Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36144599

RESUMO

Over the last decades, we have witnessed an increasing interest in food-related products containing vegetable oils. These oils can be obtained either by extraction or by mechanical pressing of different parts of plants (e.g., seeds, fruit, and drupels). Producers of nutraceuticals have ceaselessly searched for unique and effective natural ingredients. The enormous success of argan oil has been followed by discoveries of other interesting vegetable oils (e.g., pomegranate oil) containing several bioactives. This work describes the pomegranate fruit extract and seed oil as a rich source of conjugated linolenic acid as a metabolite of punicic acid (PA), deriving from the omega-5 family (ω-5). Through the chemical characterization of PA, its nutritional and therapeutic properties are highlighted together with the physiological properties that encourage its use in human nutrition. We analyzed the composition of all fatty acids with beneficial properties occurring in pomegranate seed oil using gas chromatography (GC) with flame-ionization detection (FID) analysis combined with Fourier transform infrared spectroscopy (FTIR). Pomegranate seed oil mainly consists of 9,11,13-octadic-trienoic acid (18:3), corresponding to 73 wt % of the total fatty acids. Nine components were identified by GC in PSO, varying between 0.58 and 73.19 wt %. Using midinfrared (MIR) spectroscopy, we compared the composition of pomegranate seed oil with that of meadowfoam seed oil (MSO), which is also becoming increasingly popular in the food industry due to its high content of long chain fatty acids (C20-22), providing increased oil stability. From the results of FTIR and MIR spectroscopy, we found that punicic acid is unique in PSO (73.19 wt %) but not in MSO.


Assuntos
Lythraceae , Punica granatum , Cromatografia Gasosa , Ácidos Graxos/química , Humanos , Ácidos Linolênicos/química , Lythraceae/química , Extratos Vegetais/química , Óleos de Plantas/química , Sementes/química , Espectroscopia de Infravermelho com Transformada de Fourier
2.
J Chromatogr A ; 1649: 462236, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34038777

RESUMO

The widespread presence of lipid hydroperoxides in foodstuffs and biological samples has aroused great attentions in recent years, while it remains challenging for analysis of the fragility of O - O bond linkage of peroxides. In this present study, we explored the utility of electrospray ionization mass spectrometry (ESI-MS) for characterization of two fatty acid hydroperoxides from oxidation of linoleic acid and α-linolenic acid, which are the essential fatty acids abundant in many seeds and vegetable oils. The results indicated that in-source fragmentation occurred in the detection of the two fatty acid hydroperoxides in both positive and negative ion modes, which yielded characteristic fragments for ESI-MS analysis. In addition, the genotoxicity of fatty acid hydroperoxides for generation of nucleoside adducts was investigated. It was found that a variety of nucleoside adducts were formed from the reactions of fatty acid hydroperoxides and nucleosides. Furthermore, the decomposition products of the fatty acid hydroperoxides were determined, which provided evidence to elucidate the reaction mechanism for formation of nucleoside adducts.


Assuntos
Ácidos Graxos/química , Ácidos Linoleicos/química , Ácidos Linolênicos/química , Peróxidos Lipídicos/química , Nucleosídeos/química , Cromatografia Líquida de Alta Pressão/métodos , Oxirredução , Óleos de Plantas/química , Espectrometria de Massas por Ionização por Electrospray/métodos
3.
Bioorg Chem ; 108: 104657, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33556697

RESUMO

Wound healing represents an urgent need from the clinical point of view. Several diseases result in wound conditions which are difficult to treat, such as in the case of diabetic foot ulcer. Starting from there, the medicinal research has focused on various targets over the years, including GPCRs as new wound healing drug targets. In line with this, GPR120, known to be an attractive target in type 2 diabetes drug discovery, was studied to finalize the development of new wound healing agents. Pinocembrin (HW0) was evaluated as a suitable compound for interacting with GPR120, and was hybridized with fatty acids, which are known endogenous GPR120 ligands, to enhance the wound healing potential and GPR120 interactions. HW0 and its 7-linolenoyl derivative (HW3) were found to be innovative wound healing agents. Immunofluorescence and functional assays suggested that their activity was mediated by GPR120, and docking simulations showed that the compounds could share the same pocket occupied by the known GPR120 agonist, TUG-891.


Assuntos
Ésteres/farmacologia , Flavanonas/farmacologia , Ácidos Linolênicos/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Cicatrização/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ésteres/síntese química , Ésteres/química , Flavanonas/síntese química , Flavanonas/química , Humanos , Ácidos Linolênicos/síntese química , Ácidos Linolênicos/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
4.
J Appl Microbiol ; 130(5): 1602-1610, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33030792

RESUMO

AIMS: The aim of the study was to investigate the isomerization of linoleic (LA) and linolenic acids (LNAs) into their conjugated isomers by Propionibacterium freudenreichii DSM 20270 and utilize this feature for microbial enrichment of blackcurrant press residue (BCPR) with health-beneficial conjugated fatty acids. METHODS AND RESULTS: First, the ability of P. freudenreichii to isomerize 0·4 mg ml-1 of LA and LNA was studied in lactate growth medium. Free LA and α-LNA were efficiently converted into conjugated linoleic (CLA) and α-linolenic acid (α-CLNA), being the predominant isomers c9,t11-CLA and c9,t11,c15-CLNA, respectively. The bioconversion of α-LNA by P. freudenreichii was more efficient in terms of formation rate, yield and isomer-specificity. Thereafter, free LA and LNAs obtained from hydrolysed BCPR neutral lipids, by lipolytically active oat flour, were subjected to microbial isomerization in BCPR slurries. In 10% (w/v) slurries, a simultaneous enrichment in c9,t11-CLA and c9,t11,c15-CLNA of up to 0·51 and 0·29 mg ml-1 was observed from starting levels of 0·96 mg LA ml-1 and 0·37 mg α-LNA ml-1 respectively. CONCLUSIONS: This study shows that growing cultures of P. freudenreichii DSM 20270 are able to simultaneously enrich BCPR with health-beneficial conjugated isomers of LA and α-LNA. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrates that microbial isomerization technique can be utilized to enrich lipid-containing plant materials with bioactive compounds and thereby enable valorization of low value plant-based side streams from food industry into value-added food ingredients.


Assuntos
Ácidos Linoleicos Conjugados/biossíntese , Propionibacterium freudenreichii/metabolismo , Eliminação de Resíduos/métodos , Ribes/química , Hidrólise , Isomerismo , Ácidos Linoleicos Conjugados/química , Ácidos Linolênicos/química , Ácidos Linolênicos/metabolismo , Metabolismo dos Lipídeos , Lipídeos/análise , Propionibacterium freudenreichii/crescimento & desenvolvimento
5.
Molecules ; 25(21)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33113947

RESUMO

A combination of selective 1D Total Correlation Spectroscopy (TOCSY) and 1H-13C Heteronuclear Multiple Bond Correlation (HMBC) NMR techniques has been employed for the identification of methyl linolenate primary oxidation products without the need for laborious isolation of the individual compounds. Complex hydroperoxides and diastereomeric endo-hydroperoxides were identified and quantified. Strongly deshielded C-O-O-H 1H-NMR resonances of diastereomeric endo-hydroperoxides in the region of 8.8 to 9.6 ppm were shown to be due to intramolecular hydrogen bonding interactions of the hydroperoxide proton with an oxygen atom of the five-member endo-peroxide ring. These strongly deshielded resonances were utilized as a new method to derive, for the first time, three-dimensional structures with an assignment of pairs of diastereomers in solution with the combined use of 1H-NMR chemical shifts, Density Functional Theory (DFT), and Our N-layered Integrated molecular Orbital and molecular Mechanics (ONIOM) calculations.


Assuntos
Ácidos Graxos/química , Peróxido de Hidrogênio/química , Ácidos Linolênicos/química , Espectroscopia de Ressonância Magnética , Teoria da Densidade Funcional , Modelos Moleculares , Conformação Molecular , Soluções , Estereoisomerismo
6.
IET Nanobiotechnol ; 14(5): 417-422, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32691745

RESUMO

The aim of the present study was to synthesize a novel biopolymeric micelle based on punicic acid (PA) and polyacrylamide (PAM) for carrying chemotherapeutic drugs used in prostate cancer treatment. A polymer composite micelle was prepared by chemical conjugation between PAM and PA. The micelles were prepared by self-assembly via film casting followed by ultrasonication method. The successful production of PAMPA copolymeric micelles was confirmed using FTIR, 1H-NMR, and TEM. Then, flutamide was loaded in the designed nanomicelles and they were characterized. The cell cytotoxicity of the micelles was studied on PC3 cells of prostate cancer. The prepared nanomicelles showed the particle size of 88 nm, PDI of 0.246, zeta potential of -9 mV, drug loading efficiency of 94.5%, drug release of 85.6% until 10 hours in pH 7.4 and CMC of 74.13 µg/ml. The cell viability in blank nanocarriers was about 70% in PC3 cells at concentration of 25 µM. More significant cytotoxic effects were seen for flutamide loaded micelles at this concentration compared to the free drug. The results suggest that the PAMPA co-polymeric nanomicelles can be utilized as an effective carrier to enhance the cytotoxic effects of flutamide in prostate cancer.


Assuntos
Resinas Acrílicas/química , Antineoplásicos , Flutamida , Ácidos Linolênicos/química , Micelas , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos , Flutamida/química , Flutamida/farmacocinética , Flutamida/farmacologia , Humanos , Masculino , Células PC-3 , Neoplasias da Próstata/metabolismo
7.
Molecules ; 25(11)2020 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-32486338

RESUMO

This study investigated the effect of blanching pomegranate seeds (PS) on oil yield, refractive index (RI), yellowness index (YI), conjugated dienes (K232), conjugated trienes (K270), total carotenoid content (TCC), total phenolic compounds (TPC) and DPPH radical scavenging of the extracted oil. Furthermore, phytosterol and fatty acid compositions of the oil extracted under optimum blanching conditions were compared with those from the oil extracted from unblanched PS. Three different blanching temperature levels (80, 90, and 100 °C) were studied at a constant blanching time of 3 min. The blanching time was then increased to 5 min at the established optimum blanching temperature (90 °C). Blanching PS increased oil yield, K232, K270, stigmasterol, punicic acid, TPC and DPPH radical scavenging, whereas YI, ß-sitosterol, palmitic acid and linoleic acid were decreased. The RI, TCC, brassicasterol, stearic acid, oleic acid and arachidic acid of the extracted oil were not significantly (p > 0.05) affected by blanching. Blanching PS at 90 °C for 3 to 5 min was associated with oil yield, TPC and DPPH. Blanching PS at 90 °C for 3 to 5 min will not only increase oil yield but could also improve functional properties such as antioxidant activity, which are desirable in the cosmetic, pharmaceutical, nutraceutical and food industries.


Assuntos
Antioxidantes/química , Carotenoides/química , Óleos de Plantas/química , Punica granatum/química , Sementes/química , Compostos de Bifenilo/química , Colestadienóis/química , Suplementos Nutricionais , Ácidos Eicosanoicos/química , Ácidos Graxos/química , Tecnologia de Alimentos , Sequestradores de Radicais Livres/química , Ácido Linoleico/química , Ácidos Linolênicos/química , Ácido Oleico/química , Fenol/química , Fenóis/química , Fitosteróis/química , Picratos/química , Refratometria , Ácidos Esteáricos/química , Temperatura
8.
Recent Pat Nanotechnol ; 14(4): 360-374, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32400341

RESUMO

BACKGROUND: Targeted nanocarriers can be used for reducing the unwanted side effects of drugs in non-target organs. Punicic acid, the polyunsaturated fatty acid of pomegranate seed oil, has been shown to possess anti-cancer effects on prostate cancer and the study also covers recent patents related to prostate cancer. The objective of the current study was to synthesize a co-polymeric micelle for delivery of Flutamide (FL) in prostate cancer using Polyacrylamide (PAM) and Punicic Acid (PA). METHODS: The co-polymer of PAM and PA was synthesized and conjugated to folic acid. The successful conjugation was studied computationally by the density functional theory method and was confirmed by the FT- IR and 1HNMR. The folate-PAMPA micelles produced by the film casting method were characterized physically. FL was loaded in the nanomicelles and its release test was done at different pH. The Critical Micelle Concentration (CMC) was measured by pyrene as a fluorescent probe. Their cellular uptake and cytotoxicity were evaluated on PC3 prostate cancer cells. The molecular geometry and vibrational frequencies of two different possibilities for conjugation were calculated using the B3LYP/6-31G basis set. RESULTS: The CMC of the micelles and their particle size were 79.05 µg/ml and 88 nm, respectively. The resulting nanocarriers of FL showed significantly more cytotoxic effects than the free drug at a concentration of 25 µM. The calculated results showed that the optimized geometries could well reproduce the structural parameters, and the theoretical vibrational frequencies were in good agreement with the experimental values. CONCLUSION: Folate-PAMPA nanomicelles may be promising for the enhancement of FL cytotoxicity and seem to potentiate the effect of chemotherapeutic agents used in prostate cancer treatment.


Assuntos
Resinas Acrílicas/química , Teoria da Densidade Funcional , Sistemas de Liberação de Medicamentos , Flutamida/uso terapêutico , Ácido Fólico/química , Ácidos Linolênicos/química , Micelas , Neoplasias da Próstata/tratamento farmacológico , Resinas Acrílicas/síntese química , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Fluorescência , Flutamida/farmacologia , Humanos , Ácidos Linolênicos/síntese química , Masculino , Conformação Molecular , Nanopartículas/ultraestrutura , Tamanho da Partícula , Espectroscopia de Prótons por Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier
9.
J Agric Food Chem ; 67(22): 6091-6101, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31070027

RESUMO

Conjugated fatty acids (CFAs) including both conjugated linoleic acids (CLAs) and conjugated linolenic acids (CLNAs) have various health promoting effects. These beneficial effects are comprised by their antioxidant, antiatherogenecity, anticarcinogenic activities, etc. Several reports indicate that CLNAs such as eleostearic acid, punicic acid, jacaric acid, and calendic acid possess anticancer properties. These CLNAs are produced and accumulated in seeds of certain commonly available plants. This review discusses their role in chemoprevention of cancer. Using in vitro as well as in vivo models of cancer, bioactivities of these CLNAs have been explored in detail. CLNAs have been shown to have potent anticancer activity as compared to the CLAs. Although the molecular basis of these effects has been summarized here, more detailed studies are needed to explore the underlying mechanisms. Further clinical trials are obligatory for assessing the safety and efficacy of CLNAs as an anticancer agent.


Assuntos
Ácidos Linolênicos/administração & dosagem , Neoplasias/prevenção & controle , Animais , Quimioprevenção , Humanos , Ácidos Linoleicos Conjugados/administração & dosagem , Ácidos Linoleicos Conjugados/química , Ácidos Linolênicos/química
10.
Anticancer Agents Med Chem ; 19(9): 1120-1131, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30950355

RESUMO

BACKGROUND: Punicic Acid (PA) is a polyunsaturated fatty acid that accounts for approximately 70%- 80% of Pomegranate Seed Oil (PSO). PA possesses strong antioxidant, anti-inflammatory, anti-atherogenic effects, and anti-tumorigenic properties. Pomegranate extracts have been shown to have anticancer activity in many studies. However, there is no evidence for the effect of PSO on T98 glioblastoma cells. Therefore, the present study was the first to investigate the mechanisms induced by PA on T98 cells, which is one of the major compounds extracted from PSO. METHODS: The effects of PA on cell viability; oxidative stress; and migration, proliferation, and apoptosis at the IC50 dose were studied. RESULTS: The proliferation and migration were inhibited in the treated group compared to the non-treated group by 9.85µl/ml PA. The difference was statistically significant (***p<0.001). Furthermore, PA-induced apoptosis in the T98 glioblastoma cells compared to non-treated group and the difference was statistically significant (***p<0.001). Apoptosis was determined via immunocytochemistry staining of caspase-3, caspase-9 and TUNEL methods. Apoptosis was checked by flow cytometry (using caspase 3 methods) and Scanning Electron Microscopy Analysis. We also investigated the potential signaling pathway underlying this apoptotic effect. The immunocytochemical stainings of PI3K/ Akt-1/ mTOR-1 demonstrated that Akt-1 staining was increased with PA treatment similar to mTOR-1 and PI3K staining (***p<0.001). These increases were statistically significant compared to the non-treated group. CONCLUSION: PA exhibited exceptional abilities as an anticancer agent against GBM cells. The use of punicic acid in combination with other drugs used in the treatment of glioblastoma may increase the efficacy of the treatment. This study provided a basis for future investigation of its use in preclinical and clinical studies.


Assuntos
Movimento Celular/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Ácidos Linolênicos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Ácidos Linolênicos/síntese química , Ácidos Linolênicos/química , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Relação Estrutura-Atividade
11.
Nanomedicine (Lond) ; 14(5): 529-552, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30753111

RESUMO

AIM: The present work provides first-time empirical and molecular interaction evidence to establish the higher biofunctionality of a therapeutic lipid, α-eleostearic acid (ESA), encapsulated in a novel and thoroughly characterized biocompatible nanoemulsion (NE) system (particle size <200 nm). MATERIALS & METHODS: A novel methodology was employed to fabricate novel formulations of ESA. Molecular biological tools and assays were used to arrive at definite conclusions. RESULTS: The proinflammatory profile was found to be significantly mitigated in the hypersensitized rats administered with the ESA-NE formulation more emphatically as compared with ESA-conventional emulsion in both in vivo and ex vivo models. CONCLUSION: The novel ESA-NE formulation shows a lot of palpable promise for clinical applications.


Assuntos
Emulsões/química , Inflamação/patologia , Ácidos Linolênicos/química , Animais , Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Emulsões/uso terapêutico , Citometria de Fluxo , Voluntários Saudáveis , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Ácidos Linolênicos/uso terapêutico , Masculino , Óxido Nítrico/metabolismo , Tamanho da Partícula , Peroxidase/metabolismo , Óleos de Plantas/química , Ratos
12.
Plant J ; 98(5): 928-941, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30735592

RESUMO

Abscisic acid (ABA) receptors belong to the START domain superfamily, which encompasses ligand-binding proteins present in all kingdoms of life. START domain proteins contain a central binding pocket that, depending on the protein, can couple ligand binding to catalytic, transport or signaling functions. In Arabidopsis, the best characterized START domain proteins are the 14 PYR/PYL/RCAR ABA receptors, while the other members of the superfamily do not have assigned ligands. To address this, we used affinity purification of biotinylated proteins expressed transiently in Nicotiana benthamiana coupled to untargeted LC-MS to identify candidate binding ligands. We optimized this method using ABA-PYL interactions and show that ABA co-purifies with wild-type PYL5 but not a binding site mutant. The Kd of PYL5 for ABA is 1.1 µm, which suggests that the method has sufficient sensitivity for many ligand-protein interactions. Using this method, we surveyed a set of 37 START domain-related proteins, which resulted in the identification of ligands that co-purified with MLBP1 (At4G01883) or MLP165 (At1G35260). Metabolite identification and the use of authentic standards revealed that MLBP1 binds to monolinolenin, which we confirmed using recombinant MLBP1. Monolinolenin also co-purified with MLBP1 purified from transgenic Arabidopsis, demonstrating that the interaction occurs in a native context. Thus, deployment of this relatively simple method allowed us to define a protein-metabolite interaction and better understand protein-ligand interactions in plants.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação a Ácido Graxo/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Ligantes , Ácidos Linolênicos/química , Ácidos Linolênicos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Transdução de Sinais
13.
Carbohydr Polym ; 205: 571-580, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30446143

RESUMO

Introduction of linolenic acid (LNA) and methoxy poly (ethylene glycol) (MPEG) to the backbone of oligochitosan (CS) afforded LNA-modified MPEG-CS conjugate (MPEG-CS-LNA). Amphotericin B-loaded MPEG-CS-LNA micelles (AmB-M) were prepared via dialysis method with 82.27 ± 1.96% of drug encapsulation efficiency and 10.52 ± 0.22% of drug loading capacity. The AmB-M enhanced AmB's water-solubility to 1.64 mg/mL, being 1640-folds higher than native AmB. The AmB-M obviously reduced hemolytic effect and renal toxicity of AmB when compared to marketed AmB injection (AmB-I). Its antifungal activity against Candida albicans was equivalent to AmB-I although AmB's release from AmB-M was significantly retarded. According to fluorescence microscopy test, the unchanged activity should be attributed to enhanced fungal cellular uptake of AmB-M caused by combined inducement of LNA and CS. The pharmacokinetic studies demonstrated that AmB-M also improved the pharmacokinetic parameters of AmB with AmB-I as control. Conclusively, developed LNA-modified MPEG-CS micellar system could be a viable alternative to the current toxic commercial AmB-I as a highly efficacious drug delivery system.


Assuntos
Anfotericina B/farmacologia , Antifúngicos/farmacologia , Portadores de Fármacos/química , Ácidos Linolênicos/química , Micelas , Polímeros/química , Animais , Candida albicans/efeitos dos fármacos , Quitina/análogos & derivados , Quitina/síntese química , Quitina/química , Quitina/farmacocinética , Quitina/toxicidade , Quitosana , Portadores de Fármacos/síntese química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Eritrócitos/efeitos dos fármacos , Hemólise , Rim/efeitos dos fármacos , Ácidos Linolênicos/síntese química , Ácidos Linolênicos/farmacocinética , Ácidos Linolênicos/toxicidade , Masculino , Camundongos , Oligossacarídeos , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/toxicidade , Polímeros/síntese química , Polímeros/farmacocinética , Polímeros/toxicidade , Ratos Sprague-Dawley
14.
J Cell Physiol ; 234(3): 2112-2120, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30317607

RESUMO

Diabetes is one of the most prevalent diseases in the worldwide. Type 2 diabetes mellitus (T2DM), the most common form of the disease, has become a serious threat to public health and is a growing burden on global economies. Due to the unexpected adverse effects of antidiabetic medicines, the use of nutraceuticals as a complementary therapy has drawn extensive attention by investigators. In this issue, a novel nutraceutical, Punicic acid (PA)-the main ingredient of pomegranate seed oil (PSO) that has potential therapeutic effects in T2DM-has been investigated. PA is a peroxisome proliferator-activated receptor gamma agonist, and unlike synthetic ligands, such as thiazolidinediones, it has no side effects. PA exerts antidiabetic effects via various mechanisms, such as reducing inflammatory cytokines, modulating glucose homeostasis, and antioxidant properties. In this review, we discussed the potential therapeutic effects of PSO and PA and represented the related mechanisms involved in the management of T2DM.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Ácidos Linolênicos/uso terapêutico , Óleos de Plantas/uso terapêutico , Punica granatum/química , Diabetes Mellitus Tipo 2/patologia , Humanos , Ácidos Linolênicos/química , Óleos de Plantas/química , Sementes/química
15.
Drug Dev Res ; 80(2): 230-245, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30414214

RESUMO

Punicic acid of pomegranate oil (PAP) has gained heightened interest due to several health benefits, such as anticarcinogenic, antidiabetic, and antiatherosclerotic properties. However, these bioactivities have been hampered by chemical instability, poor water solubility, rapid metabolism, and low bioavailability of PAP. Therefore, this study was aimed at optimizing the liposomal formulation of Triacylglycerol-bound punicic acid with its regioisomers (TPAR) for improved oral bioavailability and increased hepatoprotection through antioxidation and anti-inflammation. Herein, the optimized TPAR nanoliposome (TPAR-NL) was developed using thin-film dispersion method and subsequently characterized with appropriate indices. The optimized TPAR-NL produced fairly stable spherical nanoparticles (˂ 200 nm) with encapsulation efficiency (%EE) of 85.77%, as well as enhanced in vitro release and improved oral bioavailability. The TPAR-NL exhibited profound antihepatotoxic effect in mice pretreated with carbon tetrachloride (CCl4 ) via reduction of serum alanine aminotransferase, aspartate aminotransferase, and total bilirubin levels compared with free TPAR. The TPAR-loaded liposome also significantly reduced oxidative stress by increasing superoxide dismutase and glutathione levels while lowering malonaldehyde concentration compared with the free TPAR. The TPAR-LNF further exhibited remarkable anti-inflammatory activity compared with the free drug via inhibition of interleukin-6 and tumor necrosis factor-alpha generation. Thus, the developed nanoliposomes potentiated the antihepatotoxic activity of TPAR via antioxidation and anti-inflammation.


Assuntos
Anti-Inflamatórios/administração & dosagem , Antioxidantes/administração & dosagem , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Ácidos Linolênicos/administração & dosagem , Nanopartículas/administração & dosagem , Triglicerídeos/administração & dosagem , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacocinética , Antioxidantes/química , Antioxidantes/farmacocinética , Disponibilidade Biológica , Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas/patologia , Liberação Controlada de Fármacos , Ácidos Linolênicos/química , Ácidos Linolênicos/farmacocinética , Lipossomos , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos Endogâmicos ICR , Nanopartículas/química , Ratos Sprague-Dawley , Triglicerídeos/química , Triglicerídeos/farmacocinética
16.
Med Hypotheses ; 121: 56, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30396492

RESUMO

In this letter to editor, I hypothesize a potential affinity of retinol saturase (RetSat) enzyme towards a conjugated trienoic fatty acid; alpha-eleostearic acid (α-ESA) and subsequent hindrance of the action on its usual substrate; all trans retinol. Hence, RetSat is speculated to be involved in a rapid unusual conversion of α-ESA to conjugated linoleic acid (CLA), giving a less priority to its usual substrate all trans retinol, which would subsequently be converted into "all trans retinoic acid" (atRA). Otherwise, all trans retinol is converted by RetSat into all-trans-13,14-dihydroretinol and eventually forms all-trans-13,14-dihydroretinoic acid, but not the atRA. The atRA controls differentiation, proliferation and apoptosis of cells and it's deficiencies end up as neoplasms. Thus, here it is emphasized that safeguarding atRA would help controlling cell division and growth in a favourable manner. Hence, inhibition of RetSat could be a hot target to control unwarranted cell growths within the body. This hypothesis could be easily tested in a RetSat ablated (RetSat -/-) animal model or using antagonists on RetSat activity or α-ESA.


Assuntos
Metabolômica , Neoplasias/terapia , Tretinoína/metabolismo , Vitamina A/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Divisão Celular , Humanos , Ácido Linoleico/química , Ácidos Linoleicos Conjugados/química , Ácidos Linolênicos/química , Metabolismo dos Lipídeos , Tretinoína/farmacologia
17.
J Agric Food Chem ; 66(30): 8079-8085, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29998729

RESUMO

We enzymatically prepared structured monogalactosydiacylglycerols (MGDGs) enriched in pinolenic acid (PLA). PLA-enriched free fatty acids (FFAs) containing ∼86 mol % PLA were produced from an FFA fraction obtained from pine nut oil (PLA content, ∼13 mol %) by urea crystallization. Commercial MGDGs (5 mg) were acidolyzed with PLA-enriched FFAs using four commercial immobilized lipases as biocatalysts. The reaction was performed in acetone (4 mL) in a stirred-batch reactor. Lipozyme RM IM (immobilized Rhizomucor miehei lipase) was the most effective biocatalyst for the reaction. Structured MGDGs containing 42.1 mol % PLA were obtained under optimal reaction conditions: temperature, 25 °C; substrate molar ratio, 1:30 (MGDGs/PLA-enriched FFAs); enzyme loading, 20 wt % of total substrates; and reaction time, 36 h. The structured MGDGs were separated from the reaction products at a purity of 96.6 wt % using silica column chromatography. The structured MGDGs could be possibly used as emulsifiers with appetite-suppression effects.


Assuntos
Proteínas Fúngicas/química , Galactolipídeos/química , Ácidos Linolênicos/química , Lipase/química , Pinus/química , Óleos de Plantas/química , Rhizomucor/enzimologia , Enzimas Imobilizadas/química , Estrutura Molecular , Temperatura
18.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(9): 1006-1015, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29859246

RESUMO

Talaromyces thermophilus lipase (TTL) was found to hydrolyze monogalactosyl diacylglycerol (MGDG) and digalactosyl diacylglycerol (DGDG) substrates presented in various forms to the enzyme. Different assay techniques were used for each substrate: pHstat with dioctanoyl galactolipid-bile salt mixed micelles, barostat with dilauroyl galactolipid monomolecular films spread at the air-water interface, and UV absorption using a novel MGDG substrate containing α-eleostearic acid as chromophore and coated on microtiter plates. The kinetic properties of TTL were compared to those of the homologous lipase from Thermomyces lanuginosus (TLL), guinea pig pancreatic lipase-related protein 2 and Fusarium solani cutinase. TTL was found to be the most active galactolipase, with a higher activity on micelles than on monomolecular films or surface-coated MGDG. Nevertheless, the UV absorption assay with coated MGDG was highly sensitive and allowed measuring significant activities with about 10 ng of enzymes, against 100 ng to 10 µg with the pHstat. TTL showed longer lag times than TLL for reaching steady state kinetics of hydrolysis with monomolecular films or surface-coated MGDG. These findings and 3D-modelling of TTL based on the known structure of TLL pointed out to two phenylalanine to leucine substitutions in TTL, that could be responsible for its slower adsorption at lipid-water interface. TTL was found to be more active on MGDG than on DGDG using both galactolipid-bile salt mixed micelles and galactolipid monomolecular films. These later experiments suggest that the second galactose on galactolipid polar head impairs the enzyme adsorption on its aggregated substrate.


Assuntos
Proteínas Fúngicas/química , Galactolipídeos/química , Lipase/química , Talaromyces/química , Ar/análise , Animais , Ácidos e Sais Biliares/química , Hidrolases de Éster Carboxílico/química , Ensaios Enzimáticos , Fusarium/química , Fusarium/enzimologia , Cobaias , Hidrólise , Cinética , Ácidos Linolênicos/química , Micelas , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Especificidade por Substrato , Propriedades de Superfície , Talaromyces/enzimologia , Raios Ultravioleta , Água/química
19.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(4): 369-378, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29325723

RESUMO

The CYP74C subfamily of fatty acid hydroperoxide transforming enzymes includes hydroperoxide lyases (HPLs) and allene oxide synthases (AOSs). This work reports a new facet of the putative CYP74C HPLs. Initially, we found that the recombinant CYP74C13_MT (Medicago truncatula) behaved predominantly as the epoxyalcohol synthase (EAS) towards the 9(S)-hydroperoxide of linoleic acid. At the same time, the CYP74C13_MT mostly possessed the HPL activity towards the 13(S)-hydroperoxides of linoleic and α-linolenic acids. To verify whether this dualistic behaviour of CYP74C13_MT is occasional or typical, we also examined five similar putative HPLs (CYP74C). These were CYP74C4_ST (Solanum tuberosum), CYP74C2 (Cucumis melo), CYP74C1_CS and CYP74C31 (both of Cucumis sativus), and CYP74C13_GM (Glycine max). All tested enzymes behaved predominantly as EAS toward 9-hydroperoxide of linoleic acid. Oxiranyl carbinols such as (9S,10S,11S,12Z)-9,10-epoxy-11-hydroxy-12-octadecenoic acids were the major EAS products. Besides, the CYP74C31 possessed an additional minor 9-AOS activity. The mutant forms of CYP74C13_MT, CYP74C1_CS, and CYP74C31 with substitutions at the catalytically essential domains, namely the "hydroperoxide-binding domain" (I-helix), or the SRS-1 domain near the N-terminus, showed strong AOS activity. These HPLs to AOSs conversions were observed for the first time. Until now a large part of CYP74C enzymes has been considered as 9/13-HPLs. Notwithstanding, these results show that all studied putative CYP74C HPLs are in fact the versatile HPL/EASs that can be effortlessly mutated into specific AOSs.


Assuntos
Aldeído Liases/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Oxirredutases Intramoleculares/metabolismo , Mutagênese Sítio-Dirigida , Plantas/enzimologia , Aldeído Liases/química , Sequência de Aminoácidos , Biocatálise , Sistema Enzimático do Citocromo P-450/química , Cromatografia Gasosa-Espectrometria de Massas , Cinética , Ácidos Linoleicos/química , Ácidos Linoleicos/metabolismo , Ácidos Linolênicos/química , Ácidos Linolênicos/metabolismo , Peróxidos Lipídicos/química , Peróxidos Lipídicos/metabolismo , Proteínas Mutantes/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Especificidade por Substrato
20.
Chem Phys Lipids ; 212: 12-25, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29305156

RESUMO

The acidic environment at bacterial infection sites is a potential external stimulus for targeted antibiotic delivery. This paper reports new biocompatible pH-sensitive lipids (PSLs) with three hydrocarbon tails, and a head group with a secondary amine and carboxylate function for site-specific nano delivery of vancomycin (VCM). PSLs formed stable liposomes with mean vesicle diameters and polydispersity indices between 99.38 ±â€¯6.59 nm to 105.60 ±â€¯5.38 nm and 0.161 ±â€¯0.003 to 0.219 ±â€¯0.05 respectively. The zeta potential values were negative at physiological pH (7.4) and shifted towards positivity with a decrease in pH. The encapsulation efficiency and loading capacity were in the range of 29-45% and 2.8-4.5% respectively. The VCM release increased and was more sustained at acidic pH than at the physiological pH. The molecular modeling studies revealed that structural changes in lipids at acidic pH could have caused the deformation of liposome structure and subsequent fast release. In vitro antibacterial activity revealed that the minimum inhibitory concentrations (MICs) of prepared liposomes at pH 6.5 were lower than the MICs at pH 7.4 against Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) respectively. In addition, in vivo antibacterial activity study performed on two of the most active formulations showed that log10 CFU/mL of MRSA recovered from TOAPA-VCM-Lipo and the TLAPA-VCM-Lipo treated mice were 1.5- and 1.8-fold lower than that found in bare VCM treated ones respectively.


Assuntos
Antibacterianos/química , Ácidos Graxos Insaturados/química , Lipossomos/química , Antibacterianos/farmacologia , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Ácido Linoleico/química , Ácidos Linolênicos/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Ácidos Oleicos/química , Staphylococcus aureus/efeitos dos fármacos , Vancomicina/química , Vancomicina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...