Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 458
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(29): e2201711119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858340

RESUMO

Methanol-based biorefinery is a promising strategy to achieve carbon neutrality goals by linking CO2 capture and solar energy storage. As a typical methylotroph, Pichia pastoris shows great potential in methanol biotransformation. However, challenges still remain in engineering methanol metabolism for chemical overproduction. Here, we present the global rewiring of the central metabolism for efficient production of free fatty acids (FFAs; 23.4 g/L) from methanol, with an enhanced supply of precursors and cofactors, as well as decreased accumulation of formaldehyde. Finally, metabolic transforming of the fatty acid cell factory enabled overproduction of fatty alcohols (2.0 g/L) from methanol. This study demonstrated that global metabolic rewiring released the great potential of P. pastoris for methanol biotransformation toward chemical overproduction.


Assuntos
Ácidos Graxos não Esterificados , Engenharia Metabólica , Metanol , Saccharomycetales , Reatores Biológicos , Biotransformação , Ácidos Graxos não Esterificados/biossíntese , Metanol/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo
2.
Biomed Pharmacother ; 147: 112648, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35051863

RESUMO

J147 is a novel drug candidate developed to treat neurological dysfunction. Numerous studies have demonstrated the beneficial effects of J147 in cellular and animal models of disease which has led to the transitioning of the compound into human clinical trials. However, no biomarkers for its target engagement have been identified. Here, we determined if specific metabolites in the plasma could be indicative of J147's activity in vivo. Plasma lipidomics data from three independent rodent studies were assessed along with liver lipidomics data from one of the studies. J147 consistently reduced plasma free fatty acid (FFA) levels across the independent studies. Decreased FFA levels were also found in the livers of J147-treated mice that correlated well with those in the plasma. These changes in the liver were associated with activation of the AMP-activated protein kinase/acetyl-CoA carboxylase 1 signaling pathway. A reduction in FFA levels by J147 was confirmed in HepG2 cells, where activation of the AMPK/ACC1 pathway was seen along with increases in acetyl-CoA and ATP levels which correlated with enhanced cellular bioenergetics. Our data show that J147 targets liver cells to activate the AMPK/ACC1 signaling pathway and preserve energy at the expense of inhibiting FFA synthesis.


Assuntos
Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Acetiltransferases/efeitos dos fármacos , Curcumina/análogos & derivados , Ácidos Graxos não Esterificados/biossíntese , Fígado/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Animais , Curcumina/farmacologia , Feminino , Células Hep G2 , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
3.
Nat Commun ; 12(1): 4976, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404790

RESUMO

To construct a superior microbial cell factory for chemical synthesis, a major challenge is to fully exploit cellular potential by identifying and engineering beneficial gene targets in sophisticated metabolic networks. Here, we take advantage of CRISPR interference (CRISPRi) and omics analyses to systematically identify beneficial genes that can be engineered to promote free fatty acids (FFAs) production in Escherichia coli. CRISPRi-mediated genetic perturbation enables the identification of 30 beneficial genes from 108 targets related to FFA metabolism. Then, omics analyses of the FFAs-overproducing strains and a control strain enable the identification of another 26 beneficial genes that are seemingly irrelevant to FFA metabolism. Combinatorial perturbation of four beneficial genes involving cellular stress responses results in a recombinant strain ihfAL--aidB+-ryfAM--gadAH-, producing 30.0 g L-1 FFAs in fed-batch fermentation, the maximum titer in E. coli reported to date. Our findings are of help in rewiring cellular metabolism and interwoven intracellular processes to facilitate high-titer production of biochemicals.


Assuntos
Escherichia coli/genética , Escherichia coli/isolamento & purificação , Escherichia coli/metabolismo , Ácidos Graxos não Esterificados/biossíntese , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ácidos Graxos/metabolismo , Fermentação , Regulação Bacteriana da Expressão Gênica , Engenharia Metabólica , Redes e Vias Metabólicas/genética , Transcriptoma
4.
ACS Synth Biol ; 10(6): 1417-1428, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34003632

RESUMO

1-Octanol has gained interest as a chemical precursor for both high and low value commodities including fuel, solvents, surfactants, and fragrances. By harnessing the power from sunlight and CO2 as carbon source, cyanobacteria has recently been engineered for renewable production of 1-octanol. The productivity, however, remained low. In the present work, we report efforts to further improve the 1-octanol productivity. Different N-terminal truncations were evaluated on three thioesterases from different plant species, resulting in several candidate thioesterases with improved activity and selectivity toward octanoyl-ACP. The structure/function trials suggest that current knowledge and/or state-of-the art computational tools are insufficient to determine the most appropriate cleavage site for thioesterases in Synechocystis. Additionally, by tuning the inducer concentration and light intensity, we further improved the 1-octanol productivity, reaching up to 35% (w/w) carbon partitioning and a titer of 526 ± 5 mg/L 1-octanol in 12 days. Long-term cultivation experiments demonstrated that the improved strain can be stably maintained for at least 30 days and/or over ten times serial dilution. Surprisingly, the improved strain was genetically stable in contrast to earlier strains having lower productivity (and hence a reduced chance of reaching toxic product concentrations). Altogether, improved enzymes and environmental conditions (e.g., inducer concentration and light intensity) substantially increased the 1-octanol productivity. When cultured under continuous conditions, the bioproduction system reached an accumulative titer of >3.5 g/L 1-octanol over close to 180 days.


Assuntos
1-Octanol/metabolismo , Engenharia Metabólica/métodos , Synechocystis/genética , Synechocystis/metabolismo , 1-Octanol/análise , Biocombustíveis , Ácidos Graxos não Esterificados/análise , Ácidos Graxos não Esterificados/biossíntese , Luz , Plasmídeos/genética , Synechocystis/efeitos da radiação , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo
5.
Int J Biol Sci ; 17(3): 756-767, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33767586

RESUMO

Nasopharyngeal carcinoma (NPC) is one kind of human head and neck cancers with high incidence in Southern China, Southeast Asia and North Africa. In spite of great innovations in radiation and chemotherapy treatments, the 5-year survival rate is not satisfactory. One of the main reasons is resistance to radiotherapy which leads to therapy failure and recurrence of NPC. The mechanism underlying remains to be fully elucidated. Aldo-keto reductase B10 (AKR1B10) plays a role in the formation and development of carcinomas. However, its role in resistance to radiotherapy of NPC is not clear. In this research, the relationships between AKR1B10 expression and the treatment effect of NPC patients, NPC cell survival, cell apoptosis, and DNA damage repair, as well as the effect and mechanism of AKR1B10 expression on NPC radioresistance were explored. A total of 58 paraffin tissues of NPC patients received radiotherapy were collected including 30 patients with radiosensitivity and 28 patients with radioresistance. The relationships between AKR1B10 expression and the treatment effect as well as clinical characteristics were analyzed by immuno-histochemical experiments, and the roles of AKR1B10 in cell survival, apoptosis and DNA damage repair were detected using the AKR1B10 overexpressed cell models. Furthermore the mechanism of AKR1B10 in NPC radioresistance was explored. Finally, the radioresistance effect of AKR1B10 expression was evaluated by the tumor xenograft model of nude mice and the method of radiotherapy. The results showed AKR1B10 expression level was correlated with radiotherapy resistance, and AKR1B10 overexpression promoted proliferation of NPC cells, reduced apoptosis and decreased cellular DNA damage after radiotherapy. The probable molecular mechanism is that AKR1B10 expression activated FFA/TLR4/NF-κB axis in NPC cells. This was validated by using the TLR4 inhibitor TAK242 to treat NPC cells with AKR1B10 expression, which reduced the phosphorylation of NF-κB. This study suggests that AKR1B10 can induce radiotherapy resistance and promote cell survival via FFA/TLR4/NF-κB axis in NPC, which may provide a novel target to fight against radiotherapy resistance of NPC.


Assuntos
Aldo-Ceto Redutases/metabolismo , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/radioterapia , Tolerância a Radiação , Adulto , Linhagem Celular , Ácidos Graxos não Esterificados/biossíntese , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Receptor 4 Toll-Like/metabolismo
6.
Microb Cell Fact ; 19(1): 226, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33302960

RESUMO

BACKGROUND: Saccharomyces cerevisiae is being exploited as a cell factory to produce fatty acids and their derivatives as biofuels. Previous studies found that both precursor supply and fatty acid metabolism deregulation are essential for enhanced fatty acid synthesis. A bacterial pyruvate dehydrogenase (PDH) complex expressed in the yeast cytosol was reported to enable production of cytosolic acetyl-CoA with lower energy cost and no toxic intermediate. RESULTS: Overexpression of the PDH complex significantly increased cell growth, ethanol consumption and reduced glycerol accumulation. Furthermore, to optimize the redox imbalance in production of fatty acids from glucose, two endogenous NAD+-dependent glycerol-3-phosphate dehydrogenases were deleted, and a heterologous NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase was introduced. The best fatty acid producing strain PDH7 with engineering of precursor and co-factor metabolism could produce 840.5 mg/L free fatty acids (FFAs) in shake flask, which was 83.2% higher than the control strain YJZ08. Profile analysis of free fatty acid suggested the cytosolic PDH complex mainly resulted in the increases of unsaturated fatty acids (C16:1 and C18:1). CONCLUSIONS: We demonstrated that cytosolic PDH pathway enabled more efficient acetyl-CoA provision with the lower ATP cost, and improved FFA production. Together with engineering of the redox factor rebalance, the cytosolic PDH pathway could achieve high level of FFA production at similar levels of other best acetyl-CoA producing pathways.


Assuntos
Ácidos Graxos não Esterificados/biossíntese , Engenharia Metabólica , Complexo Piruvato Desidrogenase/genética , Complexo Piruvato Desidrogenase/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acetilcoenzima A/metabolismo , Citosol/enzimologia , NADP/metabolismo , Oxirredução
7.
Immunity ; 53(1): 187-203.e8, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32640259

RESUMO

Only a small percentage of patients afflicted with gastric cancer (GC) respond to immune checkpoint blockade (ICB). To study the mechanisms underlying this resistance, we examined the immune landscape of GC. A subset of these tumors was characterized by high frequencies of regulatory T (Treg) cells and low numbers of effector T cells. Genomic analyses revealed that these tumors bore mutations in RHOA that are known to drive tumor progression. RHOA mutations in cancer cells activated the PI3K-AKT-mTOR signaling pathway, increasing production of free fatty acids that are more effectively consumed by Treg cells than effector T cells. RHOA mutant tumors were resistant to PD-1 blockade but responded to combination of PD-1 blockade with inhibitors of the PI3K pathway or therapies targeting Treg cells. We propose that the metabolic advantage conferred by RHOA mutations enables Treg cell accumulation within GC tumors, generating an immunosuppressive TME that underlies resistance to ICB.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Gástricas/genética , Linfócitos T Reguladores/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Animais , Contagem de Linfócito CD4 , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Quimiocina CXCL10/biossíntese , Quimiocina CXCL11/biossíntese , Ácidos Graxos não Esterificados/biossíntese , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Receptor de Morte Celular Programada 1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/imunologia , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/patologia , Linfócitos T Reguladores/imunologia , Serina-Treonina Quinases TOR/metabolismo , Microambiente Tumoral/imunologia
8.
J Cell Physiol ; 235(3): 2776-2791, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31544977

RESUMO

Therapy-induced senescence in cancer cells is an irreversible antiproliferative state, which inhibits tumor growth and is therefore a potent anti-neoplastic mechanism. In this study, low doses of Abrus agglutinin (AGG)-induced senescence through autophagy in prostate carcinoma cells (PC3) and inhibited proliferation. The inhibition of autophagy with 3-methyl adenine reversed AGG-induced senescence, thus confirming that AGG-triggered senescence required autophagy. AGG treatment also led to lipophagy-mediated accumulation of free fatty acids (FFAs), with a concomitant decrease in the number of lipid droplets. Lalistat, a lysosomal acid lipase inhibitor, abrogated AGG-induced lipophagy and senescence in PC3 cells, indicating that lipophagy is essential for AGG-induced senescence. The accumulation of FFAs increased reactive oxygen species generation, a known facilitator of senescence, which was also reduced in the presence of lalistat. Furthermore, AGG upregulated silent mating type information regulator 2 homolog 1 (SIRT1), while the presence of sirtinol reduced autophagy flux and the senescent phenotype in the AGG-treated cells. Mechanistically, AGG-induced cytoplasmic SIRT1 deacetylated a Lys residue on the cytoplasmic domain of lysosome-associated membrane protein 1 (LAMP1), an autolysosomal protein, resulting in lipophagy and senescence. Taken together, our findings demonstrate a novel SIRT1/LAMP1/lipophagy axis mediating AGG-induced senescence in prostate cancer cells.


Assuntos
Autofagia/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Ácidos Graxos não Esterificados/biossíntese , Proteínas de Membrana Lisossomal/metabolismo , Lectinas de Plantas/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Adenina/análogos & derivados , Adenina/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Autofagia/fisiologia , Benzamidas/farmacologia , Carbamatos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Senescência Celular/fisiologia , Humanos , Masculino , Naftóis/farmacologia , Células PC-3 , Neoplasias da Próstata/patologia , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/metabolismo , Esterol Esterase/antagonistas & inibidores , Tiadiazóis/farmacologia , Regulação para Cima/efeitos dos fármacos
9.
J Hazard Mater ; 384: 121310, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31586915

RESUMO

Previous in vivo exposure studies focused mainly on nuclear receptors involved in hepatotoxicity of triclosan (TCS). As liver plays a vital role in metabolic processes, dysregulations in lipid metabolism have been identified as potential drivers of pathogenesis. Investigation of changes in lipid metabolism might widen our understanding of toxicological effects as well as the underlying mechanism occurring in the liver. In this study, we comprehensively assessed the effect of TCS exposure on hepatic lipid metabolism in mice. Our results showed that TCS induced significant changes in hepatic free fatty acid pool by upregulation of fatty acid uptake and de novo fatty acid synthesis. Besides, hepatic levels of lipids, including acyl carnitine (AcCa), ceramide (Cer), triacylglycerols (TG), phosphatidylcholine (PC), lysophosphatidylcholine (LPC), phosphatidylethanolamine (PE) were also increased, together with upreguation of genes associated to TG synthesis, fatty acid oxidation and inflammation in TCS exposure group. These changes in lipid homeostasis could contribute to membrane instability, lipid accumulation, oxidative stress and inflammation. Our results suggested that TCS exposure could induce hepatic lipid metabolism disorders in mice, which would further contribute to the liver damage effects of TCS.


Assuntos
Anti-Infecciosos Locais/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Transtornos do Metabolismo dos Lipídeos/metabolismo , Triclosan/toxicidade , Animais , Ácidos Graxos não Esterificados/biossíntese , Ácidos Graxos não Esterificados/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Transtornos do Metabolismo dos Lipídeos/patologia , Lipidômica , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Estresse Oxidativo , Triglicerídeos/biossíntese , Regulação para Cima/efeitos dos fármacos
10.
Microb Cell Fact ; 18(1): 20, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30704481

RESUMO

BACKGROUND: Long-chain free fatty acids (FFAs) are a type of backbone molecule that can react with alcohol to produce biodiesels. Various microorganisms have become potent producers of FFAs. Efforts have focused on increasing metabolic flux to the synthesis of either neutral fat or fatty acyl intermediates attached to acyl carrier protein (ACP), which are the source of FFAs. Membrane lipids are also a source of FFAs. As an alternative way of producing FFAs, exogenous phospholipase may be used after heterologous production and localization in the periplasmic space. In this work, we examined whether Rhodobacter sphaeroides, which forms an intracytoplasmic membrane, can be used for long-chain FFA production using phospholipase. RESULTS: The recombinant R. sphaeroides strain Rs-A2, which heterologously produces Arabidopsis thaliana phospholipase A2 (PLA2) in the periplasm, excretes FFAs during growth. FFA productivity under photoheterotrophic conditions is higher than that observed under aerobic or semiaerobic conditions. When the biosynthetic enzymes for FA (ß-ketoacyl-ACP synthase, FabH) and phosphatidate (1-acyl-sn-glycerol-3-phosphate acyltransferase, PlsC) were overproduced in Rs-A2, the FFA productivity of the resulting strain Rs-HCA2 was elevated, and the FFAs produced mainly consisted of long-chain FAs of cis-vaccenate, stearate, and palmitate in an approximately equimolar ratio. The high-cell-density culture of Rs-HCA2 with DMSO in two-phase culture with dodecane resulted in an increase of overall carbon substrate consumption, which subsequently leads to a large increase in FFA productivity of up to 2.0 g L-1 day-1. Overexpression of the genes encoding phosphate acyltransferase (PlsX) and glycerol-3-phosphate acyltransferase (PlsY), which catalyze the biosynthetic steps immediately upstream from PlsC, in Rs-HCA2 generated Rs-HXYCA2, which grew faster than Rs-HCA2 and showed an FFA productivity of 2.8 g L-1 day-1 with an FFA titer of 8.5 g L-1. CONCLUSION: We showed that long-chain FFAs can be produced from metabolically engineered R. sphaeroides heterologously producing PLA2 in the periplasm. The FFA productivity was greatly increased by high-cell-density culture in two-phase culture with dodecane. This approach provides highly competitive productivity of long-chain FFAs by R. sphaeroides compared with other bacteria. This method may be applied to FFA production by other photosynthetic bacteria with similar differentiated membrane systems.


Assuntos
Alcanos/química , Ácidos Graxos não Esterificados/biossíntese , Periplasma/enzimologia , Fosfolipases A2/metabolismo , Rhodobacter sphaeroides/metabolismo , Lipídeos de Membrana/metabolismo , Engenharia Metabólica , Rhodobacter sphaeroides/genética
11.
Cell ; 174(6): 1549-1558.e14, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30100189

RESUMO

Engineering microorganisms for production of fuels and chemicals often requires major re-programming of metabolism to ensure high flux toward the product of interest. This is challenging, as millions of years of evolution have resulted in establishment of tight regulation of metabolism for optimal growth in the organism's natural habitat. Here, we show through metabolic engineering that it is possible to alter the metabolism of Saccharomyces cerevisiae from traditional ethanol fermentation to a pure lipogenesis metabolism, resulting in high-level production of free fatty acids. Through metabolic engineering and process design, we altered subcellular metabolic trafficking, fine-tuned NADPH and ATP supply, and decreased carbon flux to biomass, enabling production of 33.4 g/L extracellular free fatty acids. We further demonstrate that lipogenesis metabolism can replace ethanol fermentation by deletion of pyruvate decarboxylase enzymes followed by adaptive laboratory evolution. Genome sequencing of evolved strains showed that pyruvate kinase mutations were essential for this phenotype.


Assuntos
Ácidos Graxos não Esterificados/biossíntese , Engenharia Metabólica , Saccharomyces cerevisiae/metabolismo , Acetilcoenzima A/metabolismo , Glucose/metabolismo , Glicólise , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Lipogênese , NADP/metabolismo , Via de Pentose Fosfato/genética , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Anal Chem ; 90(8): 5171-5178, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29578696

RESUMO

Microfluidics have been used to create "body-on-chip" systems to mimic in vivo cellular interactions with a high level of control. Most such systems rely on optical observation of cells as a readout. In this work we integrated a cell-cell interaction chip with online microchip electrophoresis immunoassay to monitor the effects of the interaction on protein secretion dynamics. The system was used to investigate the effects of adipocytes on insulin secretion. Chips were loaded with 190 000 3T3-L1 adipocytes and a single islet of Langerhans in separate chambers. The chambers were perfused at 300-600 nL/min so that adipocyte secretions flowed over the islets for 3 h. Adipocytes produced 80 µM of nonesterified fatty acids (NEFAs), a factor known to impact insulin secretion, at the islets. After perfusion, islets were challenged with a step change in glucose from 3 to 11 mM while monitoring insulin secretion at 8 s intervals by online immunoassay. Adipocyte treatment augmented insulin secretion by 6-fold compared to controls. The effect was far greater than comparable concentrations of NEFA applied to the islets demonstrating that adipocytes release multiple factors that can strongly potentiate insulin secretion. The experiments reveal that integration of chemical analysis with cell-cell interaction can provide valuable insights into cellular functions.


Assuntos
Adipócitos/citologia , Eletroforese em Microchip , Imunoensaio , Ilhotas Pancreáticas/citologia , Técnicas Analíticas Microfluídicas , Células 3T3-L1 , Animais , Comunicação Celular , Células Cultivadas , Ácidos Graxos não Esterificados/análise , Ácidos Graxos não Esterificados/biossíntese , Camundongos , Tamanho da Partícula , Propriedades de Superfície
13.
Biotechnol Prog ; 34(1): 91-98, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28960895

RESUMO

Switchgrass is a promising feedstock to generate fermentable sugars required for the sustainable operation of biorefineries because of their abundant availability, easy cropping system, and high cellulosic content. The objective of this study was to investigate the potentiality of switchgrass as an alternative sugar supplier for free fatty acid (FFA) production using engineered Escherichia coli strains. Recombinant E. coli strains successfully produced FFAs using switchgrass hydrolysates. A total of about 3 g/L FFAs were attained from switchgrass hydrolysates by engineered E. coli strains. Furthermore, overall yield assessments of our bioconversion process showed that 88 and 46% of the theoretical maximal yields of glucose and xylose were attained from raw switchgrass during sugar generation. Additionally, 72% of the theoretical maximum yield of FFAs were achieved from switchgrass hydrolysates by recombinant E. coli during fermentation. These shake-flask results were successfully scaled up to a laboratory scale bioreactor with a 4 L working volume. This study demonstrated an efficient bioconversion process of switchgrass-based FFAs using an engineered microbial system for targeting fatty acid production that are secreted into the fermentation broth with associated lower downstream processing costs, which is pertinent to develop an integrated bioconversion process using lignocellulosic biomass. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:91-98, 2018.


Assuntos
Carboidratos/química , Escherichia coli/química , Ácidos Graxos não Esterificados/biossíntese , Panicum/química , Biomassa , Escherichia coli/genética , Fermentação , Glucose/química , Engenharia Metabólica , Açúcares/química , Xilose/química
14.
J Agric Food Chem ; 65(51): 11243-11250, 2017 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-29188707

RESUMO

Transposon mutagenesis was used to identify three mutants of E. coli that exhibited increased free fatty acid (FFA) production, which resulted from the disruption of genes related to membrane transport. Deletion of envR, gusC, and mdlA individually in a recombinant E. coli strain resulted in 1.4-, 1.8-, and 1.2-fold increases in total FFA production, respectively. In particular, deletion of envR increased the percentage of extracellular FFA to 46%, compared with 29% for the control strain. Multiple deletion of envR, gusC, mdlA, ompF, and fadL had a synergistic effect on FFA production, resulting in high extracellular FFA production, comprising up to 50% of total FFA production. This study has identified new membrane proteins involved in FFA production and showed that genetic engineering targeting these membrane transporters is important to increase both total FFA and extracellular FFA production.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Graxos não Esterificados/biossíntese , Proteínas de Membrana Transportadoras/genética , Proteínas Repressoras/genética , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Deleção de Genes , Engenharia Genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Repressoras/metabolismo
15.
Med Princ Pract ; 26(6): 561-566, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28898884

RESUMO

OBJECTIVE: To investigate free fatty acid levels and histopathological changes in the brain of rats fed a high fructose diet (HFrD) and to evaluate the effects of Mucuna pruriens, known to have antidiabetic activity, on these changes. MATERIALS AND METHODS: The study comprised 28 mature female Wistar rats. The rats were divided into 4 groups, each included 7 rats. Group 1: control; group 2: fed an HFrD; group 3: fed normal rat chow and M. pruriens; group 4: fed an HFrD and M. pruriens for 6 weeks. At the end of 6 weeks, the rats were decapitated, blood and brain tissues were obtained. Serum glucose and triglyceride levels were measured. Free fatty acid levels were measured in 1 cerebral hemisphere of each rat and histopathological changes in the other. The Mann-Whitney U test was used to compare quantitative continuous data between 2 independent groups, and the Kruskal-Wallis test was used to compare quantitative continuous data between more than 2 independent groups. RESULTS: Arachidonic acid and docosahexaenoic acid levels were significantly higher in group 2 than in group 1 (p < 0.05). Free arachidonic acid and docosahexaenoic acid levels in group 4 were significantly less than in group 2 (p < 0.05). Histopathological examination of group 2 revealed extensive gliosis, neuronal hydropic degeneration, and edema. In group 4, gliosis was much lighter than in group 2, and edema was not observed. Neuronal structures in group 4 were similar to those in group 1. CONCLUSIONS: The HFrD increased the levels of free arachidonic acid and docosahexaenoic acid probably due to membrane degradation resulting from possible oxidative stress and inflammation in the brain. The HFrD also caused extensive gliosis, neuronal hydropic degeneration, and edema. Hence, M. pruriens could have therapeutic effects on free fatty acid metabolism and local inflammatory responses in the brains of rats fed an HFrD.


Assuntos
Ácidos Graxos não Esterificados/biossíntese , Frutose/farmacologia , Mucuna , Extratos Vegetais/farmacologia , Animais , Ácido Araquidônico/biossíntese , Glicemia , Cérebro/efeitos dos fármacos , Cérebro/patologia , Ácidos Docosa-Hexaenoicos/biossíntese , Feminino , Gliose/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Triglicerídeos/sangue
16.
J Dermatol Sci ; 88(1): 57-66, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28571749

RESUMO

BACKGROUND: The barrier dysfunction in atopic dermatitis (AD) skin correlates with stratum corneum (SC) lipid abnormalities including reduction of global lipid content, shorter ceramide (CER) as well as free fatty acid (FFA) chain length and altered CER subclass levels. However, the underlying cause of these changes in lipid composition has not been fully investigated. AIM: We investigated whether the expression of CER and FFA biosynthesis enzymes are altered in AD skin compared with control skin and determine whether changes in enzyme expression can be related with changes in lipid composition. METHODS: In AD patients and controls the expression of enzymes involved in the biosynthesis of FFAs and CERs was analyzed in relation to the SC lipid composition. These enzymes include stearoyl CoA desaturase (SCD), elongase 1 (ELOVL1) and ELOVL6 involved in FFA synthesis and ß-glucocerebrosidase (GBA), acid-sphingomyelinase (aSmase), ceramide synthase 3 (CerS3) involved in CER synthesis. In TH2 treated human skin equivalents (AD HSEs) mimicking lesional AD skin, the mRNA expression of these enzymes was investigated. RESULTS: The results reveal an altered expression of SCD and ELOVL1 in AD lesional skin. This was accompanied by functional changes displayed by increased unsaturated FFAs (SCD) and reduced FFA C22-C28 (ELOVL1) in AD lesional skin. The expression of GBA, aSmase and CerS3 were also altered in lesional skin. The CER composition in AD lesional skin showed corresponding changes such as increased CER AS and NS (aSmase) and decreased esterified ω-hydroxy CERs (CerS3). In support of the results from AD skin, the AD HSEs showed reduced mRNA ELOVL1, GBA and a Smase levels. CONCLUSION: This study shows that alterations in the expression of key enzymes involved in SC lipid synthesis contribute to changes in the lipid composition in AD skin and inflammation may influence expression of these enzymes.


Assuntos
Ceramidas/metabolismo , Dermatite Atópica/patologia , Epiderme/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Lipogênese , Acetiltransferases/metabolismo , Adulto , Células Cultivadas , Ceramidas/análise , Ceramidas/biossíntese , Citocinas/imunologia , Dermatite Atópica/imunologia , Células Epidérmicas , Epiderme/patologia , Elongases de Ácidos Graxos , Ácidos Graxos não Esterificados/análise , Ácidos Graxos não Esterificados/biossíntese , Feminino , Glucosilceramidase/metabolismo , Humanos , Queratinócitos , Masculino , Esfingomielina Fosfodiesterase/metabolismo , Esfingosina N-Aciltransferase/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Células Th2/metabolismo , Adulto Jovem
17.
Am J Physiol Endocrinol Metab ; 313(1): E26-E36, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28325733

RESUMO

Evidence has accumulated that obesity-related metabolic dysregulation is associated with overactivation of the endocannabinoid system (ECS), which involves cannabinoid receptor 1 (CB1R), in peripheral tissues, including adipose tissue (AT). The functional consequences of CB1R activation on AT metabolism remain unclear. Since excess fat mobilization is considered an important primary event contributing to the onset of insulin resistance, we combined in vivo and in vitro experiments to investigate whether activation of ECS could alter the lipolytic rate. For this purpose, the appearance of plasma glycerol was measured in wild-type and CB1R-/- mice after acute anandamide administration or inhibition of endocannabinoid degradation by JZL195. Additional experiments were conducted on rat AT explants to evaluate the direct consequences of ECS activation on glycerol release and signaling pathways. Treatments stimulated glycerol release in mice fasted for 6 h and injected with glucose but not in 24-h fasted mice or in CB1R-/-, suggesting that the effect was dependent on plasma insulin levels and mediated by CB1R. We concomitantly observed that Akt cascade activity was decreased, indicating an alteration of the antilipolytic action of insulin. Similar results were obtained with tissue explants exposed to anandamide, thus identifying CB1R of AT as a major target. This study indicates the existence of a functional interaction between CB1R and lipolysis regulation in AT. Further investigation is needed to test if the elevation of ECS tone encountered in obesity is associated with excess fat mobilization contributing to ectopic fat deposition and related metabolic disorders.


Assuntos
Tecido Adiposo/fisiologia , Endocanabinoides/metabolismo , Resistência à Insulina/fisiologia , Insulina/sangue , Lipólise/fisiologia , Receptor CB1 de Canabinoide/metabolismo , Animais , Ácidos Graxos não Esterificados/biossíntese , Hidrólise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regulação para Cima/fisiologia
18.
Can J Microbiol ; 63(4): 321-329, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28335611

RESUMO

Acinetobacter baylyi is one of few Gram-negative bacteria capable of accumulating storage lipids in the form of triacylglycerides and wax esters, which makes it an attractive candidate for production of lipophilic products, including biofuel precursors. Thioesterases play a significant dual role in the triacylglyceride and wax ester biosynthesis by either providing or removing acyl-CoA from this pathway. Therefore, 4 different thioesterase genes were cloned from Acinetobacter baylyi ADP1 and expressed in Escherichia coli to investigate their contribution to free fatty acids (FFAs) accumulation. Overexpression of the genes tesA' (a leaderless form of the gene tesA) and tesC resulted in increased accumulation of FFAs when compared with the host E. coli strain. Overexpression of tesA' showed a 1.87-fold increase in production of long-chain fatty acids (C16 to C18) over the host strain. Unlike TesC and the other investigated thioesterases, the TesA' thioesterase also produced shorter chain FFAs (e.g., myristic acid) and unsaturated FFAs (e.g., cis-vaccenic acid (18:1Δ11)). A comparison of the remaining 3 A. baylyi ADP1 thioesterases (encoded by the tesB, tesC, and tesD genes) revealed that only the strain containing the tesC gene produced statistically higher levels of FFAs over the control, suggesting that it possesses the acyl-ACP thioesterase activity. Both E. coli strains containing the tesB and tesD genes produced levels of FFAs similar to those of the plasmid-free control E. coli strain, which indicates that TesB and TesD lack the acyl-ACP thioesterase activity.


Assuntos
Acinetobacter/metabolismo , Ácidos Graxos não Esterificados/biossíntese , Tioléster Hidrolases/genética , Biocombustíveis , Escherichia coli/genética
19.
BMC Genomics ; 18(1): 33, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28056772

RESUMO

BACKGROUND: Finding a source from which high-energy-density biofuels can be derived at an industrial scale has become an urgent challenge for renewable energy production. Some microorganisms can produce free fatty acids (FFA) as precursors towards such high-energy-density biofuels. In particular, photosynthetic cyanobacteria are capable of directly converting carbon dioxide into FFA. However, current engineered strains need several rounds of engineering to reach the level of production of FFA to be commercially viable; thus new chassis strains that require less engineering are needed. Although more than 120 cyanobacterial genomes are sequenced, the natural potential of these strains for FFA production and excretion has not been systematically estimated. RESULTS: Here we present the FFA SC (FFASC), an in silico screening method that evaluates the potential for FFA production and excretion of cyanobacterial strains based on their proteomes. A literature search allowed for the compilation of 64 proteins, most of which influence FFA production and a few of which affect FFA excretion. The proteins are classified into 49 orthologous groups (OGs) that helped create rules used in the scoring/ranking of algorithms developed to estimate the potential for FFA production and excretion of an organism. Among 125 cyanobacterial strains, FFASC identified 20 candidate chassis strains that rank in their FFA producing and excreting potential above the specifically engineered reference strain, Synechococcus sp. PCC 7002. We further show that the top ranked cyanobacterial strains are unicellular and primarily include Prochlorococcus (order Prochlorales) and marine Synechococcus (order Chroococcales) that cluster phylogenetically. Moreover, two principal categories of enzymes were shown to influence FFA production the most: those ensuring precursor availability for the biosynthesis of lipids, and those involved in handling the oxidative stress associated to FFA synthesis. CONCLUSION: To our knowledge FFASC is the first in silico method to screen cyanobacteria proteomes for their potential to produce and excrete FFA, as well as the first attempt to parameterize the criteria derived from genetic characteristics that are favorable/non-favorable for this purpose. Thus, FFASC helps focus experimental evaluation only on the most promising cyanobacteria.


Assuntos
Biologia Computacional/métodos , Cianobactérias/genética , Cianobactérias/metabolismo , Ácidos Graxos não Esterificados/biossíntese , Algoritmos , Análise por Conglomerados , Simulação por Computador , Cianobactérias/classificação , Redes e Vias Metabólicas , Fotossíntese , Filogenia , Proteoma , Proteômica/métodos
20.
J Ind Microbiol Biotechnol ; 44(3): 419-430, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28097501

RESUMO

Two engineered Escherichia coli strains, DQ101 (MG1655 fadD -)/pDQTES and DQ101 (MG1655 fadD -)/pDQTESZ were constructed to investigate the free fatty acid production using ionic liquid-based acid- or enzyme-catalyzed bamboo hydrolysate as carbon source in this study. The plasmid, pDQTES, carrying an acyl-ACP thioesterase 'TesA of E. coli in pTrc99A was constructed firstly, and then (3R)-hydroxyacyl-ACP dehydratase was ligated after the TesA to give the plasmid pDQTESZ. These two strains exhibited efficient fatty acid production when glucose was used as the sole carbon source, with a final concentration of 2.45 and 3.32 g/L, respectively. The free fatty acid production of the two strains on xylose is not as efficient as that on glucose, which was 2.32 and 2.96 g/L, respectively. For mixed sugars, DQ101 (MG1655 fadD -)-based strains utilized glucose and pentose sequentially under the carbon catabolite repression (CCR) regulation. The highest total FFAs concentration from the mixed sugar culture reached 2.81 g/L by DQ101 (MG1655 fadD -)/pDQTESZ. Furthermore, when ionic liquid-based enzyme-catalyzed bamboo hydrolysate was used as the carbon source, the strain DQ101 (MG1655 fadD -)/pDQTESZ could produce 1.23 g/L FFAs with a yield of 0.13 g/g, and while it just produced 0.65 g/L free fatty acid with the ionic liquid-based acid-catalyzed bamboo hydrolysate as the feedstock. The results suggested that enzymatic catalyzed bamboo hydrolysate with ionic liquid pretreatment could serve as an efficient feedstock for free fatty acid production.


Assuntos
Ácidos Graxos não Esterificados/biossíntese , Líquidos Iônicos/química , Poaceae/química , Carboidratos/química , Meios de Cultura/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fermentação , Glucose/química , Engenharia Metabólica , Microrganismos Geneticamente Modificados , Plasmídeos/genética , Plasmídeos/metabolismo , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...