RESUMO
Conventional activated-sludge (AS) technologies are deficient for nutrient removal because they require specific floc characteristics. Therefore, the encapsulated AS with polyvinyl alcohol (PVA) will favor floc's formation that removes nutrients. The applied method was based on monitoring the removal of organic matter and nutrients (NH4+, NO3-, NO2-, PO43-) from synthetic domestic wastewater using laboratory-scale AS. The experimental reactors were operated at 8 h as optimized Hydraulic Retention Time (HRT). The sludge characteristics evaluation was carried out through the Sludge Volumetric Index (SVI), Food/Microorganism ratio (F/M), and Mixed Liquor Volatile Suspended Solids (MLVSS). Other specific floc characteristics, such as zeta potential and effective diameter were also evaluated. The results showed that the encapsulated AS with PVA favors nitrogen and phosphorous removal up to 35% but it did not improve organic matter removal. In addition, encapsulated AS with PVA has the characteristics of filamentous sludge (F/M: 0.7 g COD g-1 MLVSS d-1) with good settleability conditions (SVI: 43 mL g-1 MLSVS h-1) and low zeta potential (ZP: -0.9 mV), which favors its separation from the liquid phase. In conclusion, the encapsulation of AS with PVA improves nutrient removal by improving floc characteristics.
Assuntos
Nutrientes/isolamento & purificação , Álcool de Polivinil/farmacocinética , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Reatores Biológicos/microbiologia , Cidades , Composição de Medicamentos/métodos , Humanos , Nitrogênio/isolamento & purificação , Nitrogênio/farmacocinética , Fósforo/isolamento & purificação , Fósforo/farmacocinética , Álcool de Polivinil/química , Características de Residência , Purificação da Água/métodosRESUMO
Clinical complications of implantable polypropylene (PP) meshes used to repair urinary incontinence and vaginal prolapse may be associated with their low surface energy and consequent poor tissue integration. For improving tissue integration, we impregnated monofilament PP meshes with physically crosslinked poly(vinyl alcohol) (PVA), resulting in PVA deposits tightly attached inside the knot spaces of the PP knit. While preserving the mesh porosity, the PVA deposits acted as an array of hydrophilic regions leading to a great increase in the overall mesh wettability, reflected by a contact angle decrease from 111 to ca. 66°. The PVA deposits were also used as reservoirs for the local release of S-nitrosoglutathione (GSNO), a nitric oxide (NO) donor. Plain and impregnated PP meshes (1.0cm×1.0cm) were implanted in the subcutaneous tissue of 21 adult female Wistar rats. Histological analysis of the abdominal wall 21 days after the surgeries revealed lower edema and greater angiogenesis while a marked decrement of NOx concentration in the tissue surrounding the impregnated meshes was observed after 2 days. These results indicate that PVA and PVA/GSNO impregnation might be a new strategy for decreasing the frequency of mesh extrusion after PP mesh implants.