Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 613
Filtrar
1.
Nat Commun ; 15(1): 3439, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653759

RESUMO

Oxygen in marine sediments regulates many key biogeochemical processes, playing a crucial role in shaping Earth's climate and benthic ecosystems. In this context, branched glycerol dialkyl glycerol tetraethers (brGDGTs), essential biomarkers in paleoenvironmental research, exhibit an as-yet-unresolved association with sediment oxygen conditions. Here, we investigated brGDGTs in sediments from three deep-sea regions (4045 to 10,100 m water depth) dominated by three respective trench systems and integrated the results with in situ oxygen microprofile data. Our results demonstrate robust correlations between diffusive oxygen uptake (DOU) obtained from microprofiles and brGDGT methylation and isomerization degrees, indicating their primary production within sediments and their strong linkage with microbial diagenetic activity. We establish a quantitative relationship between the Isomerization and Methylation index of Branched Tetraethers (IMBT) and DOU, suggesting its potential validity across deep-sea environments. Increased brGDGT methylation and isomerization likely enhance the fitness of source organisms in deep-sea habitats. Our study positions brGDGTs as a promising tool for quantifying benthic DOU in deep-sea settings, where DOU is a key metric for assessing sedimentary organic carbon degradation and microbial activity.


Assuntos
Bactérias , Sedimentos Geológicos , Oxigênio , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Oxigênio/metabolismo , Oxigênio/química , Bactérias/metabolismo , Bactérias/genética , Ecossistema , Éteres/metabolismo , Éteres/química , Lipídeos/química , Metilação , Água do Mar/microbiologia , Água do Mar/química
2.
Biomolecules ; 14(4)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38672508

RESUMO

Reported herein is the development of assays for the spectrophotometric quantification of biocatalytic silicon-oxygen bond hydrolysis. Central to these assays are a series of chromogenic substrates that release highly absorbing phenoxy anions upon cleavage of the sessile bond. These substrates were tested with silicatein, an enzyme from a marine sponge that is known to catalyse the hydrolysis and condensation of silyl ethers. It was found that, of the substrates tested, tert-butyldimethyl(2-methyl-4-nitrophenoxy)silane provided the best assay performance, as evidenced by the highest ratio of enzyme catalysed reaction rate compared with the background (uncatalysed) reaction. These substrates were also found to be suitable for detailed enzyme kinetics measurements, as demonstrated by their use to determine the Michaelis-Menten kinetic parameters for silicatein.


Assuntos
Biocatálise , Éteres , Silanos , Espectrofotometria , Hidrólise , Espectrofotometria/métodos , Silanos/química , Cinética , Éteres/química , Éteres/metabolismo , Animais , Catepsinas/metabolismo , Catepsinas/química
3.
Gen Comp Endocrinol ; 350: 114469, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38360373

RESUMO

Tetrabromobisphenol A bis(2-hydroxyethyl) ether (TBBPA-DHEE) is the major TBBPA derivative. It has been detected in different environmental samples. Previous studies show that TBBPA-DHEE caused neurotoxicity in rats. In this study, juvenile zebrafish were exposed to various concentrations of TBBPA-DHEE to ascertain the potential neurotoxicity of TBBPA-DHEE, the chemical, and its possible molecular mechanism of action. Behavioral analysis revealed that TBBPA-DHEE could significantly increase the swimming distance and speed in the 1.5 mg/L group compared to the control. In contrast, the swimming distance and speed were significantly reduced in the 0.05 and 0.3 mg/L groups, affecting learning, memory, and neurodevelopment. Similarly, TBBPA-DHEE exposure caused a concentration-dependent significant increase in the levels of excitatory neurotransmitters, namely, dopamine, norepinephrine, and epinephrine, which could be attributed to the change observed in zebrafish behavior. This demonstrates the neurotoxicity of TBBPA-DHEE on juvenile zebrafish. The concentration-dependent increase in the IBR value revealed by the IBR index reveals the noticeable neurotoxic effect of TBBPA-DHEE. Transcriptomic analysis shows that TBBPA-DHEE exposure activated the PPAR signaling pathways, resulting in a disturbance of fatty acid (FA) metabolism and changes in the transcript levels of genes involved in these pathways, which could lead to lipotoxicity and hepatotoxicity. Our findings demonstrate a distinct endocrine-disrupting response to TBBPA-DHEE exposure, possibly contributing to abnormal behavioral alterations. This study provides novel insights into underlying the mechanisms and effects of TBBPA-DHEE on aquatic organisms, which may be helpful forenvironmental/human health risk assessments of the emerging pollutant.


Assuntos
Retardadores de Chama , Peixe-Zebra , Humanos , Ratos , Animais , Peixe-Zebra/metabolismo , Éteres/análise , Éteres/metabolismo , Análise de Sequência de RNA , Retardadores de Chama/toxicidade , Retardadores de Chama/análise , Retardadores de Chama/metabolismo
4.
Nat Prod Res ; 38(4): 589-593, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36855235

RESUMO

Synergistic bioassay-guided isolation of the extracts of Artemisia rupestris L, which belongs to the family Asteraceae, afforded two acetylenic spiroketal enol ethers, namely rupesdiynes A (1) and B (2). Their structures were determined based on spectroscopic analysis and experimental and calculated ECD investigations. The two compounds exhibited synergistic activity and were able to reduce the minimum inhibitory concentration (MIC) of oxacillin four-fold, with a fractional inhibitory concentration index (FICI) of 0.5 in combination with oxacillin against the oxacillin-resistant EMRSA-16. Biofilm formation inhibitory and Ethidium bromide (EtBr) efflux assay were further employed to verify the possible mechanism of the synergistic antibacterial effect. Additionally, molecular docking studies were conducted to investigate the binding affinities of the two compounds with penicillin-binding protein 2a (PBP2a) of EMRSA-16. Taken together, rupesdiynes A (1) and rupesdiyne B (2) showed moderate synergistic activity against EMRSA-16 with oxacillin via inhibiting biofilm formation and efflux pump activity, respectively.


Assuntos
Artemisia , Furanos , Staphylococcus aureus Resistente à Meticilina , Compostos de Espiro , Simulação de Acoplamento Molecular , Acetileno/metabolismo , Acetileno/farmacologia , Alcinos/farmacologia , Éteres/metabolismo , Éteres/farmacologia , Extratos Vegetais/química , Antibacterianos , Oxacilina/farmacologia , Oxacilina/metabolismo , Testes de Sensibilidade Microbiana , Sinergismo Farmacológico
5.
Environ Microbiol Rep ; 16(1): e13210, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37950419

RESUMO

The MBES04 strain of Novosphingobium accumulates phenylpropanone monomers as end-products of the etherase system, which specifically and reductively cleaves the ß-O-4 ether bond (a major bond in lignin molecules). However, it does not utilise phenylpropanone monomers as an energy source. Here, we studied the response to the lignin-related perturbation to clarify the physiological significance of its etherase system. Transcriptome analysis revealed two gene clusters, each consisting of four tandemly linked genes, specifically induced by a lignin preparation extracted from hardwood (Eucalyptus globulus) and a ß-O-4-type lignin model biaryl compound, but not by vanillin. The most strongly induced gene was a 2,4'-dihydroxyacetophenone dioxygenase-like protein, which leads to energy production through oxidative degradation. The other cluster was related to multidrug resistance. The former cluster was transcriptionally regulated by a common promoter, where a phenylpropanone monomer acted as one of the effectors responsible for gene induction. These results indicate that the physiological significance of the etherase system of the strain lies in its function as a sensor for lignin fragments. This may be a survival strategy to detect nutrients and gain tolerance to recalcitrant toxic compounds, while the strain preferentially utilises easily degradable aromatic compounds with lower energy demands for catabolism.


Assuntos
Hidrocarbonetos Fluorados , Lignina , Sphingomonadaceae , Lignina/química , Proteínas de Bactérias/genética , Oxirredução , Éteres/química , Éteres/metabolismo , Sphingomonadaceae/genética , Sphingomonadaceae/metabolismo
6.
Trop Anim Health Prod ; 56(1): 21, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38112933

RESUMO

Globally, the price of soybean meal, the most common proteinaceous ingredient in livestock diets, has become highly expensive prompting a search for alternative ingredients. Hemp seed cake is a promising alternative but could be limited by its high neutral detergent fiber and ether extract contents which impede nutrient intake and digestibility. However, some ruminant species such as goats have superior ability to digest high fiber and ether extract diets. Thus, the current research evaluated nutrient intake and digestibility, rumen fermentation, and microbial protein synthesis of goats fed hempseed cake as a substitute for soybean meal in finisher diets. A total of 25 Kalahari Red castrates (27 ± 3 kg, 4-5 months old) were assigned to five dietary treatments (5 goats/ diet) in a completely randomized design. A maize-lucerne-based finishing diet was formulated with hempseed cake substituting soybean meal as the primary protein ingredient at 0, 25, 50, 75, or 100 g/kg dry matter. Ether extract intake exhibited a positive linear trend (P ≤ 0.05) while crude protein intake and microbial nitrogen supply exhibited a negative linear trend (P ≤ 0.05) with dietary inclusion of hempseed cake. However, feeding hempseed cake did not influence (P > 0.05) apparent nutrient digestibility, rumen fermentation parameters and nitrogen use efficiency. In conclusion, the substitution of soybean meal for hempseed cake decreased crude protein intake and microbial nitrogen supply in goat finisher diets without compromising nutrient digestibility and nitrogen use efficiency. The study recommends partial or full replacement of soybean meal with hempseed cake in goat finisher diets.


Assuntos
Digestão , Cabras , Animais , Ração Animal/análise , Dieta/veterinária , Ingestão de Alimentos , Éteres/metabolismo , Fermentação , Glycine max , Cabras/metabolismo , Nitrogênio/metabolismo , Extratos Vegetais/metabolismo , Rúmen/metabolismo
7.
Trop Anim Health Prod ; 55(6): 385, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37906370

RESUMO

This study aimed to estimate the magnitude of the effects of dietary inclusion of peanut skins (PS) byproduct (Arachis hypogea L.) on intake, total-tract digestibility, and rumen fermentation of cattle via meta-analysis. Data were collected following the PRISMA methodology. Nine manuscripts and a graduate thesis met the inclusion criteria from 1983 to 2010. The effect size was estimated by calculating the weighted raw mean differences (RMD) between PS vs. control diets. The RMD was compared with a robust variance estimation method followed by a meta-regression and a dose-response analysis fitting the diet characteristics like crude protein content (CP), NDF content, ether extract content (EE), tannin content, and PS level in diet (0 to 40%) as covariates. Dietary PS decreased (P < 0.01) total-tract CP digestibility (52.0 vs. 64.3%), final body weight (371.5 vs. 397.9 kg), and average daily gain (1.14 vs. 1.44 kg/day) among treatment comparisons. Likewise, PS decreased total VFA (92.6 vs. 107.6 mmol/L) and NH3-N (8.22 vs. 12.1 mg/dL), but no effects were observed on rumen pH (6.47 vs. 6.14) and VFA molar proportions. Despite the between-cluster variance, dietary PS increased the ether extract digestibility (77.5 vs. 70.2%) among treatment comparisons. The subset and dose-response analysis revealed that PS should not exceed 8% (DM basis) in the diet to prevent negative effects on CP digestibility and animal performance. In conclusion, the results of this meta-analysis do not support the dietary inclusion of PS in cattle diets beyond 8%.


Assuntos
Arachis , Fabaceae , Bovinos , Animais , Rúmen/metabolismo , Fermentação , Ração Animal/análise , Dieta/veterinária , Suplementos Nutricionais/análise , Extratos Vegetais/farmacologia , Éteres/metabolismo , Éteres/farmacologia , Digestão
8.
Biol Sex Differ ; 14(1): 66, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770949

RESUMO

BACKGROUND: We have previously reported that maternal obesity reduces placental transport capacity for lysophosphatidylcholine-docosahexaenoic acid (LPC-DHA), a preferred form for transfer of DHA (omega 3) to the fetal brain, but only in male fetuses. Phosphatidylethanolamine (PE) and phosphatidylcholine (PC), have either sn-1 ester, ether or vinyl ether (plasmalogen) linkages to primarily unsaturated and monounsaturated fatty acids and DHA or arachidonic acid (ARA, omega 6) in the sn-2 position. Whether ether and plasmalogen PC and PE metabolism in placenta impacts transfer to the fetus is unexplored. We hypothesized that ether and plasmalogen PC and PE containing DHA and ARA are reduced in maternal-fetal unit in pregnancies complicated by obesity and these differences are dependent on fetal sex. METHODS: In maternal, umbilical cord plasma and placentas from obese women (11 female/5 male infants) and normal weight women (9 female/7 male infants), all PC and PE species containing DHA and ARA were analyzed by LC-MS/MS. Placental protein expression of enzymes involved in phospholipid synthesis, were determined by immunoblotting. All variables were compared between control vs obese groups and separated by fetal sex, in each sample using the Benjamini-Hochberg false discovery rate adjustment to account for multiple testing. RESULTS: Levels of ester PC containing DHA and ARA were profoundly reduced by 60-92% in male placentas of obese mothers, while levels of ether and plasmalogen PE containing DHA and ARA were decreased by 51-84% in female placentas. PLA2G4C abundance was lower in male placentas and LPCAT4 abundance was lower solely in females in obesity. In umbilical cord, levels of ester, ether and plasmalogen PC and PE with DHA were reduced by 43-61% in male, but not female, fetuses of obese mothers. CONCLUSIONS: We found a fetal sex effect in placental PE and PC ester, ether and plasmalogen PE and PC containing DHA in response to maternal obesity which appears to reflect an ability of female placentas to adapt to maintain optimal fetal DHA transfer in maternal obesity.


Docosahexaenoic acid (DHA) is a critical omega 3 long chain polyunsaturated fatty acid (LCPUFA) for fetal brain development. We have recently reported that maternal obesity reduces placental transport capacity for LysophosPhatidylCholine-DHA (LPC-DHA), a preferred form for transfer of DHA to the fetal brain, but only in male fetuses. Other important lipids, the plasmalogen phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are considered DHA reservoirs, but its roles in the maternal­fetal unit are largely unexplored. We examined these lipid species in maternal and fetal circulation and in placental tissue to uncover potential novel roles for ether and plasmalogen lipids in the regulation of placenta delivery of these vital nutrients in pregnancies complicated by obesity depending of fetal sex. We demonstrated for the first time, that female fetuses of obese mothers decrease placental ether and plasmalogen PE containing DHA and arachidonic acid (ARA, omega 6), and show a high fetal­placental adaptability and placental reserve capacity that can maintain the PC-LCPUFA synthesis and the transfer of these crucial species to the fetus to preserve brain development. Our study also demonstrated that male fetuses, in response to maternal obesity, reduce the placental ester PC species containing DHA and ARA and reduce the ether and plasmalogen PE reservoir of DHA and ARA in fetal circulation. Our findings support a fetal sex effect in placental ester, ether and plasmalogen PE and PC containing DHA in response to maternal obesity which appears to reflect an ability of female placentas to adapt to maintain optimal fetal DHA transfer in maternal obesity.


Assuntos
Obesidade Materna , Placenta , Lactente , Feminino , Humanos , Masculino , Gravidez , Placenta/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Plasmalogênios/metabolismo , Éter , Obesidade Materna/complicações , Obesidade Materna/metabolismo , Caracteres Sexuais , Cromatografia Líquida , Espectrometria de Massas em Tandem , Obesidade/metabolismo , Etil-Éteres/metabolismo , Éteres/metabolismo
9.
ACS Infect Dis ; 9(10): 1981-1992, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37708378

RESUMO

New drugs to treat tuberculosis which target intractable bacterial populations are required to develop shorter and more effective treatment regimens. The benzene amide ether scaffold has activity against intracellular Mycobacterium tuberculosis, but low activity against extracellular, actively replicating M. tuberculosis. We determined that these molecules have bactericidal activity against non-replicating M. tuberculosis but not actively replicating bacteria. Exposure to compounds depleted ATP levels in non-replicating bacteria and increased the oxygen consumption rate; a subset of molecules led to the accumulation of intrabacterial reactive oxygen species. A comprehensive screen of M. tuberculosis strains identified a number of under-expressing strains as more sensitive to compounds under replicating conditions including QcrA and QcrB hypomorphs. We determined the global gene expression profile after compound treatment for both replicating and nutrient-starved M. tuberculosis. We saw compound-dependent changes in the expression of genes involved in energy metabolism under both conditions. Taken together, our data suggest that the scaffold targets respiration in M. tuberculosis.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Antituberculosos/metabolismo , Benzeno/farmacologia , Éter/metabolismo , Éter/farmacologia , Éter/uso terapêutico , Amidas/farmacologia , Testes de Sensibilidade Microbiana , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Etil-Éteres/metabolismo , Etil-Éteres/farmacologia , Etil-Éteres/uso terapêutico , Éteres/metabolismo , Éteres/farmacologia , Éteres/uso terapêutico
10.
Neuropsychopharmacol Rep ; 43(3): 403-413, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37498306

RESUMO

AIMS: Schizophrenia is a chronic relapsing psychiatric disorder that is characterized by many symptoms and has a high heritability. There were studies showing that the phospholipid abnormalities in subjects with schizophrenia (Front Biosci, S3, 2011, 153; Schizophr Bull, 48, 2022, 1125; Sci Rep, 7, 2017, 6; Anal Bioanal Chem, 400, 2011, 1933). Disturbances in prefrontal cortex phospholipid and fatty acid composition have been reported in subjects with schizophrenia (Sci Rep, 7, 2017, 6; Anal Bioanal Chem, 400, 2011, 1933; Schizophr Res, 215, 2020, 493; J Psychiatr Res, 47, 2013, 636; Int J Mol Sci, 22, 2021). For exploring the signaling pathways contributing to the lipid changes in previous study (Sci Rep, 7, 2017, 6), we performed two types of transcriptome analyses in subjects with schizophrenia: an unbiased transcriptome analysis solely based on RNA-seq data and a correlation analysis between levels of gene expression and lipids. METHODS: RNA-Seq analysis was performed in the postmortem prefrontal cortex from 10 subjects with schizophrenia and 5 controls. Correlation analysis between the transcriptome and lipidome from 9 subjects, which are the same samples in the previous lipidomics study (Sci Rep, 7, 2017, 6). RESULTS: Extraction of differentially expressed genes (DEGs) and further sequence and functional group analysis revealed changes in gene expression levels in phosphoinositide 3-kinase (PI3K)-Akt signaling and the complement system. In addition, a correlation analysis clarified alterations in ether lipid metabolism pathway, which is not found as DEGs in transcriptome analysis alone. CONCLUSIONS: This study provided results of the integrated analysis of the schizophrenia-associated transcriptome and lipidome within the PFC and revealed that lipid-correlated alterations in the transcriptome are enriched in specific pathways including ether lipid metabolism pathway.


Assuntos
Fosfolipídeos , Córtex Pré-Frontal , Esquizofrenia , Transcriptoma , Humanos , População do Leste Asiático , Éteres/metabolismo , Metabolismo dos Lipídeos/genética , Fosfatidilinositol 3-Quinases/análise , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfolipídeos/análise , Fosfolipídeos/genética , Fosfolipídeos/metabolismo , Córtex Pré-Frontal/química , Córtex Pré-Frontal/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Autopsia
11.
J Sci Food Agric ; 103(14): 6861-6870, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37288717

RESUMO

BACKGROUND: Alternaria can infest pears to produce metabolites, which can contaminate pears and their processed products. Pear paste, one of the most important pear-based products, is popular among Chinese consumers especially for its cough relieving and phlegm removal properties. Although people are concerned about the risk of Alternaria toxins in many agro-foods and their products, little is known about the toxins in pear paste. RESULTS: A method was developed for the determination of tenuazonic acid, alternariol, alternariol menomethyl ether, altenuene and tentoxin in pear paste by ultra-performance liquid chromatography tandem mass spectrometry with saturated sodium sulphate dissolution and acidified acetonitrile extraction. The mean recoveries of the five toxins were 75.3-113.8% with relative standard deviations of 2.8-12.2% at spiked levels of 1.0-100 µg kg-1 . Alternaria toxins were detected in 53 out of 76 samples, with a detection rate of 71.4%. Tenuazonic acid (67.1%), alternariol (35.5%), tentoxin (23.7%) and alternariol monomethyl ether (7.9%) were detected in all samples at concentrations of < limit of quantification (LOQ)-105.0 µg kg-1 , < LOQ-32.1 µg kg-1 , < LOQ-74.2 µg kg-1 and < LOQ-15.1 µg kg-1 , respectively. Altenuene was never found in pear paste samples. Tenuazonic acid, alternariol, tentoxin and alternariol menomethyl ether should be focused on due to their toxicity and detection rates. CONCLUSION: To the best of our knowledge, this is the first report on the detection method and residue levels of Alternaria toxins in pear paste. The proposed method and research data can provide technical support for the Chinese government to continuously monitor and control Alternaria toxins in pear paste, especially tenuazonic acid. It can also provide a useful reference for related researchers. © 2023 Society of Chemical Industry.


Assuntos
Micotoxinas , Pyrus , Humanos , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Ácido Tenuazônico/análise , Micotoxinas/metabolismo , Pyrus/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Alternaria/metabolismo , Solubilidade , Lactonas/análise , Extração Líquido-Líquido , Éteres/análise , Éteres/metabolismo , Contaminação de Alimentos/análise
12.
J Biol Chem ; 299(7): 104898, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37295774

RESUMO

Vanillyl alcohol oxidases (VAOs) belong to the 4-phenol oxidases family and are found predominantly in lignin-degrading ascomycetes. Systematical investigation of the enzyme family at the sequence level resulted in discovery and characterization of the second recombinantly produced VAO member, DcVAO, from Diplodia corticola. Remarkably high activities for 2,6-substituted substrates like 4-allyl-2,6-dimethoxy-phenol (3.5 ± 0.02 U mg-1) or 4-(hydroxymethyl)-2,6-dimethoxyphenol (6.3 ± 0.5 U mg-1) were observed, which could be attributed to a Phe to Ala exchange in the catalytic center. In order to rationalize this rare substrate preference among VAOs, we resurrected and characterized three ancestral enzymes and performed mutagenesis analyses. The results indicate that a Cys/Glu exchange was required to retain activity for É£-hydroxylations and shifted the acceptance towards benzyl ethers (up to 4.0 ± 0.1 U mg-1). Our findings contribute to the understanding of the functionality of VAO enzyme group, and with DcVAO, we add a new enzyme to the repertoire of ether cleaving biocatalysts.


Assuntos
Oxirredutases do Álcool , Ascomicetos , Biocatálise , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Ascomicetos/enzimologia , Fenóis/química , Fenóis/metabolismo , Especificidade por Substrato , Hidroxilação , Éteres/química , Éteres/metabolismo
13.
Prog Lipid Res ; 91: 101237, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37236370

RESUMO

The major archaeal membrane glycerolipids are distinguished from those of bacteria and eukaryotes by the contrasting stereochemistry of their glycerol backbones, and by the use of ether-linked isoprenoid-based alkyl chains rather than ester-linked fatty acyl chains for their hydrophobic moieties. These fascinating compounds play important roles in the extremophile lifestyles of many species, but are also present in the growing numbers of recently discovered mesophilic archaea. The past decade has witnessed significant advances in our understanding of archaea in general and their lipids in particular. Much of the new information has come from the ability to screen large microbial populations via environmental metagenomics, which has revolutionised our understanding of the extent of archaeal biodiversity that is coupled with a strict conservation of their membrane lipid compositions. Significant additional progress has come from new culturing and analytical techniques that are gradually enabling archaeal physiology and biochemistry to be studied in real time. These studies are beginning to shed light on the much-discussed and still-controversial process of eukaryogenesis, which probably involved both bacterial and archaeal progenitors. Puzzlingly, although eukaryotes retain many attributes of their putative archaeal ancestors, their lipid compositions only reflect their bacterial progenitors. Finally, elucidation of archaeal lipids and their metabolic pathways have revealed potentially interesting applications that have opened up new frontiers for biotechnological exploitation of these organisms. This review is concerned with the analysis, structure, function, evolution and biotechnology of archaeal lipids and their associated metabolic pathways.


Assuntos
Archaea , Lipídeos de Membrana , Archaea/química , Archaea/metabolismo , Lipídeos de Membrana/metabolismo , Bactérias/metabolismo , Terpenos/metabolismo , Éteres/química , Éteres/metabolismo
14.
J Biosci Bioeng ; 135(6): 474-479, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36973095

RESUMO

Diphenyl ethers (DEs), which are widely used in the agricultural and chemical industries, have become hazardous contaminants in the environment. Although several DE-degrading bacteria have been reported, discovering new types of such microorganisms could enhance understanding of the degradation mechanism in the environment. In this study, we used a direct screening method based on detection of ether bond-cleaving activity to screen for microorganisms that degrade 4,4'-dihydroxydiphenyl ether (DHDE) as a model DE. Microorganisms isolated from soil samples were incubated with DHDE, and strains producing hydroquinone via ether bond cleavage were selected using hydroquinone-sensitive Rhodanine reagent. This screening procedure resulted in the isolation of 3 bacteria and 2 fungi that transform DHDE. Interestingly, all of the isolated bacteria belonged to one genus, Streptomyces. To our knowledge, these are the first microorganisms of the genus Streptomyces shown to degrade a DE. Streptomyces sp. TUS-ST3 exhibited high and stable DHDE-degrading activity. HPLC, LC-MS, and GC-MS analyses revealed that strain TUS-ST3 converts DHDE to its hydroxylated analogue and generates hydroquinone as an ether bond-cleavage product. Strain TUS-ST3 also transformed DEs other than DHDE. In addition, glucose-grown TUS-ST3 cells began to transform DHDE after incubation with this compound for 12 h, and produced 75 µM hydroquinone in 72 h. These activities of streptomycetes may play an important role in DE degradation in the environment. We also report the whole genome sequence of strain TUS-ST3.


Assuntos
Éter , Streptomyces , Éter/metabolismo , Hidroquinonas , Streptomyces/genética , Streptomyces/metabolismo , Biodegradação Ambiental , Éteres/metabolismo , Éteres Fenílicos/metabolismo
15.
Environ Pollut ; 325: 121460, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36940913

RESUMO

The uncontrollable disposal of plastic waste has raised the concern of the scientific community, which tries to face this environmental burden by discovering and applying new techniques. Regarding the biotechnology field, several important microorganisms possessing the necessary enzymatic arsenal to utilize recalcitrant synthetic polymers as an energy source have been discovered. In the present study, we screened various fungi for their ability to degrade intact polymers, such as ether-based polyurethane (PU) and low-density polyethylene (LDPE). For this, ImpranIil® DLN-SD and a mixture of long-chain alkanes were used as sole carbon sources, indicating not only the most promising strains in agar plate screening but also inducing the secretion of depolymerizing enzymatic activities, useful for polymer degradation. The agar plate screening revealed three fungal strains belonging to Fusarium and Aspergillus genera, whose secretome was further studied for its ability to degrade the aforementioned non-treated polymers. Specifically for ether-based PU, the secretome of a Fusarium species reduced the sample mass and the average molecular weight of the polymer by 24.5 and 20.4%, respectively, while the secretome of an Aspergillus species caused changes in the molecular structure of LDPE, as evidenced by FTIR. The proteomics analysis revealed that the enzymatic activities induced in presence of Impranil® DLN-SD can be associated with urethane bond cleavage, a fact which was also supported by the observed degradation of the ether-based PU. Although, the mechanism of LDPE degradation was not completely elucidated, the presence of oxidative enzymes could be the main factor contributing to polymer modification.


Assuntos
Polietileno , Poliuretanos , Poliuretanos/química , Polietileno/química , Ágar/metabolismo , Secretoma , Plásticos/metabolismo , Fungos/metabolismo , Aspergillus/metabolismo , Éteres/metabolismo , Biodegradação Ambiental
16.
Commun Biol ; 6(1): 306, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949328

RESUMO

Toxoplasma gondii is a prevalent zoonotic pathogen infecting livestock as well as humans. The exceptional ability of this parasite to reproduce in several types of nucleated host cells necessitates a coordinated usage of endogenous and host-derived nutritional resources for membrane biogenesis. Phosphatidylethanolamine is the second most common glycerophospholipid in T. gondii, but how its requirement in the acutely-infectious fast-dividing tachyzoite stage is satisfied remains enigmatic. This work reveals that the parasite deploys de novo synthesis and salvage pathways to meet its demand for ester- and ether-linked PtdEtn. Auxin-mediated depletion of the phosphoethanolamine cytidylyltransferase (ECT) caused a lethal phenotype in tachyzoites due to impaired invasion and cell division, disclosing a vital role of the CDP-ethanolamine pathway during the lytic cycle. In accord, the inner membrane complex appeared disrupted concurrent with a decline in its length, parasite width and major phospholipids. Integrated lipidomics and isotope analyses of the TgECT mutant unveiled the endogenous synthesis of ester-PtdEtn, and salvage of ether-linked lipids from host cells. In brief, this study demonstrates how T. gondii operates various means to produce distinct forms of PtdEtn while featuring the therapeutic relevance of its de novo synthesis.


Assuntos
Toxoplasma , Humanos , Toxoplasma/genética , Toxoplasma/metabolismo , Fosfatidiletanolaminas/metabolismo , Éter/metabolismo , Glicerofosfolipídeos/metabolismo , Etil-Éteres/metabolismo , Éteres/metabolismo
17.
Fitoterapia ; 166: 105458, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36796458

RESUMO

A series of novel chalcone derivatives containing pyrazole oxime ethers were designed and synthesized. The structures of all the target compounds were determined by NMR and HRMS. The structure of H5 was further confirmed via single-crystal X-ray diffraction analysis. The results of biological activity test showed that some of the target compounds exhibited significant antiviral and antibacterial activities. The test results of EC50 value against tobacco mosaic virus showed that H9 had the best curative and protective effect, and the EC50 value of curative activity of H9 was 166.9 µg/mL, which was superior to ningnanmycin (NNM) 280.4 µg/mL, the EC50 value of protective activity of H9 was 126.5 µg/mL, which was superior to ningnanmycin 227.7 µg/mL. Microscale thermophoresis (MST) experiments demonstrated that H9 (Kd = 0.0096 ± 0.0045 µmol/L) exhibited a strong binding ability with tobacco mosaic virus capsid protein (TMV-CP), which was far superior to ningnanmycin (Kd = 1.2987 ± 0.4577 µmol/L). In addition, molecular docking results showed that the affinity of H9 to TMV protein was significantly higher than ningnanmycin. The results of against bacterial activity showed that H17 has a good inhibiting effect against Xanthomonas oryzae pv. oryzae (Xoo), the EC50 value of H17 was 33.0 µg/mL, which was superior to the commercial drugs thiodiazole copper (68.1 µg/mL) and bismerthiazol (81.6 µg/mL), and the antibacterial activity of H17 was verified by scanning electron microscopy (SEM).


Assuntos
Chalcona , Chalconas , Vírus do Mosaico do Tabaco , Chalconas/farmacologia , Estrutura Molecular , Chalcona/farmacologia , Simulação de Acoplamento Molecular , Éteres/metabolismo , Éteres/farmacologia , Antivirais/química , Antibacterianos/química , Relação Estrutura-Atividade , Testes de Sensibilidade Microbiana
18.
Physiol Rep ; 11(3): e15583, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36750122

RESUMO

In addition, to their established role in cardiac myocytes and neurons, ion channels encoded by ether-a-go-go-related genes (ERG1-3 or kcnh2,3 and 6) (kcnh2) are functionally relevant in phasic smooth muscle. The aim of the study was to determine the expression and functional impact of ERG expression products in rat urinary bladder smooth muscle using quantitative polymerase chain reaction, immunocytochemistry, whole-cell patch-clamp and isometric tension recording. kcnh2 was expressed in rat bladder, whereas kcnh6 and kcnh3 expression were negligible. Immunofluorescence for the kcnh2 expression product Kv11.1 was detected in the membrane of isolated smooth muscle cells. Potassium currents with voltage-dependent characteristics consistent with Kv11.1 channels and sensitive to the specific blocker E4031 (1 µM) were recorded from isolated detrusor smooth muscles. Disabling Kv11.1 activity with specific blockers (E4031 and dofetilide, 0.2-20 µM) augmented spontaneous contractions to a greater extent than BKCa channel blockers, enhanced carbachol-driven activity, increased nerve stimulation-mediated contractions, and impaired ß-adrenoceptor-mediated inhibitory responses. These data establish for the first time that Kv11.1 channels are key determinants of contractility in rat detrusor smooth muscle.


Assuntos
Éter , Bexiga Urinária , Ratos , Animais , Bexiga Urinária/metabolismo , Éter/metabolismo , Potenciais da Membrana/fisiologia , Músculo Liso/metabolismo , Etil-Éteres/metabolismo , Éteres/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo
19.
Theranostics ; 13(2): 438-457, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36632231

RESUMO

Rationale: Despite growing evidence for mitochondria's involvement in cancer, the roles of specific metabolic components outside the respiratory complex have been little explored. We conducted metabolomic studies on mitochondrial DNA (mtDNA)-deficient (ρ0) cancer cells with lower proliferation rates to clarify the undefined roles of mitochondria in cancer growth. Methods and results: Despite extensive metabolic downregulation, ρ0 cells exhibited high glycerol-3-phosphate (G3P) level, due to low activity of mitochondrial glycerol-3-phosphate dehydrogenase (GPD2). Knockout (KO) of GPD2 resulted in cell growth suppression as well as inhibition of tumor progression in vivo. Surprisingly, this was unrelated to the conventional bioenergetic function of GPD2. Instead, multi-omics results suggested major changes in ether lipid metabolism, for which GPD2 provides dihydroxyacetone phosphate (DHAP) in ether lipid biosynthesis. GPD2 KO cells exhibited significantly lower ether lipid level, and their slower growth was rescued by supplementation of a DHAP precursor or ether lipids. Mechanistically, ether lipid metabolism was associated with Akt pathway, and the downregulation of Akt/mTORC1 pathway due to GPD2 KO was rescued by DHAP supplementation. Conclusion: Overall, the GPD2-ether lipid-Akt axis is newly described for the control of cancer growth. DHAP supply, a non-bioenergetic process, may constitute an important role of mitochondria in cancer.


Assuntos
Glicerolfosfato Desidrogenase , Mitocôndrias , Neoplasias , Proteínas Proto-Oncogênicas c-akt , Metabolismo Energético , Éteres/metabolismo , Glicerolfosfato Desidrogenase/genética , Glicerolfosfato Desidrogenase/metabolismo , Mitocôndrias/enzimologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Camundongos , Neoplasias/enzimologia , Neoplasias/patologia , Humanos
20.
J Appl Microbiol ; 134(1)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36626797

RESUMO

AIM: To isolate and characterize anti-Candida compounds from soil actinobacterium Streptomyces chrestomyceticus ADP4 and to assess their drug likeness. METHODS AND RESULTS: Two anti-Candida compounds, Phenyl 2'α, 2'ß, 6'ß-trimethyl cyclohexyl ketone (1PB1) and Phenyl nonanyl ether (1PB2), were isolated from the metabolites produced by Streptomyces chrestomyceticus ADP4. Their structures were deduced by extensive analyses of spectral data obtained from liquid chromatography with tandem mass spectrometry (LCMS/MS), nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FTIR) and ultraviolet (UV) spectroscopies. While both the compounds inhibited growth of the Candida spp., 1PB2 was effective in inhibiting biofilm formed by Candida albicans ATCC 10231. The compounds did not show any cytotoxicity against HepG2 cells and were found to be safe when predicted theoretically on rat model, bioaccumulation and mutagenicity by using the software: toxicity estimation software tool (TEST). The compounds displayed drug-like properties when analyzed by using SwissADME software. CONCLUSIONS: 1PB1 and 1PB2 are being reported for the first time from any natural source along with their anti-Candida properties. In-silico studies revealed their druggability and suitability to take up further work on the compounds for their possible application in treating Candida-associated infections. SIGNIFICANCE AND IMPACT OF THE STUDY: The increasing prevalence of Candidiasis associated with drug-resistant strains of Candida spp. highlighted the urgent need for discovery of new compounds with anti-Candida properties that could hold promise as potential drug candidate.


Assuntos
Candidíase , Streptomyces , Ratos , Animais , Candida , Candida albicans , Streptomyces/metabolismo , Éteres/metabolismo , Éteres/farmacologia , Antifúngicos/química , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...