Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38557630

RESUMO

There is widespread interest and concern about the evidence and hypothesis that the auditory system is involved in ultrasound neuromodulation. We have addressed this problem by performing acoustic shear wave simulations in mouse skull and behavioral experiments in deaf mice. The simulation results showed that shear waves propagating along the skull did not reach sufficient acoustic pressure in the auditory cortex to modulate neurons. Behavioral experiments were subsequently performed to awaken anesthetized mice with ultrasound targeting the motor cortex or ventral tegmental area (VTA). The experimental results showed that ultrasound stimulation (US) of the target areas significantly increased arousal scores even in deaf mice, whereas the loss of ultrasound gel abolished the effect. Immunofluorescence staining also showed that ultrasound can modulate neurons in the target area, whereas neurons in the auditory cortex required the involvement of the normal auditory system for activation. In summary, the shear waves propagating along the skull cannot reach the auditory cortex and induce neuronal activation. Ultrasound neuromodulation-induced arousal behavior needs direct action on functionally relevant stimulation targets in the absence of auditory system participation.


Assuntos
Crânio , Animais , Camundongos , Crânio/diagnóstico por imagem , Crânio/fisiologia , Córtex Auditivo/fisiologia , Córtex Auditivo/diagnóstico por imagem , Ondas Ultrassônicas , Área Tegmentar Ventral/fisiologia , Área Tegmentar Ventral/diagnóstico por imagem , Área Tegmentar Ventral/efeitos da radiação , Camundongos Endogâmicos C57BL , Masculino
2.
Neurology ; 101(23): e2423-e2433, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37848331

RESUMO

BACKGROUND AND OBJECTIVES: Deep brain stimulation (DBS) of the ventral tegmental area (VTA) is a surgical treatment option for selected patients with refractory chronic cluster headache (CCH). We aimed to identify clinical and structural neuroimaging factors associated with response to VTA DBS in CCH. METHODS: This prospective observational cohort study examines consecutive patients with refractory CCH treated with VTA DBS by a multidisciplinary team in a single tertiary neuroscience center as part of usual care. Headache diaries and validated questionnaires were completed at baseline and regular follow-up intervals. All patients underwent T1-weighted structural MRI before surgery. We compared clinical features using multivariable logistic regression and neuroanatomic differences using voxel-based morphometry (VBM) between responders and nonresponders. RESULTS: Over a 10-year period, 43 patients (mean age 53 years, SD 11.9), including 29 male patients, with a mean duration of CCH 12 years (SD 7.4), were treated and followed up for at least 1 year (mean follow-up duration 5.6 years). Overall, there was a statistically significant improvement in median attack frequency from 140 to 56 per month (Z = -4.95, p < 0.001), attack severity from 10/10 to 8/10 (Z = -4.83, p < 0.001), and duration from 110 to 60 minutes (Z = -3.48, p < 0.001). Twenty-nine (67.4%) patients experienced ≥50% improvement in attack frequency and were therefore classed as responders. There were no serious adverse events. The most common side effects were discomfort or pain around the battery site (7 patients) and transient diplopia and/or oscillopsia (6 patients). There were no differences in demographics, headache characteristics, or comorbidities between responders and nonresponders. VBM identified increased neural density in nonresponders in several brain regions, including the orbitofrontal cortex, anterior cingulate cortex, anterior insula, and amygdala, which were statistically significant (p < 0.001). DISCUSSION: VTA DBS showed no serious adverse events, and, although there was no placebo control, was effective in approximately two-thirds of patients at long-term follow-up. This study did not reveal any reliable clinical predictors of response. However, nonresponders had increased neural density in brain regions linked to processing of pain and autonomic function, both of which are prominent in the pathophysiology of CCH.


Assuntos
Cefaleia Histamínica , Estimulação Encefálica Profunda , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Cefaleia Histamínica/terapia , Estimulação Encefálica Profunda/métodos , Cefaleia/etiologia , Dor/etiologia , Estudos Prospectivos , Resultado do Tratamento , Área Tegmentar Ventral/diagnóstico por imagem
3.
Eur Neuropsychopharmacol ; 76: 77-86, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37562082

RESUMO

Decreased physical fitness and being overweight are highly prevalent in schizophrenia, represent a major risk factor for comorbid cardio-vascular diseases and decrease the life expectancy of the patients. Thus, it is important to understand the underlying mechanisms that link psychopathology and weight gain. We hypothesize that the dopaminergic reward system plays an important role in this. We analyzed the seed-based functional connectivity (FC) of the ventral tegmental area (VTA) in a group of schizophrenic patients (n=32) and age-, as well as gender-, matched healthy controls (n=27). We then correlated the resting-state results with physical fitness parameters, obtained in a fitness test, and psychopathology. The FC analysis revealed decreased functional connections between the VTA and the anterior cingulate cortex (ACC), as well as the dorsolateral prefrontal cortex, which negatively correlated with psychopathology, and increased FC between the VTA and the middle temporal gyrus in patients compared to healthy controls, which positively correlated with psychopathology. The decreased FC between the VTA and the ACC of the patient group further positively correlated with total body fat (p = .018, FDR-corr.) and negatively correlated with the overall physical fitness (p = .022). This study indicates a link between decreased physical fitness and higher body fat with functional dysconnectivity between the VTA and the ACC. These findings demonstrate that a dysregulated reward system might also be involved in comorbidities and could pave the way for future lifestyle therapy interventions.


Assuntos
Esquizofrenia , Área Tegmentar Ventral , Humanos , Área Tegmentar Ventral/diagnóstico por imagem , Esquizofrenia/diagnóstico por imagem , Imageamento por Ressonância Magnética , Giro do Cíngulo , Aptidão Física
4.
J Transl Med ; 21(1): 543, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580725

RESUMO

BACKGROUND: The ventral tegmental area (VTA) contains heterogeneous cell populations. The dopaminergic neurons in VTA play a central role in reward and cognition, while CamKIIα-positive neurons, composed mainly of glutamatergic and some dopaminergic neurons, participate in the reward learning and locomotor activity behaviors. The differences in brain-wide functional and structural networks between these two neuronal subtypes were comparatively elucidated. METHODS: In this study, we applied a method combining Designer Receptors Exclusively Activated by Designer Drugs (DREADD) and fMRI to assess the cell type-specific modulation of whole-brain neural networks. rAAV encoding the cre-dependent hM3D was injected into the right VTA of DAT-cre or CamKIIα-cre transgenic rats. The global brain activities elicited by DREADD stimulation were then detected using BOLD-fMRI. Furthermore, the cre-dependent antegrade transsynaptic viral tracer H129ΔTK-TT was applied to label the outputs of VTA neurons. RESULTS: We found that DREADD stimulation of dopaminergic neurons induced significant BOLD signal changes in the VTA and several VTA-related regions including mPFC, Cg and Septum. More regions responded to selective activation of VTA CamKIIα-positive neurons, resulting in increased BOLD signals in VTA, Insula, mPFC, MC_R (Right), Cg, Septum, Hipp, TH_R, PtA_R, and ViC_R. Along with DREADD-BOLD analysis, further neuronal tracing identified multiple cortical (MC, mPFC) and subcortical (Hipp, TH) brain regions that are structurally and functionally connected by VTA dopaminergic and CamKIIα-positive neurons. CONCLUSIONS: Our study dissects brain-wide structural and functional networks of two neuronal subtypes in VTA and advances our understanding of VTA functions.


Assuntos
Imageamento por Ressonância Magnética , Área Tegmentar Ventral , Ratos , Animais , Área Tegmentar Ventral/diagnóstico por imagem , Área Tegmentar Ventral/fisiologia , Imageamento por Ressonância Magnética/métodos , Encéfalo , Neurônios Dopaminérgicos/fisiologia
5.
Alcohol Clin Exp Res (Hoboken) ; 47(4): 659-667, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36799331

RESUMO

BACKGROUND: Studies in animals and humans suggest that greater levels of sensation seeking and alcohol use are related to individual differences in drug-induced dopamine release. However, it remains unclear whether drug-induced alterations in the functional synchrony between mesostriatal regions are related to sensation seeking and alcohol use. METHODS: In this within-subject masked-design study, 21-year-old participants (n = 34) underwent functional magnetic resonance imaging to measure ventral tegmental area (VTA) resting-state functional connectivity to the striatum after receiving alcohol (target blood alcohol concentration 0.08 g/dL) or placebo. Participants also completed the UPPS-P Impulsive Behavior Scale to assess sensation seeking, the Young Adult Alcohol Consequences Questionnaire, and self-reported patterns of alcohol and drug use. RESULTS: Voxel-wise analyses within the striatum demonstrated that during the alcohol condition (compared with placebo) young adults had less connectivity between the VTA and bilateral caudate (p < 0.05 corrected). However, young adults exhibiting smaller alcohol-induced decreases or increases in VTA-left caudate connectivity reported greater sensation seeking. CONCLUSION: These findings provide novel information about how acute alcohol impacts resting-state connectivity, an effect that may be driven by the complex pre and postsynaptic effects of alcohol on various neurotransmitters including dopamine. Further, alcohol-induced differences in VTA connectivity represent a plausible mechanistic substrate underlying sensation seeking.


Assuntos
Concentração Alcoólica no Sangue , Dopamina , Adulto , Animais , Humanos , Adulto Jovem , Etanol/efeitos adversos , Imageamento por Ressonância Magnética , Sensação , Área Tegmentar Ventral/diagnóstico por imagem
6.
J Neurosci ; 42(50): 9426-9434, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36332978

RESUMO

Motivation is a powerful driver of learning and memory. Functional MRI studies show that interactions among the dopaminergic midbrain substantia nigra/ventral tegmental area (SN/VTA), hippocampus, and nucleus accumbens (NAc) are critical for motivated memory encoding. However, it is not known whether these effects are transient and purely functional, or whether individual differences in the structure of this circuit underlie motivated memory encoding. To quantify individual differences in structure, diffusion-weighted MRI and probabilistic tractography were used to quantify SN/VTA-striatum and SN/VTA-hippocampus pathways associated with motivated memory encoding in humans. Male and female participants completed a motivated source memory paradigm. During encoding, words were randomly assigned to one of three conditions, reward ($1.00), control ($0.00), or punishment (-$1.00). During retrieval, participants were asked to retrieve item and source information of the previously studied words and were rewarded or penalized according to their performance. Source memory for words assigned to both reward and punishment conditions was greater than those for control words, but there were no differences in item memory based on value. Anatomically, probabilistic tractography results revealed a heterogeneous, topological arrangement of the SN/VTA. Tract density measures of SN/VTA-hippocampus pathways were positively correlated with individual differences in reward-and-punishment-modulated memory performance, whereas density of SN/VTA-striatum pathways showed no association. This novel finding suggests that pathways emerging from the human SV/VTA are anatomically separable and functionally heterogeneous. Individual differences in structural connectivity of the dopaminergic hippocampus-VTA loop are selectively associated with motivated memory encoding.SIGNIFICANCE STATEMENT Functional MRI studies show that interactions among the SN/VTA, hippocampus, and NAc are critical for motivated memory encoding. This has led to competing theories that posit either SN/VTA-NAc reward prediction errors or SN/VTA-hippocampus signals underlie motivated memory encoding. Additionally, it is not known whether these effects are transient and purely functional or whether individual differences in the structure of these circuits underlie motivated memory encoding. Using diffusion-weighted MRI and probabilistic tractography, we show that tract density measures of SN/VTA-hippocampus pathways are positively correlated with motivated memory performance, whereas density of SN/VTA-striatum pathways show no association. This finding suggests that anatomic individual differences of the dopaminergic hippocampus-VTA loop are selectively associated with motivated memory encoding.


Assuntos
Hipocampo , Área Tegmentar Ventral , Feminino , Humanos , Masculino , Dopamina/metabolismo , Hipocampo/metabolismo , Imageamento por Ressonância Magnética , Mesencéfalo/diagnóstico por imagem , Mesencéfalo/metabolismo , Recompensa , Substância Negra/diagnóstico por imagem , Substância Negra/metabolismo , Área Tegmentar Ventral/diagnóstico por imagem , Área Tegmentar Ventral/metabolismo
7.
Neuroimage ; 264: 119704, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36349598

RESUMO

The ventral tegmental area (VTA) is one of the major sources of dopamine in the brain and has been associated with reward prediction, error-based reward learning, volitional drive and anhedonia. However, precise anatomical investigations of the VTA have been prevented by the use of standard-resolution MRI, reliance on subjective manual tracings, and lack of quantitative measures of dopamine-related signal. Here, we combine ultra-high field 400 µm3 quantitative MRI with dopamine-related signal mapping, and a mixture of machine learning and supervised computational techniques to delineate the VTA in a transdiagnostic sample of subjects with and without depression and anxiety disorders. Subjects also underwent cognitive testing to measure intrinsic and extrinsic motivational tone. Fifty-one subjects were scanned in total, including healthy control (HC) and mood/anxiety (MA) disorder subjects. MA subjects had significantly larger VTA volumes compared to HC but significantly lower signal intensity within VTA compared to HC, indicating reduced structural integrity of the dopaminergic VTA. Interestingly, while VTA integrity did not significantly correlate with self-reported depression or anxiety symptoms, it was correlated with an objective cognitive measure of extrinsic motivation, whereby lower VTA integrity was associated with lower motivation. This is the first study to demonstrate a computational pipeline for detecting and delineating the VTA in human subjects with 400 µm3 resolution. We highlight the use of objective transdiagnostic measures of cognitive function that link neural integrity to behavior across clinical and non-clinical groups.


Assuntos
Dopamina , Área Tegmentar Ventral , Humanos , Área Tegmentar Ventral/diagnóstico por imagem , Recompensa , Ansiedade/diagnóstico por imagem , Motivação , Transtornos de Ansiedade
8.
J Neurosci ; 42(33): 6424-6434, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35790398

RESUMO

Reward motivation enhances memory through interactions between mesolimbic, hippocampal, and cortical systems, both during and after encoding. Developmental changes in these distributed neural circuits may lead to age-related differences in reward-motivated memory and the underlying neural mechanisms. Converging evidence from cross-species studies suggests that subcortical dopamine signaling is increased during adolescence, which may lead to stronger memory representations of rewarding, relative to mundane, events and changes in the contributions of underlying subcortical and cortical brain mechanisms across age. Here, we used fMRI to examine how reward motivation influences the "online" encoding and "offline" postencoding brain mechanisms that support long-term associative memory from childhood to adulthood in human participants of both sexes. We found that reward motivation led to both age-invariant enhancements and nonlinear age-related differences in associative memory after 24 h. Furthermore, reward-related memory benefits were linked to age-varying neural mechanisms. During encoding, interactions between the prefrontal cortex (PFC) and ventral tegmental area (VTA) were associated with better high-reward memory to a greater degree with increasing age. Preencoding to postencoding changes in functional connectivity between the anterior hippocampus and VTA were also associated with better high-reward memory, but more so at younger ages. Our findings suggest that there may be developmental differences in the contributions of offline subcortical and online cortical brain mechanisms supporting reward-motivated memory.SIGNIFICANCE STATEMENT A substantial body of research has examined the neural mechanisms through which reward influences memory formation in adults. However, despite extensive evidence that both reward processing and associative memory undergo dynamic change across development, few studies have examined age-related changes in these processes. We found both age-invariant and nonlinear age-related differences in reward-motivated memory. Moreover, our findings point to developmental differences in the processes through which reward modulates the prioritization of information in long-term memory, with greater early reliance on offline subcortical consolidation mechanisms and increased contribution of systems-level online encoding circuitry with increasing age. These results highlight dynamic developmental changes in the cognitive and neural mechanisms through which motivationally salient information is prioritized in memory from childhood to adulthood.


Assuntos
Recompensa , Área Tegmentar Ventral , Adolescente , Adulto , Mapeamento Encefálico , Criança , Feminino , Hipocampo , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Motivação , Área Tegmentar Ventral/diagnóstico por imagem , Adulto Jovem
9.
Transl Psychiatry ; 12(1): 60, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35165257

RESUMO

Ascending dopaminergic projections from neurons located in the Ventral Tegmental Area (VTA) are key to the etiology, dysfunction, and control of motivation, learning, and addiction. Due to the evolutionary conservation of this nucleus and the extensive use of mice as disease models, establishing an assay for VTA dopaminergic signaling in the mouse brain is crucial for the translational investigation of motivational control as well as of neuronal function phenotypes for diseases and interventions. In this article we use optogenetic stimulation directed at VTA dopaminergic neurons in combination with functional Magnetic Resonance Imaging (fMRI), a method widely used in human deep brain imaging. We present a comprehensive assay producing the first whole-brain opto-fMRI map of dopaminergic activation in the mouse, and show that VTA dopaminergic system function is consistent with its structural VTA projections, diverging only in a few key aspects. While the activation map predominantly highlights target areas according to their relative projection densities (e.g., strong activation of the nucleus accumbens and low activation of the hippocampus), it also includes areas for which a structural connection is not well established (such as the dorsomedial striatum). We further detail the variability of the assay with regard to multiple experimental parameters, including stimulation protocol and implant position, and provide evidence-based recommendations for assay reuse, publishing both reference results and a reference analysis workflow implementation.


Assuntos
Imageamento por Ressonância Magnética , Área Tegmentar Ventral , Animais , Encéfalo , Dopamina/fisiologia , Neurônios Dopaminérgicos/fisiologia , Imageamento por Ressonância Magnética/métodos , Camundongos , Área Tegmentar Ventral/diagnóstico por imagem , Área Tegmentar Ventral/fisiologia
10.
Neuroimage Clin ; 34: 102961, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35152053

RESUMO

The ventral tegmental area (VTA), nucleus accumbens (NAcc), and prefrontal cortex (PFC) are essential for experiencing pleasure and initiating motivated behaviour. The VTA, NAcc, and PFC are connected through the medial forebrain bundle (MFB). In humans, two branches have been described: an infero-medial branch (imMFB) and a supero-lateral branch (slMFB). This study aimed to explore the associations between structural connectivity of the MFB, functional connectivity (FC) of the VTA, anhedonia, and depression severity in patients with depression. Fifty-six patients with unipolar depression and 22 healthy controls matched for age, sex, and handedness were recruited at the University Hospital of Psychiatry and Psychotherapy in Bern, Switzerland. Diffusion-weighted imaging and resting-state functional magnetic resonance imaging scans were acquired. Using manual tractography, the imMFB and slMFB were reconstructed bilaterally for each participant. Seed-based resting-state FC was computed from the VTA to the PFC. Hedonic tone was assessed using the Fawcett-Clark Pleasure Scale. We identified reduced tract volume and reduced number of tracts in the left slMFB. There was an increase in FC between the VTA and right medial PFC in patients with depression. Depression severity was associated with reduced tract volume and fewer tracts in the left slMFB. Reduced hedonic tone was associated with reduced tract volume. Conversely, reduced hedonic tone was associated with increased FC between the VTA and the PFC. In conclusion, our results suggest reduced structural connectivity of the slMFB in patients with depression. Increases in FC between the VTA and PFC may be associated with anhedonia or compensatory hyperactivity.


Assuntos
Transtorno Depressivo , Feixe Prosencefálico Mediano , Anedonia , Transtorno Depressivo/diagnóstico por imagem , Transtorno Depressivo/patologia , Imagem de Difusão por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética , Feixe Prosencefálico Mediano/patologia , Área Tegmentar Ventral/diagnóstico por imagem
11.
Exp Neurol ; 350: 113978, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35026227

RESUMO

Deep Brain Stimulation (DBS) is an efficacious treatment option for an increasing range of brain disorders. To enhance our knowledge about the mechanisms of action of DBS and to probe novel targets, basic research in animal models with DBS is an essential research base. Beyond nonhuman primate, pig, and mouse models, the rat is a widely used animal model for probing DBS effects in basic research. Reconstructing DBS electrode placement after surgery is crucial to associate observed effects with modulating a specific target structure. Post-mortem histology is a commonly used method for reconstructing the electrode location. In humans, however, neuroimaging-based electrode localizations have become established. For this reason, we adapt the open-source software pipeline Lead-DBS for DBS electrode localizations from humans to the rat model. We validate our localization results by inter-rater concordance and a comparison with the conventional histological method. Finally, using the open-source software pipeline OSS-DBS, we demonstrate the subject-specific simulation of the VTA and the activation of axon models aligned to pathways representing neuronal fibers, also known as the pathway activation model. Both activation models yield a characterization of the impact of DBS on the target area. Our results suggest that the proposed neuroimaging-based method can precisely localize DBS electrode placements that are essentially rater-independent and yield results comparable to the histological gold standard. The advantages of neuroimaging-based electrode localizations are the possibility of acquiring them in vivo and combining electrode reconstructions with advanced imaging metrics, such as those obtained from diffusion or functional magnetic resonance imaging (MRI). This paper introduces a freely available open-source pipeline for DBS electrode reconstructions in rats. The presented initial validation results are promising.


Assuntos
Estimulação Encefálica Profunda , Modelos Neurológicos , Animais , Axônios , Eletrodos Implantados , Imageamento por Ressonância Magnética , Masculino , Modelos Animais , Neuroimagem , Ratos , Reprodutibilidade dos Testes , Software , Área Tegmentar Ventral/diagnóstico por imagem
12.
Cereb Cortex ; 32(6): 1142-1151, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34448816

RESUMO

Functional connectivity (FC) is determined by similarity between functional magnetic resonance imaging (fMRI) signals from distinct brain regions. However, traditional FC analyses ignore temporal phase differences. Here, we addressed this limitation, using dynamic time warping (DTW) within a machine-learning framework, to study cortical FC patterns of 2 spatially adjacent but functionally distinct subcortical regions, namely Substantia Nigra Pars Compacta (SNc) and ventral tegmental area (VTA). We evaluate: 1) the influence of pair of brain regions considered, 2) the influence of warping window sizes, 3) the classification efficacy of DTW, and 4) the uniqueness of features identified. Whole brain 7 Tesla resting state fMRI scans from 81 healthy participants were used. FC between 2 subcortical regions of interests (ROIs) and 360 cortical parcels were computed using: 1) Pearson correlations (PCs), 2) dynamic time-warped PCs (DTW-PC). The separability of SNc-cortical and VTA-cortical network was validated on 40 participants and tested on the remaining 41, using a support vector machine (SVM). The SVM separated the SNc-cortical versus VTA-cortical network with 74.39 and 97.56% test accuracy using PC and DTW-PC, respectively. SVM-recursive feature elimination yielded 20 DTW-PC features that most strongly contributed to the separation of the networks and revealed novel VTA versus SNc preferential connections (P < 0.05, Bonferroni-Holm corrected).


Assuntos
Parte Compacta da Substância Negra , Área Tegmentar Ventral , Encéfalo , Humanos , Imageamento por Ressonância Magnética/métodos , Área Tegmentar Ventral/diagnóstico por imagem
13.
J Neurosci ; 41(38): 8040-8050, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34376585

RESUMO

The detection of novelty indicates changes in the environment and the need to update existing representations. In response to novelty, interactions across the VTA-hippocampal circuit support experience-dependent plasticity in the hippocampus. While theories have broadly suggested plasticity-related changes are also instantiated in the cortex, research has also shown evidence for functional heterogeneity in cortical networks. It therefore remains unclear how the hippocampal-VTA circuit engages cortical networks, and whether novelty targets specific cortical regions or diffuse, large-scale cortical networks. To adjudicate the role of the VTA and hippocampus in cortical network plasticity, we used fMRI to compare resting-state functional coupling before and following exposure to novel scene images in human subjects of both sexes. Functional coupling between right anterior hippocampus and VTA was enhanced following novelty exposure. However, we also found evidence for a double dissociation, with anterior hippocampus and VTA showing distinct patterns of post-novelty functional coupling enhancements, targeting task-relevant regions versus large-scale networks, respectively. Further, significant correlations between these networks and the novelty-related plasticity in the anterior hippocampal-VTA functional network suggest that the central hippocampal-VTA network may facilitate the interactions with the cortex. These findings support an extended model of novelty-induced plasticity, in which novelty elicits plasticity-related changes in both local and global cortical networks.SIGNIFICANCE STATEMENT Novelty detection is critical for adaptive behavior, signaling the need to update existing representations. By engaging the bidirectional hippocampal-VTA circuit, novelty has been shown to induce plasticity-related changes in the hippocampus. However, it remains an open question how novelty targets such plasticity-related changes in cortical networks. We show that anterior hippocampus and VTA target cortical networks at different spatial scales, with respective enhancements in post-novelty functional coupling with a task-relevant cortical region and a large-scale memory network. The results presented here support an extended model of novelty-related plasticity, in which engaging the anterior hippocampal-VTA circuit through novelty exposure propagates cortical plasticity through hippocampal and VTA functional pathways at distinct scales, targeting specific or diffuse cortical networks.


Assuntos
Hipocampo/fisiologia , Rede Nervosa/fisiologia , Área Tegmentar Ventral/fisiologia , Mapeamento Encefálico , Feminino , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Plasticidade Neuronal/fisiologia , Área Tegmentar Ventral/diagnóstico por imagem
14.
Hum Brain Mapp ; 42(13): 4327-4335, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34105855

RESUMO

The anticipation of control over aversive events in life is relevant for our mental health. Insights on the underlying neural mechanisms remain limited. We developed a new functional magnetic resonance imaging (fMRI) task that uses auditory stimuli to explore the neural correlates of (1) the anticipation of control over aversion and (2) the processing of aversion. In a sample of 25 healthy adults, we observed increased neural activation in the medial prefrontal cortex (ventromedial prefrontal cortex and rostral anterior cingulate cortex), other brain areas relevant for reward anticipation (ventral striatum, brainstem [ventral tegmental area], midcingulate cortex), and the posterior cingulate cortex when they anticipated control over aversion compared with anticipating no control (1). The processing of aversive sounds compared to neutral sounds (2) was associated with increased neural activation in the bilateral posterior insula. Our findings provide evidence for the important role of medial prefrontal regions in control anticipation and highlight the relevance of conceiving the neural mechanisms involved within a reward-based framework.


Assuntos
Antecipação Psicológica/fisiologia , Mapeamento Encefálico , Giro do Cíngulo/fisiologia , Córtex Pré-Frontal/fisiologia , Adulto , Percepção Auditiva/fisiologia , Feminino , Giro do Cíngulo/diagnóstico por imagem , Humanos , Córtex Insular/diagnóstico por imagem , Córtex Insular/fisiologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Córtex Pré-Frontal/diagnóstico por imagem , Desempenho Psicomotor/fisiologia , Estriado Ventral/diagnóstico por imagem , Estriado Ventral/fisiologia , Área Tegmentar Ventral/diagnóstico por imagem , Área Tegmentar Ventral/fisiologia
15.
J Alzheimers Dis ; 82(3): 985-1000, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34120905

RESUMO

BACKGROUND: Recent cross-sectional studies highlighted the loss of dopaminergic neurons in the ventral tegmental area (VTA) as an early pathophysiological event in Alzheimer's disease (AD). OBJECTIVE: In this study, we longitudinally investigated by resting-state fMRI (rs-fMRI) a cohort of patients with mild cognitive impairment (MCI) due to AD to evaluate the impact of VTA disconnection in predicting the conversion to AD. METHODS: A cohort of 35 patients with MCI due to AD were recruited and followed-up for 24 months. They underwent cognitive evaluation and rs-fMRI to assess VTA connectivity at baseline and at follow-up. RESULTS: At 24-month follow-up, 16 out of 35 patients converted to AD. Although converters and non-converters to AD did not differ in demographic and behavioral characteristics at baseline, the first group showed a significant reduction of VTA-driven connectivity in the posterior cingulate and precentral cortex. This pattern of additional disconnection in MCI-Converters compared to non-converters remained substantially unchanged at 24-month follow-up. CONCLUSION: This study reinforces the hypothesis of an early contribution of dopaminergic dysfunction to AD evolution by targeting the default-mode network. These results have potential implications for AD staging and prognosis and support new opportunities for therapeutic interventions to slow down disease progression.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Progressão da Doença , Rede Nervosa/diagnóstico por imagem , Área Tegmentar Ventral/diagnóstico por imagem , Idoso , Doença de Alzheimer/psicologia , Doença de Alzheimer/terapia , Disfunção Cognitiva/psicologia , Disfunção Cognitiva/terapia , Estudos de Coortes , Estudos Transversais , Diagnóstico Precoce , Feminino , Seguimentos , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética/tendências , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Resultado do Tratamento
16.
Neuroimage ; 237: 118136, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33951514

RESUMO

Cutting-edge recommendation algorithms have been widely used by media platforms to suggest users with personalized content. While such user-specific recommendations may satisfy users' needs to obtain intended information, some users may develop a problematic use pattern manifested by addiction-like undesired behaviors. Using a popular video sharing and recommending platform (TikTok) as an example, the present study first characterized use-related undesired behaviors with a questionnaire, then investigated how personally recommended videos modulated brain activity with an fMRI experiment. We found more undesired symptoms were related to lower self-control ability among young adults, and about 5.9% of TikTok users may have significant problematic use. The fMRI results showed higher brain activations in sub-components of the default mode network (DMN), ventral tegmental area, and discrete regions including lateral prefrontal, anterior thalamus, and cerebellum when viewing personalized videos in contrast to non-personalized ones. Psychophysiological interaction analyses revealed stronger coupling between activated DMN subregions and neural pathways underlying auditory and visual processing, as well as the frontoparietal network. This study highlights the functional heterogeneity of DMN in viewing personalized videos and may shed light on the neural underpinnings of how recommendation algorithms are able to keep the user's attention to suggested contents.


Assuntos
Córtex Cerebral/fisiologia , Rede de Modo Padrão/fisiologia , Transtorno de Adição à Internet/fisiopatologia , Autocontrole , Mídias Sociais , Área Tegmentar Ventral/fisiologia , Gravação em Vídeo , Adulto , Córtex Cerebral/diagnóstico por imagem , Rede de Modo Padrão/diagnóstico por imagem , Feminino , Humanos , Transtorno de Adição à Internet/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Área Tegmentar Ventral/diagnóstico por imagem , Adulto Jovem
18.
Cereb Cortex ; 31(10): 4420-4426, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-33860315

RESUMO

The self-face advantage has been demonstrated not only at the supraliminal level, but also at the subliminal level. However, it remains unclear whether subliminal self-face processing involves the same neural networks as those for supraliminal self-face processing. Here, we show that the ventral tegmental area, a center of the dopamine reward pathway, exhibited greater activation to subliminal presentations of the self-face than those of the others' faces, whereas subliminal presentations of the others' faces induced activation in the amygdala, which generally responds to unfamiliar information. This self-other difference in brain response was consistently observed even when the facial configuration was modified without changing the shape of the facial parts. The present findings suggest that the dopamine reward pathway is involved in automatic self-advantage in face processing, and the subliminal self-other facial discrimination does not depend on information of the precise facial configuration.


Assuntos
Conscientização/fisiologia , Dopamina/fisiologia , Ego , Face/fisiologia , Vias Neurais/fisiologia , Recompensa , Autoimagem , Adulto , Expressão Facial , Reconhecimento Facial , Feminino , Humanos , Imageamento por Ressonância Magnética , Estimulação Subliminar , Área Tegmentar Ventral/diagnóstico por imagem , Área Tegmentar Ventral/fisiologia , Adulto Jovem
19.
PLoS One ; 16(4): e0243899, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33826633

RESUMO

Phasic dopamine release from mid-brain dopaminergic neurons is thought to signal errors of reward prediction (RPE). If reward maximisation is to maintain homeostasis, then the value of primary rewards should be coupled to the homeostatic errors they remediate. This leads to the prediction that RPE signals should be configured as a function of homeostatic state and thus diminish with the attenuation of homeostatic error. To test this hypothesis, we collected a large volume of functional MRI data from five human volunteers on four separate days. After fasting for 12 hours, subjects consumed preloads that differed in glucose concentration. Participants then underwent a Pavlovian cue-conditioning paradigm in which the colour of a fixation-cross was stochastically associated with the delivery of water or glucose via a gustometer. This design afforded computation of RPE separately for better- and worse-than expected outcomes during ascending and descending trajectories of serum glucose fluctuations. In the parabrachial nuclei, regional activity coding positive RPEs scaled positively with serum glucose for both ascending and descending glucose levels. The ventral tegmental area and substantia nigra became more sensitive to negative RPEs when glucose levels were ascending. Together, the results suggest that RPE signals in key brainstem structures are modulated by homeostatic trajectories of naturally occurring glycaemic flux, revealing a tight interplay between homeostatic state and the neural encoding of primary reward in the human brain.


Assuntos
Glicemia/metabolismo , Dopamina/metabolismo , Núcleos Parabraquiais , Recompensa , Substância Negra , Área Tegmentar Ventral , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Núcleos Parabraquiais/diagnóstico por imagem , Núcleos Parabraquiais/metabolismo , Substância Negra/diagnóstico por imagem , Substância Negra/metabolismo , Área Tegmentar Ventral/diagnóstico por imagem , Área Tegmentar Ventral/metabolismo
20.
Neuron ; 109(8): 1381-1395.e7, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33667342

RESUMO

Perception improves by repeated practice with visual stimuli, a phenomenon known as visual perceptual learning (VPL). The interplay of attentional and neuromodulatory reward signals is hypothesized to cause these behavioral and associated neuronal changes, although VPL can occur without attention (i.e., task-irrelevant VPL). In addition, task-relevant VPL can be category-selective for simple attended oriented stimuli. Yet, it is unclear whether category-selective task-irrelevant VPL occurs and which brain centers mediate underlying forms of adult cortical plasticity. Here, we show that pairing subliminal complex visual stimuli (faces and bodies) with electrical microstimulation of the ventral tegmental area (VTA-EM) causes category-selective task-irrelevant VPL. These perceptual improvements are accompanied by fMRI signal changes in early and late visual and frontal areas, as well as the cerebellum, hippocampus, claustrum, and putamen. In conclusion, Pavlovian pairing of unattended complex stimuli with VTA-EM causes category-selective learning accompanied by changes of cortical and subcortical neural representations in macaques.


Assuntos
Atenção/fisiologia , Aprendizagem/fisiologia , Área Tegmentar Ventral/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Estimulação Elétrica , Macaca , Imageamento por Ressonância Magnética , Plasticidade Neuronal/fisiologia , Estimulação Luminosa , Área Tegmentar Ventral/diagnóstico por imagem , Córtex Visual/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...