiose/complicações , Disbiose/microbiologia , Endocanabinoides/farmacologia , Enterotoxinas , Feminino , Trato Gastrointestinal/efeitos dos fármacos , Linfonodos/efeitos dos fármacos , Linfonodos/patologia , Ativação Linfocitária/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Pneumonia/tratamento farmacológico , Pneumonia/microbiologia , Alcamidas Poli-Insaturadas/farmacologia , Síndrome do Desconforto Respiratório/complicações , Linfócitos T/efeitos dos fármacos
8.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361032

RESUMO

17,18-Epoxyeicosatetraenoic acid (17,18-EEQ) and 19,20-epoxydocosapentaenoic acid (19,20-EDP) are bioactive epoxides produced from n-3 polyunsaturated fatty acid eicosapentaenoic acid and docosahexaenoic acid, respectively. However, these epoxides are quickly metabolized into less active diols by soluble epoxide hydrolase (sEH). We have previously demonstrated that an sEH inhibitor, t-TUCB, decreased serum triglycerides (TG) and increased lipid metabolic protein expression in the brown adipose tissue (BAT) of diet-induced obese mice. This study investigates the preventive effects of t-TUCB (T) alone or combined with 19,20-EDP (T + EDP) or 17,18-EEQ (T + EEQ) on BAT activation in the development of diet-induced obesity and metabolic disorders via osmotic minipump delivery in mice. Both T + EDP and T + EEQ groups showed significant improvement in fasting glucose, serum triglycerides, and higher core body temperature, whereas heat production was only significantly increased in the T + EEQ group. Moreover, both the T + EDP and T + EEQ groups showed less lipid accumulation in the BAT. Although UCP1 expression was not changed, PGC1α expression was increased in all three treated groups. In contrast, the expression of CPT1A and CPT1B, which are responsible for the rate-limiting step for fatty acid oxidation, was only increased in the T + EDP and T + EEQ groups. Interestingly, as a fatty acid transporter, CD36 expression was only increased in the T + EEQ group. Furthermore, both the T + EDP and T + EEQ groups showed decreased inflammatory NFκB signaling in the BAT. Our results suggest that 17,18-EEQ or 19,20-EDP combined with t-TUCB may prevent high-fat diet-induced metabolic disorders, in part through increased thermogenesis, upregulating lipid metabolic protein expression, and decreasing inflammation in the BAT.


Assuntos
Fármacos Antiobesidade/uso terapêutico , Ácidos Araquidônicos/uso terapêutico , Benzoatos/uso terapêutico , Obesidade/tratamento farmacológico , Compostos de Fenilureia/uso terapêutico , Adipogenia , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Animais , Fármacos Antiobesidade/administração & dosagem , Fármacos Antiobesidade/farmacologia , Ácidos Araquidônicos/administração & dosagem , Ácidos Araquidônicos/farmacologia , Benzoatos/administração & dosagem , Benzoatos/farmacologia , Glicemia/metabolismo , Carnitina O-Palmitoiltransferase/metabolismo , Dieta Hiperlipídica , Epóxido Hidrolases/antagonistas & inibidores , Ácidos Graxos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Compostos de Fenilureia/administração & dosagem , Compostos de Fenilureia/farmacologia
9.
J Neuromuscul Dis ; 8(5): 769-784, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34120912

RESUMO

BACKGROUND: Edasalonexent (CAT-1004) is an orally-administered novel small molecule drug designed to inhibit NF-κB and potentially reduce inflammation and fibrosis to improve muscle function and thereby slow disease progression and muscle decline in Duchenne muscular dystrophy (DMD). OBJECTIVE: This international, randomized 2 : 1, placebo-controlled, phase 3 study in patients ≥4 - < 8 years old with DMD due to any dystrophin mutation examined the effect of edasalonexent (100 mg/kg/day) compared to placebo over 52 weeks. METHODS: Endpoints were changes in the North Star Ambulatory Assessment (NSAA; primary) and timed function tests (TFTs; secondary). Assessment of health-related function used the Pediatric Outcomes Data Collection tool (PODCI). RESULTS: One hundred thirty one patients received edasalonexent (n = 88) and placebo (n = 43). At week 52, differences between edasalonexent and placebo for NSAA total score and TFTs were not statistically significant, although there were consistently less functional declines in the edasalonexent group. A pre-specified analysis by age demonstrated that younger patients (≤6.0 years) showed more robust and statistically significant differences between edasalonexent and placebo for some assessments. Treatment was well-tolerated and the majority of adverse events were mild, and most commonly involved the gastrointestinal system (primarily diarrhea). CONCLUSIONS: Edasalonexent was generally well-tolerated with a manageable safety profile at the dose of 100 mg/kg/day. Although edasalonexent did not achieve statistical significance for improvement in primary and secondary functional endpoints for assessment of DMD, subgroup analysis suggested that edasalonexent may slow disease progression if initiated before 6 years of age. (NCT03703882).


Assuntos
Ácidos Araquidônicos/uso terapêutico , Distrofia Muscular de Duchenne/tratamento farmacológico , Salicilamidas/uso terapêutico , Administração Oral , Criança , Pré-Escolar , Método Duplo-Cego , Humanos , Masculino , NF-kappa B
10.
Neuropharmacology ; 189: 108543, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33794243

RESUMO

Hyperekplexia is a rare sensorimotor syndrome characterized by pathological startle reflex in response to unexpected trivial stimuli for which there is no specific treatment. Neonates suffer from hypertonia and are at high risk of sudden death due to apnea episodes. Mutations in the human SLC6A5 gene encoding the neuronal glycine transporter GlyT2 may disrupt the inhibitory glycinergic neurotransmission and cause a presynaptic form of the disease. The phenotype of missense mutations giving rise to protein misfolding but maintaining residual activity could be rescued by facilitating folding or intracellular trafficking. In this report, we characterized the trafficking properties of two mutants associated with hyperekplexia (A277T and Y707C, rat numbering). Transporter molecules were partially retained in the endoplasmic reticulum showing increased interaction with the endoplasmic reticulum chaperone calnexin. One transporter variant had export difficulties and increased ubiquitination levels, suggestive of enhanced endoplasmic reticulum-associated degradation. However, the two mutant transporters were amenable to correction by calnexin overexpression. Within the search for compounds capable of rescuing mutant phenotypes, we found that the arachidonic acid derivative N-arachidonoyl glycine can rescue the trafficking defects of the two variants in heterologous cells and rat brain cortical neurons. N-arachidonoyl glycine improves the endoplasmic reticulum output by reducing the interaction transporter/calnexin, increasing membrane expression and improving transport activity in a comparable way as the well-established chemical chaperone 4-phenyl-butyrate. This work identifies N-arachidonoyl glycine as a promising compound with potential for hyperekplexia therapy.


Assuntos
Ácidos Araquidônicos/uso terapêutico , Variação Genética/fisiologia , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Glicina/análogos & derivados , Hiperecplexia/genética , Mutação de Sentido Incorreto/fisiologia , Neurônios/fisiologia , Animais , Ácidos Araquidônicos/farmacologia , Células COS , Células Cultivadas , Chlorocebus aethiops , Feminino , Variação Genética/efeitos dos fármacos , Glicina/farmacologia , Glicina/uso terapêutico , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Hiperecplexia/tratamento farmacológico , Hiperecplexia/metabolismo , Mutação de Sentido Incorreto/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Ratos , Ratos Wistar
11.
Neuromuscul Disord ; 31(5): 385-396, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33678513

RESUMO

Chronic activation of NF-κB is a key driver of muscle degeneration and suppression of muscle regeneration in Duchenne muscular dystrophy. Edasalonexent (CAT-1004) is an orally-administered novel small molecule that covalently links two bioactive compounds (salicylic acid and docosahexaenoic acid) that inhibit NF-κB. This placebo-controlled, proof-of-concept phase 2 study with open-label extension in boys ≥4-<8 years old with any dystrophin mutation examined the effect of edasalonexent (67 or 100 mg/kg/day) compared to placebo or off-treatment control. Endpoints were safety/tolerability, change from baseline in MRI T2 relaxation time of lower leg muscles and functional assessment, as well as pharmacodynamics and biomarkers. Treatment was well-tolerated and the majority of adverse events were mild, and most commonly of the gastrointestinal system (primarily diarrhea). There were no serious adverse events in the edasalonexent groups. Edasalonexent 100 mg/kg was associated with slowing of disease progression and preservation of muscle function compared to an off-treatment control period, with decrease in levels of NF-κB-regulated genes and improvements in biomarkers of muscle health and inflammation. These results support investigating edasalonexent in future trials and have informed the design of the edasalonexent phase 3 clinical trial in boys with Duchenne.


Assuntos
Ácidos Araquidônicos/uso terapêutico , Distrofia Muscular de Duchenne/tratamento farmacológico , NF-kappa B , Salicilamidas/uso terapêutico , Criança , Pré-Escolar , Progressão da Doença , Método Duplo-Cego , Distrofina/genética , Humanos , Masculino , Músculo Esquelético , Estudo de Prova de Conceito
12.
Mol Cell Biochem ; 476(7): 2753-2775, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33713246

RESUMO

Anandamide is an endocannabinoid derived from arachidonic acid-containing membrane lipids and has numerous biological functions. Its effects are primarily mediated by the cannabinoid receptors CB1 and CB2, and the vanilloid TRPV1 receptor. Anandamide is known to be involved in sleeping and eating patterns as well as pleasure enhancement and pain relief. This manuscript provides a review of anandamide synthesis, degradation, and storage and hence the homeostasis of the anandamide signaling system.


Assuntos
Ácidos Araquidônicos , Endocanabinoides , Alcamidas Poli-Insaturadas , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Ácidos Araquidônicos/farmacocinética , Ácidos Araquidônicos/uso terapêutico , Endocanabinoides/farmacocinética , Endocanabinoides/uso terapêutico , Humanos , Alcamidas Poli-Insaturadas/farmacocinética , Alcamidas Poli-Insaturadas/uso terapêutico
13.
J Neurotrauma ; 38(9): 1327-1337, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-25386720

RESUMO

Surviving motoneurons undergo dendritic atrophy after spinal cord injury (SCI), suggesting an important therapeutic target for neuroprotective strategies to improve recovery of function after SCI. Our previous studies showed that cytosolic phospholipase A2 (PLA2) may play an important role in the pathogenesis of SCI. In the present study, we investigated whether blocking cytosolic PLA2 (cPLA2) pharmacologically with arachidonyl trifluoromethyl ketone (ATK) or genetically using cPLA2 knockout (KO) mice attenuates motoneuron atrophy after SCI. C57BL/6 mice received either sham or contusive SCI at the T10 level. At 30 min after SCI, mice were treated with ATK or vehicle. Four weeks later, motoneurons innervating the vastus lateralis muscle of the quadriceps were labeled with cholera toxin-conjugated horseradish peroxidase, and dendritic arbors were reconstructed in three dimensions. Soma volume, motoneuron number, lesion volume, and tissue sparing were also assessed, as were muscle weight, fiber cross-sectional area, and motor endplate size and density. ATK administration reduced percent lesion volume and increased percent volume of spared white matter, compared to the vehicle-treated control animals. SCI with or without ATK treatment had no effect on the number or soma volume of quadriceps motoneurons. However, SCI resulted in a decrease in dendritic length of quadriceps motoneurons in untreated animals, and this decrease was completely prevented by treatment with ATK. Similarly, vastus lateralis muscle weights of untreated SCI animals were smaller than those of sham surgery controls, and these reductions were prevented by ATK treatment. No effects on fiber cross-sectional areas, motor endplate area, or density were observed across treatment groups. Remarkably, genetically deleting cPLA2 in cPLA2 KO mice attenuated dendritic atrophy after SCI. These findings suggest that, after SCI, cord tissue damage and regressive changes in motoneuron and muscle morphology can be reduced by inhibition of cPLA2, further supporting a role for cPLA2 as a neurotherapeutic target for SCI treatment.


Assuntos
Neurônios Motores/enzimologia , Atrofia Muscular/enzimologia , Fármacos Neuroprotetores/uso terapêutico , Inibidores de Fosfolipase A2/uso terapêutico , Fosfolipases A2 Citosólicas/metabolismo , Traumatismos da Medula Espinal/epidemiologia , Animais , Ácidos Araquidônicos/farmacologia , Ácidos Araquidônicos/uso terapêutico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios Motores/efeitos dos fármacos , Atrofia Muscular/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Inibidores de Fosfolipase A2/farmacologia , Fosfolipases A2 Citosólicas/antagonistas & inibidores , Traumatismos da Medula Espinal/tratamento farmacológico
14.
Front Immunol ; 11: 580598, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362766

RESUMO

Asthma represents one of the leading chronic diseases worldwide and causes a high global burden of death and disability. In asthmatic patients, the exacerbation and chronification of the inflammatory response are often related to a failure in the resolution phase of inflammation. We reviewed the role of the main arachidonic acid (AA) specialized pro-resolving mediators (SPMs) in the resolution of chronic lung inflammation of asthmatics. AA is metabolized by two classes of enzymes, cyclooxygenases (COX), which produce prostaglandins (PGs) and thromboxanes, and lypoxygenases (LOX), which form leukotrienes and lipoxins (LXs). In asthma, two primary pro-resolving derived mediators from COXs are PGE2 and the cyclopentenone prostaglandin15-Deoxy-Delta-12,14-PGJ2 (15d-PGJ2) while from LOXs are the LXA4 and LXB4. In different models of asthma, PGE2, 15d-PGJ2, and LXs reduced lung inflammation and remodeling. Furthermore, these SPMs inhibited chemotaxis and function of several inflammatory cells involved in asthma pathogenesis, such as eosinophils, and presented an antiremodeling effect in airway epithelial, smooth muscle cells and fibroblasts in vitro. In addition, PGE2, 15d-PGJ2, and LXs are all able to induce macrophage reprogramming to an alternative M2 pro-resolving phenotype in vitro and in vivo. Although PGE2 and LXA4 showed some beneficial effects in asthmatic patients, there are limitations to their clinical use, since PGE2 caused side effects, while LXA4 presented low stability. Therefore, despite the strong evidence that these AA-derived SPMs induce resolution of both inflammatory response and tissue remodeling in asthma, safer and more stable analogs must be developed for further clinical investigation of their application in asthma treatment.


Assuntos
Anti-Inflamatórios/uso terapêutico , Ácidos Araquidônicos/uso terapêutico , Asma/tratamento farmacológico , Eosinófilos/imunologia , Inflamação/tratamento farmacológico , Remodelação das Vias Aéreas , Animais , Dinoprostona/uso terapêutico , Humanos , Mediadores da Inflamação/metabolismo
15.
J Pharmacol Exp Ther ; 374(3): 462-468, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32561684

RESUMO

Attenuating emesis elicited by both disease and medical treatments of disease remains a critical public health challenge. Although cannabinergic medications have been used in certain treatment-resistant populations, Food and Drug Administration-approved cannabinoid antiemetics are associated with undesirable side effects, including cognitive disruption, that limit their prescription. Previous studies have shown that a metabolically stable analog of the endocannabinoid anandamide, methanandamide (mAEA), may produce lesser cognitive disruption than that associated with the primary psychoactive constituent in cannabis, Δ9-tetrahydrocannabinol (Δ9-THC), raising the possibility that endocannabinoids may offer a therapeutic advantage over currently used medications. The present studies were conducted to evaluate this possibility by comparing the antiemetic effects of Δ9-THC (0.032-0.1 mg/kg) and mAEA (3.2-10.0 mg/kg) against nicotine- and lithium chloride (LiCl)-induced emesis and prodromal hypersalivation in squirrel monkeys. Pretreatment with 0.1 mg/kg Δ9-THC blocked nicotine-induced emesis and reduced hypersalivation in all subjects and blocked LiCl-induced emesis and reduced hypersalivation in three of four subjects. Pretreatment with 10 mg/kg mAEA blocked nicotine-induced emesis in three of four subjects and LiCl-induced emesis in one of four subjects and reduced both nicotine- and LiCl-induced hypersalivation. Antiemetic effects of Δ9-THC and mAEA were reversed by rimonabant pretreatment, providing verification of cannabinoid receptor type 1 mediation. These studies systematically demonstrate for the first time the antiemetic effects of cannabinoid agonists in nonhuman primates. Importantly, although Δ9-THC produced superior antiemetic effects, the milder cognitive effects of mAEA demonstrated in previous studies suggest that it may provide a favorable treatment option under clinical circumstances in which antiemetic efficacy must be balanced against side effect liability. SIGNIFICANCE STATEMENT: Emesis has significant evolutionary value as a defense mechanism against ingested toxins; however, it is also one of the most common adverse symptoms associated with both disease and medical treatments of disease. The development of improved antiemetic pharmacotherapies has been impeded by a paucity of animal models. The present studies systematically demonstrate for the first time the antiemetic effects of the phytocannabinoid Δ9-tetrahydrocannabinol and endocannabinoid analog methanandamide in nonhuman primates.


Assuntos
Antieméticos/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Animais , Antieméticos/uso terapêutico , Ácidos Araquidônicos/farmacologia , Ácidos Araquidônicos/uso terapêutico , Agonistas de Receptores de Canabinoides/uso terapêutico , Dronabinol/farmacologia , Dronabinol/uso terapêutico , Interações Medicamentosas , Masculino , Receptor CB1 de Canabinoide/agonistas , Saimiri , Salivação/efeitos dos fármacos , Vômito/tratamento farmacológico
16.
Cell Rep ; 31(9): 107710, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32492422

RESUMO

Endocannabinoids protect against seizures, but their mechanism of action is still unclear, as they can have effects independent of known cannabinoid receptors. Using Drosophila melanogaster, which lacks canonical cannabinoid receptors, we report that the endocannabinoids anandamide and 2-arachidonoylglycerol protect against seizures in multiple fly seizure models. Surprisingly, inhibition of anandamide catabolism renders flies insensitive to protection by anandamide, indicating that anandamide metabolites are responsible for seizure protection. Consistent with this finding, arachidonic acid, a direct metabolite of anandamide, protects against seizures. To identify downstream effectors, we test for a role of transient receptor potential (TRP) channels and find that the TRPV1 antagonist capsazepine blocks the protective effect of anandamide. Also, a targeted genetic screen of TRP channels identifies water witch as a mediator of protection by anandamide. Using a Drosophila model, we reveal the role of arachidonic acid in seizure protection and identify a cannabinoid-receptor-1/2-independent mechanism of endocannabinoid seizure protection.


Assuntos
Anticonvulsivantes/uso terapêutico , Ácidos Araquidônicos/uso terapêutico , Proteínas de Drosophila/metabolismo , Endocanabinoides/uso terapêutico , Glicerídeos/uso terapêutico , Convulsões/prevenção & controle , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Ácidos Araquidônicos/metabolismo , Cálcio/metabolismo , Modelos Animais de Doenças , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Endocanabinoides/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Alcamidas Poli-Insaturadas/uso terapêutico , RNA Guia de Cinetoplastídeos/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Convulsões/patologia , Canais de Potencial de Receptor Transitório/genética
17.
PLoS One ; 15(4): e0231583, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32294120

RESUMO

Infections caused by antibiotic-resistant strains of Staphylococcus aureus have reached epidemic proportions globally. Our previous study showed antimicrobial effects of anandamide (AEA) and arachidonoyl serine (AraS) against methicillin (MET)-resistant S. aureus (MRSA) strains, proposing the therapeutic potential of these endocannabinoid/endocannabinoid-like (EC/EC-like) agents for the treatment of MRSA. Here, we investigated the potential synergism of combinations of AEA and AraS with different types of antibiotics against MRSA grown under planktonic growth or biofilm formation. The most effective combinations under planktonic conditions were mixtures of AEA and ampicillin (AMP), and of AraS and gentamicin (GEN). The combination with the highest synergy in the biofilm formation against all tested bacterial strains was AEA and MET. Moreover, the combination of AraS and MET synergistically caused default of biofilm formation. Slime production of MRSA was also dramatically impaired by AEA or AraS combined with MET. Our data suggest the novel potential activity of combinations of EC/EC-like agents and antibiotics in the prevention of MRSA biofilm formation.


Assuntos
Antibacterianos/farmacologia , Ácidos Araquidônicos/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Endocanabinoides/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Alcamidas Poli-Insaturadas/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Ampicilina/farmacologia , Ampicilina/uso terapêutico , Antibacterianos/uso terapêutico , Ácidos Araquidônicos/uso terapêutico , Biofilmes/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Quimioterapia Combinada/métodos , Endocanabinoides/uso terapêutico , Gentamicinas/farmacologia , Gentamicinas/uso terapêutico , Humanos , Resistência a Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Alcamidas Poli-Insaturadas/uso terapêutico , Serina/análogos & derivados , Serina/farmacologia , Serina/uso terapêutico , Infecções Estafilocócicas/microbiologia
18.
Clin Exp Pharmacol Physiol ; 47(7): 1254-1262, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32141630

RESUMO

Excessive activation of the sympatho-adrenomedullary system plays a pathogenic role in triggering and sustaining essential hypertension. We previously reported that, in normotensive rats, intracerebroventricularly (i.c.v.) administered neuropeptides, corticotropin-releasing factor and bombesin induced activation of the sympatho-adrenomedullary system, and that brain cannabinoid CB1 receptors negatively regulated this activation. In this study, we investigated the effects of brain CB1 receptor stimulation on blood pressure and the sympatho-adrenomedullary outflow in spontaneously hypertensive rats (SHRs), commonly used animal models of essential hypertension, and in Wistar-Kyoto (WKY) rats, normotensive controls of SHRs. In 18-week-old SHRs and WKY rats under urethane anaesthesia (1.0 g/kg, i.p.), SHRs exhibited significantly higher systolic, mean and diastolic blood pressures and plasma noradrenaline and adrenaline, and a lower heart rate than WKY rats. Single administration of arachidonyl 2'-chloroethylamide (ACEA, CB1 agonist, 1.4 µmol/animal, i.c.v.) significantly but partially reduced mean and diastolic blood pressures and the plasma level of noradrenaline in SHRs compared to vehicle (N,N-dimethylformamide)-treated SHRs. These ACEA-induced reductions were abolished by central pretreatment with rimonabant (CB1 antagonist, 300 nmol/animal, i.c.v.), which alone showed no significant effect on blood pressures or plasma noradrenaline and adrenaline levels of SHRs. On the other hand, ACEA had no significant effect on blood pressure or plasma noradrenaline and adrenaline levels in WKY rats. These results suggest that stimulation of brain CB1 receptors can ameliorate hypertension accompanied by enhanced sympathetic outflow without affecting blood pressure under normotensive conditions.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Animais , Ácidos Araquidônicos/farmacologia , Ácidos Araquidônicos/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Epinefrina/sangue , Hipertensão/sangue , Hipertensão/fisiopatologia , Masculino , Ratos , Ratos Endogâmicos SHR
19.
Artigo em Inglês | MEDLINE | ID: mdl-31442553

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease and its characteristic is the progressive degeneration of dopaminergic neurons within the substantia nigra (SN) of the midbrain. There is hardly any clinically proven efficient therapeutics for its cure in several recent preclinical advances proposed to treat PD. Recent studies have found that the endocannabinoid signaling system in particular the comprised two receptors, CB1 and CB2 receptors, has a significant regulatory function in basal ganglia and is involved in the pathogenesis of PD. Therefore, adding new insights into the biochemical interactions between cannabinoids and other signaling pathways may help develop new pharmacological strategies. Factors of the endocannabinoid system (ECS) are abundantly expressed in the neural circuits of basal ganglia, where they interact interactively with glutamatergic, γ-aminobutyric acid-ergic (GABAergic), and dopaminergic signaling systems. Although preclinical studies on PD are promising, the use of cannabinoids at the clinical level has not been thoroughly studied. In this review, we evaluated the available evidence and reviewed the involvement of ECS in etiologies, symptoms and treatments related to PD. Since CB1 and CB2 receptors are the two main receptors of endocannabinoids, we primarily put the focus on the therapeutic role of CB1 and CB2 receptors in PD. We will try to determine future research clues that will help understand the potential therapeutic benefits of the ECS in the treatment of PD, aiming to open up new strategies and ideas for the treatment of PD.


Assuntos
Agonistas de Receptores de Canabinoides/metabolismo , Antagonistas de Receptores de Canabinoides/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Animais , Ácidos Araquidônicos/metabolismo , Ácidos Araquidônicos/uso terapêutico , Agonistas de Receptores de Canabinoides/uso terapêutico , Antagonistas de Receptores de Canabinoides/uso terapêutico , Moduladores de Receptores de Canabinoides/metabolismo , Moduladores de Receptores de Canabinoides/uso terapêutico , Canabinoides/metabolismo , Canabinoides/uso terapêutico , Capsaicina/análogos & derivados , Capsaicina/metabolismo , Capsaicina/uso terapêutico , Endocanabinoides/metabolismo , Endocanabinoides/uso terapêutico , Humanos , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/antagonistas & inibidores
20.
Int J Dev Neurosci ; 78: 7-18, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31369794

RESUMO

Perinatal hypoxia-ischemia is one of the most common causes of perinatal brain injury and subsequent neurological disorders in children. The aim of this work was to evaluate the potential antioxidant and neuroprotective effects of N-arachidonoyl-dopamine (NADA) in the model of acute neonatal hypoxia (ANH) in rat pups. Male and female Wistar rats were exposed to a hypoxic condition (8% oxygen for 120 min) at postnatal day 2 (P2). Transcription factor HIF1-α and glutathione peroxidases GPx2 and GPx4 gene expression was increased in rat brains in the hypoxic group compared to control 1.5 h but not 4 days after ANH. There were no post-hypoxic changes in reduced (GSH) and oxidised (GSSG) glutathione levels in the brain of rat pups 1.5 h and 4 d after hypoxia. Hypoxic rats displayed retarded performance in the righting reflex and the negative geotaxis tests. ANH resulted in increased ambulation in Open field test and impaired retention in the Barnes maze task under stressful conditions as compared with the control group. Treatment with NADA significantly attenuated the delayed development of sensorimotor reflexes and stress-evoked disruption of memory retention in hypoxic rats but had no effect on the hypoxia-induced hyperactivity. In rats exposed to hypoxia, treatment with NADA decreased GPx2 gene expression and increased GSH/GSSG ratio in whole brains 1.5 h after ANH. These results suggest that the long-lasting beneficial effects of NADA on hypoxia-induced neurobehavioural deficits are mediated, at least in part, by its antioxidant properties.


Assuntos
Antioxidantes/metabolismo , Ácidos Araquidônicos/farmacologia , Encéfalo/efeitos dos fármacos , Dopamina/análogos & derivados , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Animais , Ácidos Araquidônicos/uso terapêutico , Encéfalo/metabolismo , Dopamina/farmacologia , Dopamina/uso terapêutico , Feminino , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Ratos , Ratos Wistar , Reflexo de Endireitamento/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...