Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
1.
J Med Chem ; 65(19): 13094-13111, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36170649

RESUMO

SH2 domains have been recognized as promising targets for various human diseases. However, targeting SH2 domains with phosphopeptides or small-molecule inhibitors derived from bioisosteres of the phosphate group is still challenging. Identifying novel bioisosteres of the phosphate group to achieve favorable in vivo potency is urgently needed. Here, we report the feasibility of targeting the STAT3-SH2 domain with a boronic acid group and the identification of a highly potent inhibitor compound 7 by replacing the carboxylic acid of compound 4 with a boronic acid. Compound 7 shows higher binding affinity, better cellular potency, more favorable PK profiles, and higher in vivo antitumor activity than 4. The stronger anticancer effect of 7 partially stems from its covalent binding mode with the SH2 domain, verified by the washout experiments. The relatively high level of sequence conservation among SH2 domains makes the results presented here of general significance.


Assuntos
Fosfopeptídeos , Domínios de Homologia de src , Ácidos Borônicos/metabolismo , Ácidos Borônicos/farmacologia , Ácidos Carboxílicos , Humanos , Fosfatos/metabolismo , Fosfopeptídeos/metabolismo , Ligação Proteica , Fator de Transcrição STAT3/metabolismo
2.
Chem Commun (Camb) ; 58(67): 9361-9364, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35917119

RESUMO

Dimeric boronic acids kill Mycobacterium tuberculosis (Mtb) by targeting mycobacterial specific extracellular glycans, removing the requirement for a therapeutic agent to permeate the complex cell envelope. Here we report the successful development and use of new 'clickable' boronic acid probes as a powerful method to enable the direct detection and visualisation of this unique class of cell-surface targeting antitubercular agents.


Assuntos
Ácidos Borônicos , Mycobacterium tuberculosis , Antituberculosos/metabolismo , Antituberculosos/farmacologia , Ácidos Borônicos/metabolismo , Ácidos Borônicos/farmacologia , Polímeros/metabolismo , Polissacarídeos/metabolismo
3.
Neurochem Res ; 47(6): 1553-1564, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35142995

RESUMO

Parkinson's disease (PD) is one of the most common forms of neurodegenerative diseases and research on potential therapeutic agents for PD continues. Rotenone is a neurotoxin that can pass the blood-brain barrier and is used to generate PD models in experimental animals. Boron is a microelement necessary for neural activity in the brain. Antioxidant, non-cytotoxic, anti-genotoxic, anti-carcinogenic effects of boric acid, the salt compound of boron has been reported before. Boronic acids have been approved for treatment by FDA and are included in drug discovery studies and pyridine boronic acids are a subclass of heterocyclic boronic acids used in drug design and discovery as substituted pyridines based on crystal engineering principles. The aim of our study was to determine the effect of 3-pyridinylboronic acid in rotenone-exposed zebrafish embryos, focusing on oxidant-antioxidant parameters and gene expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) target genes gclm, gclc, hmox1a, nqo1, and PD related genes, brain-derived neurotrophic factor, dj1, and tnfα. Zebrafish embryos were exposed to Rotenone (10 µg/l); Low Dose 3-Pyridinylboronic acid (100 µM); High Dose 3-Pyridinylboronic acid (200 µM); Rotenone + Low Dose-3-Pyridinylboronic acid (10 µg/l + 100 µM); Rotenone + High Dose-3-Pyridinylboronic acid (10 µg/l + 200 µM) in well plates for 96 h post-fertilization (hpf). Our study showed for the first time that 3-pyridinylboronic acid, as a novel sub-class of the heterocyclic boronic acid compound, improved locomotor activities, ameliorated oxidant-antioxidant status by decreasing LPO and NO levels, and normalized the expressions of bdnf, dj1, tnf⍺ and Nrf2 target genes hmox1a and nqo1 in rotenone exposed zebrafish embryos. On the other hand, it caused the deterioration of the oxidant-antioxidant balance in the control group through increased lipid peroxidation, nitric oxide levels, and decreased antioxidant enzymes. We believe that these results should be interpreted in the context of the dose-toxicity and benefit-harm relationship of the effects of 3-pyridinylboronic.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Boro/metabolismo , Boro/farmacologia , Ácidos Borônicos/metabolismo , Ácidos Borônicos/farmacologia , Fármacos Neuroprotetores/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Oxidantes , Estresse Oxidativo , Doença de Parkinson/metabolismo , Piridinas/farmacologia , Rotenona/toxicidade , Peixe-Zebra/metabolismo
4.
Photochem Photobiol ; 98(5): 1110-1121, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35067943

RESUMO

Chronic exposure of the retina to short wavelength visible light is a risk factor in pathogenesis of age-related macular degeneration. The proper functioning and survival of photoreceptors depends on efficient phagocytosis of photoreceptor outer segments (POS) by retinal pigment epithelium. The purpose of this study was to analyze the phagocytic activity of blue light-treated ARPE-19 cells, and to examine whether the observed effects could be related to altered levels of POS phagocytosis receptor proteins and/or to oxidation of cellular proteins and lipids. POS phagocytosis was measured by flow cytometry. Phagocytosis receptor proteins αv and ß5 integrin subunits and Mer tyrosine kinase (MerTK) were quantified by western blotting. The intact functional heterodimer αvß5 was quantified by immunoprecipitation followed by immunoblotting. Cellular protein and lipid hydroperoxides were analyzed by coumarin boronic acid probe and iodometric assay, respectively. Cell irradiation induced reversible inhibition of specific phagocytosis and transient reductions in phagocytosis receptor proteins. Full recovery of functional heterodimer was apparent. Significant photooxidation of cellular proteins and lipids was observed. The results indicate that transient inhibition of specific phagocytosis by blue light could be related to the reduction in phagocytosis receptor proteins. Such changes may arise from oxidative modifications of cell phagocytic machinery components.


Assuntos
Luz , Epitélio Pigmentado da Retina , Ácidos Borônicos/metabolismo , Ácidos Borônicos/farmacologia , Cumarínicos , Lipídeos , Epitélio Pigmentado da Retina/metabolismo , c-Mer Tirosina Quinase/metabolismo
5.
Drug Chem Toxicol ; 45(2): 947-954, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32693643

RESUMO

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin that damages dopaminergic neurons. Zebrafish has been shown to be a suitable model organism to investigate the molecular pathways in the pathogenesis of Parkinson's disease and also for potential therapeutic agent research. Boron has been shown to play an important role in the neural activity of the brain. Boronic acids are used in combinatorial approaches in drug design and discovery. The effect of 3-pyridinylboronic acid which is an important sub-class of heterocyclic boronic acids has not been evaluated in case of MPTP exposure in zebrafish embryos. Accordingly, this study was designed to investigate the effects of 3-pyridinylboronic acid on MPTP exposed zebrafish embryos focusing on the molecular pathways related to neurodegeneration and apoptosis by RT-PCR. Zebrafish embryos were exposed to MPTP (800 µM); MPTP + Low Dose 3-Pyridinylboronic acid (50 µM) (MPTP + LB) and MPTP + High Dose 3-Pyridinylboronic acid (100 µM) (MPTP + HB) in well plates for 72 hours post fertilization. Results of our study showed that MPTP induced a P53 dependent and Bax mediated apoptosis in zebrafish embryos and 3-pyridinylboronic acid restored the locomotor activity and gene expressions related to mitochondrial dysfunction and oxidative stress due to the deleterious effects of MPTP, in a dose-dependent manner.


Assuntos
Intoxicação por MPTP , Peixe-Zebra , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Animais , Ácidos Borônicos/metabolismo , Ácidos Borônicos/uso terapêutico , Modelos Animais de Doenças , Intoxicação por MPTP/tratamento farmacológico , Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/patologia , Camundongos , Camundongos Endogâmicos C57BL , Piridinas , Pirrolidinas/metabolismo , Pirrolidinas/uso terapêutico , Peixe-Zebra/metabolismo
6.
Insect Biochem Mol Biol ; 140: 103700, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34856351

RESUMO

Many species of moths have a common control mechanism for synthesizing sex pheromone: the circadian release of pheromone biosynthesis-activation neuropeptide (PBAN) that switches pheromone synthesis on/off during the day. One apparent exception to this is the noctuid moth Trichoplusia ni (Hübner), in which pheromone synthesis appears continuous through the photoperiod, with circadian release of PBAN controlling emission rate of pheromone during calling. Sex pheromone biosynthesis was reinvestigated in T. ni using stable isotope tracer-tracee and gland sampling techniques to ascertain how pheromone quantities in gland cells and on the gland cuticular surface varied and were controlled. It was found that (i) carbohydrate from adult female feeding is used to synthesize sex pheromone, (ii) most of the stored acetate ester pheromone component(s) is contained in gland cells, (iii) a large pool of pheromone is synthesized and stored through the photoperiod with a slow turnover rate, (iv) although pheromone is synthesized throughout the photoperiod, its rate can vary, influenced by release of PBAN and possibly by an unidentified head factor, with both affecting carbohydrate uptake into the acetyl CoA pheromone precursor pool, and (v) as suggested previously, PBAN also influences translocation of pheromone out of the cell to the cuticular surface, possibly by causing breakdown of intracellular lipid droplets storing pheromone molecules. This work suggests that the quantitative synthesis and emission of pheromone in T. ni, and possibly other moths, is regulated by multiple complementary biochemical mechanisms.


Assuntos
Mariposas/metabolismo , Feromônios/biossíntese , Animais , Ácidos Borônicos/metabolismo , Ciclopropanos/metabolismo , Neuropeptídeos/metabolismo , Fotoperíodo , Metabolismo Secundário , Atrativos Sexuais/biossíntese
7.
Chem Commun (Camb) ; 57(100): 13768-13771, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34859797

RESUMO

A novel theranostic probe called CX-B-DF is constructed for precise chemotherapy guided by near-infrared (NIR) fluorescence imaging. Moreover, the theranostic probe shows high cytotoxicity to cancer cells under dual activation (H2O2 and TP), which causes the accuracy of drug release to be improved and the toxic side effects to be reduced.


Assuntos
Antineoplásicos/uso terapêutico , Ácidos Borônicos/uso terapêutico , Cumarínicos/uso terapêutico , Floxuridina/uso terapêutico , Corantes Fluorescentes/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/metabolismo , Ácidos Borônicos/metabolismo , Linhagem Celular Tumoral , Cumarínicos/metabolismo , Floxuridina/metabolismo , Corantes Fluorescentes/metabolismo , Células HEK293 , Humanos , Peróxido de Hidrogênio/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Neoplasias/diagnóstico por imagem , Imagem Óptica , Medicina de Precisão , Timidina Fosforilase/metabolismo
8.
J Am Chem Soc ; 143(49): 20927-20938, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34855390

RESUMO

Timely lysosome escape is of paramount importance for endocytosed nanomedicines to avoid premature degradation under the acidic and hydrolytic conditions in lysosomes. Herein, we report an exciting finding that phenylboronic acid (PBA) modification can greatly facilitate the lysosome escape of cylindrical polymer brushes (CPBs). On the basis of our experimental results, we speculate that the mechanism is associated with the specific interactions of the PBA groups with lysosomal membrane proteins and hot shock proteins. The featured advantage of the PBA modification over the known lysosome escape strategies is that it does not cause significant adverse effects on the properties of the CPBs; on the contrary, it enhances remarkably their tumor accumulation and penetration. Furthermore, doxorubicin was conjugated to the PBA-modified CPBs with a drug loading content larger than 20%. This CPBs-based prodrug could eradicate the tumors established in mice by multiple intravenous administrations. This work provides a novel strategy for facilitating the lysosome escape of nanomaterials and demonstrates that PBA modification is an effective way to improve the overall properties of nanomedicines including the tumor therapeutic efficacy.


Assuntos
Antineoplásicos/uso terapêutico , Ácidos Borônicos/química , Portadores de Fármacos/química , Lisossomos/metabolismo , Neoplasias/tratamento farmacológico , Ácidos Polimetacrílicos/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Ácidos Borônicos/síntese química , Ácidos Borônicos/metabolismo , Linhagem Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Portadores de Fármacos/síntese química , Portadores de Fármacos/metabolismo , Liberação Controlada de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Camundongos Endogâmicos ICR , Ácidos Polimetacrílicos/síntese química , Ácidos Polimetacrílicos/metabolismo , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico
9.
ACS Appl Mater Interfaces ; 13(46): 54850-54859, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34756033

RESUMO

The construction of enzyme delivery systems, which can control enzymatic activity at a target site, is important for efficient enzyme-prodrug therapy/diagnosis. Herein we report a facile technique to construct a systemically applicable ß-galactosidase (ß-Gal)-loaded ternary complex comprising tannic acid (TA) and phenylboronic acid-conjugated polymers through sequential self-assembly in aqueous solution. At physiological conditions, the ternary complex exhibited a hydrodynamic diameter of ∼40 nm and protected the loaded ß-Gal from unfavorable degradation by proteinase. Upon cellular internalization, the ternary complex recovered ß-Gal activity by releasing the loaded ß-Gal. The intravenously injected ternary complex thereby delivered ß-Gal to the target tumor in a subcutaneous tumor model and exerted enhanced and selective enzymatic activity at the tumor site. Sequential self-assembly with TA and phenylboronic acid-conjugated polymers may offer a novel approach for enzyme-prodrug theragnosis.


Assuntos
Ácidos Borônicos/metabolismo , Nanopartículas/metabolismo , Neoplasias/metabolismo , Polímeros/metabolismo , Taninos/metabolismo , beta-Galactosidase/metabolismo , Animais , Ácidos Borônicos/química , Linhagem Celular Tumoral , Feminino , Hidrodinâmica , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Estrutura Molecular , Nanopartículas/química , Neoplasias/diagnóstico , Tamanho da Partícula , Polímeros/síntese química , Polímeros/química , Propriedades de Superfície , Taninos/química , beta-Galactosidase/administração & dosagem , beta-Galactosidase/sangue
10.
ACS Appl Mater Interfaces ; 13(30): 35397-35409, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34313104

RESUMO

Nano-drug delivery systems (nano-DDSs) with an existing specific interaction to tumor cells and intelligent stimulus-triggered drug delivery performance in a tumor microenvironment (TME) remain hotspots for effective cancer therapy. Herein, multifunctional pH/H2O2 dual-responsive chiral mesoporous silica nanorods (HA-CD/DOX-PCMSRs) were creatively constructed by first grafting phenylboronic acid pinacol ester (PBAP) onto the amino-functioned nanorods, then incorporating doxorubicin (DOX) into the mesoporous structure, and finally coating with the cyclodextrin-modified hyaluronic acid conjugate (HA-CD) through a weak host-guest interaction. Under a physiological environment, the gatekeeper CD could avoid the premature leakage of DOX and minimize the side effects to normal cells. After the uptake by the tumor cells, the H2O2-sensitive moieties of PBAP were exposed and a small amount of DOX was leaked along with the shift of the supramolecular switch HA-CD under the acidic condition. Notably, the self-supplying H2O2 mediated by the released DOX in turn accelerated the PBAP disintegration, further promoted the rapid release of DOX, and increased the DOX accumulation in tumor regions. Innovatively, this nano-DDS could simultaneously achieve the tumor-targeting ability via CD44 receptor-mediated endocytosis and pH/H2O2 dual responsiveness activated by the TME and hence exhibited superior antitumor efficacy. Furthermore, HA acting as the hydrophilic shell could improve the biocompatibility of this nano-DDS.


Assuntos
Antineoplásicos/uso terapêutico , Doxorrubicina/uso terapêutico , Portadores de Fármacos/química , Nanotubos/química , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/química , Ácidos Borônicos/química , Ácidos Borônicos/metabolismo , Ácidos Borônicos/toxicidade , Linhagem Celular Tumoral , Ciclodextrinas/química , Ciclodextrinas/toxicidade , Doxorrubicina/química , Portadores de Fármacos/síntese química , Portadores de Fármacos/metabolismo , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/análogos & derivados , Ácido Hialurônico/metabolismo , Ácido Hialurônico/toxicidade , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Camundongos Endogâmicos BALB C , Nanotubos/toxicidade , Neoplasias/metabolismo , Porosidade , Dióxido de Silício/química , Dióxido de Silício/toxicidade
11.
Mikrochim Acta ; 188(7): 225, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34104996

RESUMO

A novel magnetic borate-functionalized metal-organic framework nanocomposite was designed and fabricated for selective enrichment of catecholamines from human urine. Firstly, the polytannic acid (PTA) layer with natural low-cost and ecofriendly polyphenol tannic acid as the organic ligand and Fe3+ as the cross-linker was coated onto the surface of Fe3O4. Then, the borate-functionalized metal-organic framework (MIL-100(Fe)-B) with 5-boronobenzene-1,3-dicarboxylic acid as a ligand fragment was modified onto the PTA-coated Fe3O4 through a metal-ligand-fragment coassembly strategy. The obtained smart porous adsorbent Fe3O4@PTA@MIL-100(Fe)-B was confirmed by means of several characterization methods and then applied as an effective magnetic solid phase extraction (MSPE) sorbent for specific extraction of trace catecholamines in human urine. The Plackett-Burman design was used for screening the variables significantly affecting the extraction efficiency. Then, the significant factors were further investigated by the Box-Behnken design to determine the optimal extraction conditions. Under the optimal conditions, a method for selective MSPE combined with high-performance liquid chromatography with a fluorescence detector for the quantitation of catecholamines in human urine was developed and validated. With the proposed method, the linearity range was from 0.500 to 500 ng mL-1 for norepinephrine and epinephrine and from 1.00 to 500 ng mL-1 for dopamine. The detection limits were 0.050, 0.11, and 0.20 ng mL-1 for norepinephrine, epinephrine, and dopamine, respectively. The recoveries from spiking experiments varied from 91.5 to 108% with relative standard deviations (RSDs) of 0.80-4.8%. The established method is rapid, sensitive, accurate, inexpensive, and ecofriendly and was successfully applied to the determination of the target catecholamines in human urine samples.


Assuntos
Ácidos Borônicos/metabolismo , Catecolaminas/urina , Estruturas Metalorgânicas/metabolismo , Taninos/metabolismo , Humanos , Fenômenos Magnéticos
12.
Methods Mol Biol ; 2298: 217-230, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34085248

RESUMO

Queuosine (Q) is a hypermodified base that occurs at the wobble position of transfer RNAs (tRNAs) with a GUN anticodon. Q-tRNA modification is widespread among eukaryotes, yet bacteria are the original source of Q. Eukaryotes acquire Q from their diet, or from the gut microbiota (in multicellular organisms). Despite decades of study, the detailed roles of Q-tRNA modification remain to be elucidated, especially regarding its specific mechanisms of action. Here, we describe a method for the fast and reliable detection of Q-tRNA modification levels in individual tRNAs using a few micrograms of total RNA as starting material. The methodology is based on the co-polymerization of boronic acid (N-acryloyl-3-aminophenylboronic acid (APB)) in polyacrylamide gels, and on the interplay between this derivative and free cis-diol groups of the tRNA. During electrophoresis, the cis-diol groups slow down the Q-modified tRNA, which then can be separated from unmodified tRNA and quantified using Northern blot analysis.


Assuntos
Northern Blotting/métodos , Nucleosídeo Q/genética , Processamento Pós-Transcricional do RNA/genética , RNA de Transferência/genética , Animais , Ácidos Borônicos/metabolismo , Humanos
13.
J Med Chem ; 64(8): 4857-4869, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33821636

RESUMO

LONP1 is an AAA+ protease that maintains mitochondrial homeostasis by removing damaged or misfolded proteins. Elevated activity and expression of LONP1 promotes cancer cell proliferation and resistance to apoptosis-inducing reagents. Despite the importance of LONP1 in human biology and disease, very few LONP1 inhibitors have been described in the literature. Herein, we report the development of selective boronic acid-based LONP1 inhibitors using structure-based drug design as well as the first structures of human LONP1 bound to various inhibitors. Our efforts led to several nanomolar LONP1 inhibitors with little to no activity against the 20S proteasome that serve as tool compounds to investigate LONP1 biology.


Assuntos
Proteases Dependentes de ATP/antagonistas & inibidores , Desenho de Fármacos , Proteínas Mitocondriais/antagonistas & inibidores , Inibidores de Proteases/química , Proteases Dependentes de ATP/metabolismo , Sítios de Ligação , Ácidos Borônicos/química , Ácidos Borônicos/metabolismo , Ácidos Borônicos/farmacologia , Bortezomib/química , Bortezomib/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Proteínas Mitocondriais/metabolismo , Simulação de Acoplamento Molecular , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/metabolismo , Relação Estrutura-Atividade
14.
Int J Nanomedicine ; 16: 297-314, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33488074

RESUMO

The glucose-sensitive self-adjusting drug delivery system simulates the physiological model of the human pancreas-secreting insulin and then precisely regulates the release of hypoglycemic drugs and controls the blood sugar. Thus, it has good application prospects in the treatment of diabetes. Presently, there are three glucose-sensitive drug systems: phenylboronic acid (PBA) and its derivatives, concanavalin A (Con A), and glucose oxidase (GOD). Among these, the glucose-sensitive polymer carrier based on PBA has the advantages of better stability, long-term storage, and reversible glucose response, and the loading of insulin in it can achieve the controlled release of drugs in the human environment. Therefore, it has become a research hotspot in recent years and has been developed very rapidly. In order to further carry out a follow-up study, we focused on the development process, performance, and application of PBA and its derivatives-based glucose-sensitive polymer drug carriers, and the prospects for the development of this field.


Assuntos
Ácidos Borônicos/química , Diabetes Mellitus/tratamento farmacológico , Portadores de Fármacos/química , Hipoglicemiantes/farmacologia , Ácidos Borônicos/metabolismo , Diabetes Mellitus/metabolismo , Portadores de Fármacos/metabolismo , Seguimentos , Glucose/metabolismo , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/uso terapêutico , Insulina/química , Insulina/farmacologia , Insulina/uso terapêutico
15.
J Chromatogr Sci ; 58(9): 796-803, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32839813

RESUMO

(E/Z)-(4-(3-(2-((4-chlorophenyl)amino)-4-(dimethylamino)thiazol-5-yl)-2-(ethoxy carbonyl)-3-oxoprop-1-en-1-yl)phenyl) boronic acid, a newly developed molecule having anticancer activity serves as a potential candidate for the further drug development process. In this study, to ascertain the anticancer potential of the molecule, we screened it against different cell lines and compared the activity against the standard drug doxorubicin. The molecule showed promising activity at a low concentration against almost all cell lines used in the study. Apart from that, the molecule was characterized for its pKa and a precise reverse phase high-performance liquid chromatography bioanalytical method has been developed. The method was validated according to the United States of Food and Drug Administration bioanalytical guideline and was found to produce linear response over the calibration range of 0.8-25 µg/mL. Inter- and intra-day accuracy were found to be in the range of 93.44-99.74%, whereas precision [% coefficient of variation (CV)] for inter- and intra-day was ranged between 1.63 and 5.79%, and 0.87 and 6.96%, respectively. The bioanalytical stability testing was carried out in different conditions including 8 h benchtop, 12 h autosampler and three freeze-thaw cycles. The analyte was stable in all the tested stability conditions. Finally, an in vitro metabolite identification study was conducted using quadrupole-time of flight-mass spectrometer, and two metabolites have been identified.


Assuntos
Antineoplásicos/sangue , Ácidos Borônicos/sangue , Tiazóis/sangue , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Ácidos Borônicos/química , Ácidos Borônicos/metabolismo , Ácidos Borônicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Humanos , Modelos Lineares , Espectrometria de Massas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tiazóis/química , Tiazóis/metabolismo , Tiazóis/farmacologia
16.
Bioorg Med Chem Lett ; 30(14): 127258, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32527558

RESUMO

PI-103 (7) is a potent dual phosphatidylinositol 3-kinase (PI3K)/mTOR inhibitor, but its rapid in vivo metabolism hinders its further clinical development. To improve the bioavailability of PI-103, we designed and synthesized a PI-103 bioisostere, PI-103BE (9) in which the phenolic hydroxyl group of PI-103 was replaced by a boronate, a structural modification known to enhance bioavailability of molecules containing phenolic hydroxyl moieties. In cell culture, PI-103BE is partially converted to its corresponding boronic acid (10) and to a lesser extent the active ingredient, PI-103. This mixture contributes to the in vitro activity of 9 that shows reduced potency compared to the parent compound. When administered to mice by oral gavage, 9 displays a significantly improved pharmacokinetic profile compared to PI-103, which shows no oral bioavailability at the same dose. Drug exposure of 9 as measured by the area under curve (AUC) value is 88.2 ng/mL*h for 7 and 8879.9 ng/mL*h for 10. When given by intraperitoneal injection (IP), the prodrug afforded an AUC of 32.3 ng/mL*h for 7 and 400.9 ng/mL*h for 10, compared to 9.7 ng/mL*h from PI-103 injection. In plasma from both pharmacokinetic studies, 9 is fully converted to 10 and 7, with the boronic acid metabolite (10) displaying antiproliferative activities comparable to 9, but weaker than 7. The boronic bioisostere of PI-103 thus offers an improved bioavailability that could be translated to in vivo efficacy of PI-103.


Assuntos
Antineoplásicos/farmacocinética , Ácidos Borônicos/metabolismo , Desenvolvimento de Medicamentos , Furanos/farmacocinética , Piridinas/farmacocinética , Pirimidinas/farmacocinética , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Disponibilidade Biológica , Ácidos Borônicos/administração & dosagem , Ácidos Borônicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Furanos/administração & dosagem , Furanos/química , Humanos , Camundongos , Estrutura Molecular , Piridinas/administração & dosagem , Piridinas/química , Pirimidinas/administração & dosagem , Pirimidinas/química , Relação Estrutura-Atividade
17.
Biomater Sci ; 8(13): 3741-3750, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32502228

RESUMO

Cytosolic protein delivery technique plays an important role in protein-based biotechnologies and therapeutics. However, the development of efficient nanocarriers for delivering cargo proteins into cytosols remains a continuing challenge due to the existence of multiple barriers. Here, we report an efficient strategy for the cytosolic delivery of native proteins by surface-engineered gold nanoparticles combined with hypertonicity treatment. Sub-10 nm gold nanoparticles stabilized by both cysteamine and 4-mercaptophenylboronic acid were used to complex cargo proteins via a combination of nitrogen-boronate coordination and ionic interactions. The yielding protein complexes with a size around 100 nm showed efficient endocytosis via micropinocytosis- and lipid raft-mediated pathways. Further the hypertonicity treatment of the transduced cells by glycerol, glucose, sucrose, and NaCl solutions efficiently facilitates the endosomal escape and the intracellular release of cargo proteins. By the proposed strategy, cargo proteins including bovine serum albumin, ovalbumin, green fluorescent protein, R-phycoerythrin, and horseradish peroxidase were successfully delivered into cell cytosol with maintained protein bioactivity. This study provides a feasible and efficient strategy for the intracellular protein delivery.


Assuntos
Materiais Biocompatíveis/química , Ácidos Borônicos/química , Citosol/química , Ouro/química , Nanopartículas Metálicas/química , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/metabolismo , Ácidos Borônicos/metabolismo , Bovinos , Citosol/metabolismo , Ouro/metabolismo , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Humanos , Ovalbumina/química , Ovalbumina/metabolismo , Tamanho da Partícula , Ficoeritrina/química , Ficoeritrina/metabolismo , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Propriedades de Superfície , Células Tumorais Cultivadas
18.
J Med Chem ; 63(9): 4701-4715, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32267687

RESUMO

While proteasome inhibitors such as bortezomib showed satisfactory clinical benefits in the initial treatment of multiple myeloma (MM), drug resistance and relapse are unavoidable. Recent studies suggested inhibition of histone deacetylases (HDACs) restored sensitivity of bortezomib-resistant MM. Hence, we designed dual inhibitors targeting both HDACs and proteasomes to address the resistance of bortezomib. The most potent inhibitors, ZY-2 and ZY-13 showed excellent inhibition against proteasome and good selectivity against HDACs. In particular, ZY-2 not only exhibited good antiproliferative activities on the MM cell lines RPMI-8226, U266, and KM3 (IC50 values of 6.66, 4.31, and 10.1 nM, respectively) but also showed more potent antiproliferative activities against the bortezomib-resistant MM cell line KM3/BTZ compared with bortezomib (IC50 values of 8.98 vs. 226 nM, P < 0.01) and even better than the combination of the HDAC inhibitor MS-275 and bortezomib (1:1) (IC50 values of 8.98 vs. 98.0 nM, P < 0.01).


Assuntos
Antineoplásicos/farmacologia , Ácidos Borônicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Peptídeos/farmacologia , Inibidores de Proteassoma/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Ácidos Borônicos/síntese química , Ácidos Borônicos/metabolismo , Ácidos Borônicos/toxicidade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Histona Desacetilase 1/química , Histona Desacetilase 1/metabolismo , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/toxicidade , Humanos , Simulação de Acoplamento Molecular , Mieloma Múltiplo/tratamento farmacológico , Peptídeos/síntese química , Peptídeos/metabolismo , Peptídeos/toxicidade , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/síntese química , Inibidores de Proteassoma/metabolismo , Inibidores de Proteassoma/toxicidade , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos
19.
Food Chem ; 324: 126892, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32339789

RESUMO

To investigate calpain's effect on protein degradation, myowater properties, and the water-holding capacity (WHC), porcine longissimus muscles were incubated with control buffer, PD150,606 (calpain-specific inhibitor) and MG-262 (multiple-protease inhibitor) and assigned to an ageing period of 1, 4 or 7 d. Over 7 d of storage, no significant differences (P > 0.05) were observed in desmin or integrin expression between the MG-262 and PD150,606 groups, which indicated that calpain played a major role in protein proteolysis. Compared to those in the control group, muscle samples subjected to PD150,606 and MG-262 exhibited higher water mobility and a poorer WHC. Additionally, there were no significant differences in myowater properties or the WHC between the two groups at 1 d postmortem (P > 0.05). Calpain regulated the distribution and mobility of myowater, which contributed to a higher WHC in the early postmortem period (before 4 d), but other proteases tended to take over at a later stage.


Assuntos
Calpaína/metabolismo , Músculo Esquelético/química , Água/metabolismo , Acrilatos/química , Acrilatos/metabolismo , Animais , Ácidos Borônicos/química , Ácidos Borônicos/metabolismo , Calpaína/antagonistas & inibidores , Desmina/metabolismo , Armazenamento de Alimentos , Integrinas/metabolismo , Carne/análise , Músculo Esquelético/metabolismo , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Proteólise , Suínos , Água/análise
20.
Int J Mol Sci ; 21(3)2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32024118

RESUMO

Boron (B) is an essential plant micronutrient. Deficiencies of B have drastic consequences on plant development leading to crop yield losses and reductions in root and shoot growth. Understanding the molecular and cellular consequences of B deficiency is challenging, partly because of the limited availability of B imaging techniques. In this report we demonstrate the efficacy of using 4-fluorophenylboronic acid (FPBA) as a B imaging agent, which is a derivative of the B deficiency mimic phenylboronic acid (PBA). We show that radioactively labelled [18F]FPBA (t½=110 m) accumulates at the root tip, the root elongation zone and at lateral root initiation sites in maize roots, and also translocates to the shoot where it accumulates along the leaf edges. Treatment of maize seedlings using FPBA and PBA causes a shortened primary root phenotype with absence of lateral roots in a dose-dependent manner. The primary root defects can be partially rescued by the addition of boric acid indicating that PBA can be used to induce B deficiency in maize and that radioactively labelled FPBA can be used to image sites of B demand on a tissue level.


Assuntos
Boro/metabolismo , Ácidos Borônicos/metabolismo , Fluordesoxiglucose F18/metabolismo , Imagem Molecular/métodos , Traçadores Radioativos , Compostos Radiofarmacêuticos/metabolismo , Zea mays/metabolismo , Boro/análise , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Zea mays/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...