Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 285
Filtrar
1.
Commun Biol ; 4(1): 1184, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645977

RESUMO

Scalable isogenic models of cancer-associated mutations are critical to studying dysregulated gene function. Nonsynonymous mutations of splicing factors, which typically affect one allele, are common in many cancers, but paradoxically confer growth disadvantage to cell lines, making their generation and expansion challenging. Here, we combine AAV-intron trap, CRISPR/Cas9, and inducible Cre-recombinase systems to achieve >90% efficiency to introduce the oncogenic K700E mutation in SF3B1, a splicing factor commonly mutated in multiple cancers. The intron-trap design of AAV vector limits editing to one allele. CRISPR/Cas9-induced double stranded DNA breaks direct homologous recombination to the desired genomic locus. Inducible Cre-recombinase allows for the expansion of cells prior to loxp excision and expression of the mutant allele.  Importantly, AAV or CRISPR/Cas9 alone results in much lower editing efficiency and the edited cells do not expand due to toxicity of SF3B1-K700E. Our approach can be readily adapted to generate scalable isogenic systems where mutant oncogenes confer a growth disadvantage.


Assuntos
Sistemas CRISPR-Cas/fisiologia , Integrases/fisiologia , Íntrons/fisiologia , Neoplasias/fisiopatologia , Quebras de DNA de Cadeia Dupla , Dependovirus , Recombinação Homóloga , Humanos , Neoplasias/enzimologia , Neoplasias/genética
2.
Clin Cancer Res ; 27(20): 5669-5680, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34433651

RESUMO

PURPOSE: The epigenetic mechanisms involved in transcriptional regulation leading to malignant phenotype in gliomas remains poorly understood. Topoisomerase IIB (TOP2B), an enzyme that decoils and releases torsional forces in DNA, is overexpressed in a subset of gliomas. Therefore, we investigated its role in epigenetic regulation in these tumors. EXPERIMENTAL DESIGN: To investigate the role of TOP2B in epigenetic regulation in gliomas, we performed paired chromatin immunoprecipitation sequencing for TOP2B and RNA-sequencing analysis of glioma cell lines with and without TOP2B inhibition and in human glioma specimens. These experiments were complemented with assay for transposase-accessible chromatin using sequencing, gene silencing, and mouse xenograft experiments to investigate the function of TOP2B and its role in glioma phenotypes. RESULTS: We discovered that TOP2B modulates transcription of multiple oncogenes in human gliomas. TOP2B regulated transcription only at sites where it was enzymatically active, but not at all native binding sites. In particular, TOP2B activity localized in enhancers, promoters, and introns of PDGFRA and MYC, facilitating their expression. TOP2B levels and genomic localization was associated with PDGFRA and MYC expression across glioma specimens, which was not seen in nontumoral human brain tissue. In vivo, TOP2B knockdown of human glioma intracranial implants prolonged survival and downregulated PDGFRA. CONCLUSIONS: Our results indicate that TOP2B activity exerts a pleiotropic role in transcriptional regulation of oncogenes in a subset of gliomas promoting a proliferative phenotype.


Assuntos
Neoplasias Encefálicas/genética , DNA Topoisomerases Tipo II/fisiologia , Epigênese Genética/fisiologia , Glioma/genética , Íntrons/fisiologia , Oncogenes/fisiologia , Proteínas de Ligação a Poli-ADP-Ribose/fisiologia , Regiões Promotoras Genéticas/fisiologia , Animais , Neoplasias Encefálicas/enzimologia , Regulação Neoplásica da Expressão Gênica , Glioma/enzimologia , Humanos , Camundongos
3.
Neuropathol Appl Neurobiol ; 47(7): 990-1003, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34288034

RESUMO

AIM: Splicing factor proline and glutamine rich (SFPQ) is an RNA-DNA binding protein that is dysregulated in Alzheimer's disease and frontotemporal dementia. Dysregulation of SFPQ, specifically increased intron retention and nuclear depletion, has been linked to several genetic subtypes of amyotrophic lateral sclerosis (ALS), suggesting that SFPQ pathology may be a common feature of this heterogeneous disease. Our study aimed to investigate this hypothesis by providing the first comprehensive assessment of SFPQ pathology in large ALS case-control cohorts. METHODS: We examined SFPQ at the RNA, protein and DNA levels. SFPQ RNA expression and intron retention were examined using RNA-sequencing and quantitative PCR. SFPQ protein expression was assessed by immunoblotting and immunofluorescent staining. At the DNA level, SFPQ was examined for genetic variation novel to ALS patients. RESULTS: At the RNA level, retention of SFPQ intron nine was significantly increased in ALS patients' motor cortex. In addition, SFPQ RNA expression was significantly reduced in the central nervous system, but not blood, of patients. At the protein level, neither nuclear depletion nor reduced expression of SFPQ was found to be a consistent feature of spinal motor neurons. However, SFPQ-positive ubiquitinated protein aggregates were observed in patients' spinal motor neurons. At the DNA level, our genetic screen identified two novel and two rare SFPQ sequence variants not previously reported in the literature. CONCLUSIONS: Our findings confirm dysregulation of SFPQ as a pathological feature of the central nervous system of ALS patients and indicate that investigation of the functional consequences of this pathology will provide insight into ALS biology.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Glutamina/metabolismo , Neurônios Motores/patologia , Demência Frontotemporal/genética , Glutamina/genética , Humanos , Íntrons/fisiologia , Prolina/genética , Prolina/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo
4.
Ann Clin Transl Neurol ; 8(7): 1408-1421, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34047500

RESUMO

OBJECTIVE: Stroke is a cerebrovascular disorder that often causes neurological function defects. ARPP21 is a conserved host gene of miR-128 controlling neurodevelopmental functions. This study investigated the mechanism of ARPP21 antagonistic intron miR-128 on neurological function repair after stroke. METHODS: Expressions of ARPP21 and miR-128 in stroke patients were detected. The mouse neurons and astrocytes were cultured in vitro and treated with oxygen-glucose deprivation (OGD). The OGD-treated cells were transfected with pc-ARPP21 and miR-128 mimic. The proliferation of astrocytes, and the apoptosis of neurons and astrocytes were detected, and inflammatory factors of astrocytes were measured. The binding relationship between miR-128 and CREB1 was verified. The rat model of middle cerebral artery occlusion (MCAO) was established. ARPP21 expression in model rats was detected. The effects of pc-ARPP21 on neuron injury, brain edema volume, and cerebral infarct in rats were observed. RESULTS: ARPP21 expression was downregulated and miR-128 expression was upregulated in stroke patients. pc-ARPP21 facilitated the proliferation of astrocytes and inhibited apoptosis of neurons and astrocytes, and reduced inflammation of astrocytes. miR-128 mimic could reverse these effects of pc-ARPP21 on neurons and astrocytes. miR-128 targeted CREB1 and reduced BDNF secretion. In vitro experiments confirmed that ARPP21 expression was decreased in MCAO rats, and pc-ARPP21 promoted neurological function repair after stroke. CONCLUSION: ARPP21 upregulated CREB1 and BDNF expressions by antagonizing miR-128, thus inhibiting neuronal apoptosis and promoting neurological function repair after stroke. This study may offer a novel target for the management of stroke.


Assuntos
Isquemia Encefálica/metabolismo , Íntrons/fisiologia , MicroRNAs/biossíntese , Fosfoproteínas/biossíntese , Acidente Vascular Cerebral/metabolismo , Adulto , Idoso , Animais , Isquemia Encefálica/patologia , Proliferação de Células/fisiologia , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Pessoa de Meia-Idade , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/patologia
5.
Life Sci Alliance ; 4(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33906938

RESUMO

Essential genes have been studied by copy number variants and deletions, both associated with introns. The premise of our work is that introns of essential genes have distinct characteristic properties. We provide support for this by training a deep learning model and demonstrating that introns alone can be used to classify essentiality. The model, limited to first introns, performs at an increased level, implicating first introns in essentiality. We identify unique properties of introns of essential genes, finding that their structure protects against deletion and intron-loss events, especially centered on the first intron. We show that GC density is increased in the first introns of essential genes, allowing for increased enhancer activity, protection against deletions, and improved splice site recognition. We find that first introns of essential genes are of remarkably smaller size than their nonessential counterparts, and to protect against common 3' end deletion events, essential genes carry an increased number of (smaller) introns. To demonstrate the importance of the seven features we identified, we train a feature-based model using only these features and achieve high performance.


Assuntos
Genes Essenciais/genética , Íntrons/genética , Processamento Alternativo/genética , Sequência de Bases/genética , Biologia Computacional/métodos , Variações do Número de Cópias de DNA/genética , Bases de Dados Genéticas , Aprendizado Profundo , Éxons/genética , Genes Essenciais/fisiologia , Humanos , Mutação INDEL/genética , Íntrons/fisiologia
6.
BMC Biol ; 19(1): 1, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407428

RESUMO

BACKGROUND: Dinoflagellates are aquatic protists particularly widespread in the oceans worldwide. Some are responsible for toxic blooms while others live in symbiotic relationships, either as mutualistic symbionts in corals or as parasites infecting other protists and animals. Dinoflagellates harbor atypically large genomes (~ 3 to 250 Gb), with gene organization and gene expression patterns very different from closely related apicomplexan parasites. Here we sequenced and analyzed the genomes of two early-diverging and co-occurring parasitic dinoflagellate Amoebophrya strains, to shed light on the emergence of such atypical genomic features, dinoflagellate evolution, and host specialization. RESULTS: We sequenced, assembled, and annotated high-quality genomes for two Amoebophrya strains (A25 and A120), using a combination of Illumina paired-end short-read and Oxford Nanopore Technology (ONT) MinION long-read sequencing approaches. We found a small number of transposable elements, along with short introns and intergenic regions, and a limited number of gene families, together contribute to the compactness of the Amoebophrya genomes, a feature potentially linked with parasitism. While the majority of Amoebophrya proteins (63.7% of A25 and 59.3% of A120) had no functional assignment, we found many orthologs shared with Dinophyceae. Our analyses revealed a strong tendency for genes encoded by unidirectional clusters and high levels of synteny conservation between the two genomes despite low interspecific protein sequence similarity, suggesting rapid protein evolution. Most strikingly, we identified a large portion of non-canonical introns, including repeated introns, displaying a broad variability of associated splicing motifs never observed among eukaryotes. Those introner elements appear to have the capacity to spread over their respective genomes in a manner similar to transposable elements. Finally, we confirmed the reduction of organelles observed in Amoebophrya spp., i.e., loss of the plastid, potential loss of a mitochondrial genome and functions. CONCLUSION: These results expand the range of atypical genome features found in basal dinoflagellates and raise questions regarding speciation and the evolutionary mechanisms at play while parastitism was selected for in this particular unicellular lineage.


Assuntos
Evolução Biológica , DNA de Protozoário/análise , Dinoflagellida/citologia , Dinoflagellida/genética , Organelas/fisiologia , Proteínas de Protozoários/análise , Sequência de Bases , Evolução Molecular , Íntrons/fisiologia
7.
Elife ; 92020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33372658

RESUMO

We demonstrate how RNA binding protein FOX-1 functions as a dose-dependent X-signal element to communicate X-chromosome number and thereby determine nematode sex. FOX-1, an RNA recognition motif protein, triggers hermaphrodite development in XX embryos by causing non-productive alternative pre-mRNA splicing of xol-1, the master sex-determination switch gene that triggers male development in XO embryos. RNA binding experiments together with genome editing demonstrate that FOX-1 binds to multiple GCAUG and GCACG motifs in a xol-1 intron, causing intron retention or partial exon deletion, thereby eliminating male-determining XOL-1 protein. Transforming all motifs to GCAUG or GCACG permits accurate alternative splicing, demonstrating efficacy of both motifs. Mutating subsets of both motifs partially alleviates non-productive splicing. Mutating all motifs blocks it, as does transforming them to low-affinity GCUUG motifs. Combining multiple high-affinity binding sites with the twofold change in FOX-1 concentration between XX and XO embryos achieves dose-sensitivity in splicing regulation to determine sex.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Proteínas de Ligação a RNA/fisiologia , Cromossomo X/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Feminino , Íntrons/genética , Íntrons/fisiologia , Masculino , Proteínas de Ligação a RNA/metabolismo , Processos de Determinação Sexual
8.
J Microbiol ; 58(12): 1037-1045, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32997303

RESUMO

Terminators and introns are vital regulators of gene expression in many eukaryotes; however, the functional importance of these elements for controlling gene expression in Agaricomycetes remains unclear. In this study, the effects of Ceriporiopsis subvermispora terminators and introns on the expression of a recombinant hygromycin B phosphotransferase gene (hph) were characterized. Using a transient transformation system, we proved that a highly active terminator (e.g., the gpd terminator) is required for the efficient expression of the hph gene. Mutational analyses of the C. subvermispora gpd terminator revealed that hph expression was dictated by an A-rich region, which included a putative positioning element, and polyadenylation sites. In contrast, our results indicated that introns are not required for the expression of hph directed by the Csß1-tub and Csgpd promoters in C. subvermispora. This study provides insights into the functions and cis-element requirements of transcriptional terminators in Agaricomycetes, which may be relevant for designing recombinant genes for this important fungal class.


Assuntos
Basidiomycota/genética , Regulação Fúngica da Expressão Gênica , Íntrons/genética , Polyporales/genética , Moléculas de Adesão Celular/genética , Proteínas Fúngicas/genética , Íntrons/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Regiões Promotoras Genéticas , Proteínas Recombinantes
9.
Plant Cell Physiol ; 61(6): 1054-1063, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32163155

RESUMO

The expression of AtSUC1 is controlled by the promoter and intragenic sequences. AtSUC1 is expressed in roots, pollen and trichomes. However, AtSUC1 promoter-GUS transgenics only show expression in trichomes and pollen. Here, we show that the root expression of AtSUC1 is controlled by an interaction between the AtSUC1 promoter and two short introns. The deletion of either intron from whole-gene-GUS constructs results in no root expression, showing that both introns are required. The two introns in tandem, fused to GUS, produce high constitutive expression throughout the vegetative parts of the plant. When combined with the promoter, the expression driven by the introns is reduced and localized to the roots. In Arabidopsis seedlings, exogenously applied sucrose induces the expression of AtSUC1 in roots and causes anthocyanin accumulation. atsuc1 loss-of-function mutants are defective in sucrose-induced anthocyanin accumulation. We show that an AtSUC1 whole-gene-GUS construct expressing a nonfunctional AtSUC1 (D152N) mutant, that is transport inactive, is defective in sucrose-induced AtSUC1 expression when expressed in an atsuc1-null background. We also show that the transport-defective allele does not complement the loss of sucrose-induced anthocyanin accumulation in null atsuc1 mutants. The results indicate that sucrose uptake via AtSUC1 is required for sucrose-induced AtSUC1 expression and sucrose-induced anthocyanin accumulation and that the site for sucrose detection is intracellular.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Íntrons , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/metabolismo , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Íntrons/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Organismos Geneticamente Modificados , Proteínas de Plantas/fisiologia , Raízes de Plantas/metabolismo , Regiões Promotoras Genéticas/fisiologia , Plântula/metabolismo , Sacarose/metabolismo , Xenopus
10.
Plant Cell Physiol ; 61(2): 370-380, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31670803

RESUMO

Pentatricopeptide repeat (PPR) proteins are helical repeat RNA-binding proteins that function in RNA processing by conferring sequence-specific RNA-binding activity. Owing to the lethality of PPR mutants, functions of many PPR proteins remain obscure. In this study, we report the function of PPR20 in intron splicing in mitochondria and its role in maize seed development. PPR20 is a P-type PPR protein targeted to mitochondria. The ppr20 mutants display slow embryo and endosperm development. Null mutation of PPR20 severely reduces the cis-splicing of mitochondrial nad2 intron 3, resulting in reduction in the assembly and activity of mitochondrial complex I. The ppr20-35 allele with a Mu insertion in the N-terminal region shows a much weaker phenotype. Molecular analyses revealed that the mutant produces a truncated transcript, coding for PPR20ΔN120 lacking the N-terminal 120 amino acids. Subcellular localization revealed that PPR20ΔN120:GFP is able to target to mitochondria as well, suggesting the sequence diversity of the mitochondrial targeting peptides. Another mutant zm_mterf15 was also found to be impaired in the splicing of mitochondrial nad2 intron 3. Further analyses are required to identify the exact function of PPR20 and Zm_mTERF15 in the splicing of nad2 intron 3.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Íntrons/fisiologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Splicing de RNA , Sementes/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Alelos , Complexo I de Transporte de Elétrons/genética , Regulação da Expressão Gênica de Plantas , Proteínas Mitocondriais/genética , Mutação , Fenótipo , Desenvolvimento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Ligação a RNA , Sementes/citologia , Sementes/genética , Zea mays/genética
11.
Cell Stress Chaperones ; 25(1): 65-72, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31792734

RESUMO

The highly conserved heat shock protein 70 (HSP70) contributes to survival at a cellular level and greatly enhances stress tolerance in many organisms. In this study, we isolate and characterize Cshsp702, which encodes an inducible form of HSP70 in the rice stem borer, Chilo suppressalis. Cshsp702 does not contain introns; the translational product is comprised of 629 amino acids with an isoelectric point of 5.69. Real-time quantitative PCR revealed that Cshsp702 was expressed at maximal levels in hemocytes and was minimally expressed in the midgut. Expression of Cshsp702 in response to a range of temperatures (-11 to 43 °C) indicated significant induction by extreme cold and hot temperatures, with maximum expression after 2 h at 42 °C. The induction of Cshsp702 in response to the endoparasite Cotesia chilonis was also studied; interestingly, Cshsp702 expression in C. suppressalis was significantly induced at 24 h and 5 days, which correspond to predicted times of C. chilonis feeding and growth, respectively. The potential induction of Cshsp702 as an inflammatory response due to parasitic stress is discussed. In conclusion, Cshsp702 is induced in response to both environmental and biotic stress and plays an important role in the physiological adaptation of C. suppressalis.


Assuntos
Meio Ambiente , Proteínas de Choque Térmico HSP70/metabolismo , Hemócitos/metabolismo , Estresse Fisiológico/genética , Sequência de Aminoácidos/fisiologia , Animais , Temperatura Alta/efeitos adversos , Íntrons/fisiologia , Larva/metabolismo
12.
Mov Disord ; 34(10): 1571-1576, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31483537

RESUMO

BACKGROUND: Intronic (TTTCA)n insertions in the SAMD12, TNRC6A, and RAPGEF2 genes have been identified as causes of familial cortical myoclonic tremor with epilepsy. OBJECTIVE: To identify the cause of familial cortical myoclonic tremor with epilepsy pedigrees without (TTTCA)n insertions in SAMD12, TNRC6A, and RAPGEF2. METHODS: Repeat-primed polymerase chain reaction, long-range polymerase chain reaction, and Sanger sequencing were performed to identify the existence of a novel (TTTGA)n insertion. Targeted long-read sequencing was performed to confirm the accurate structure of the (TTTGA)n insertion. RESULTS: We identified a novel expanded intronic (TTTGA)n insertion at the same site as the previously reported (TTTCA)n insertion in SAMD12. This insertion cosegregated with familial cortical myoclonic tremor with epilepsy in 1 Chinese pedigree with no (TTTCA)n insertion. In the targeted long-read sequencing of 2 patients and 1 asymptomatic carrier in this pedigree, with 1 previously reported (TTTCA)n -insertion-carrying patient as a positive control, a respective total of 302, 159, 207, and 50 on-target subreads (predicated accuracy: ≥90%) spanning the target repeat expansion region were generated. These sequencing data revealed the accurate repeat expansion structures as (TTTTA)114-123 (TTTGA)108-116 in the pedigree and (TTTTA)38 (TTTCA)479 in (TTTCA)n -insertion-carrying patient. CONCLUSION: The targeted long-read sequencing helped us to elucidate the accurate structures of the (TTTGA)n and (TTTCA)n insertions. Our finding offers a novel possible cause for familial cortical myoclonic tremor with epilepsy and might shed light on the identification of genetic causes of this disease in pedigrees with no detected (TTTCA)n insertion in the reported causative genes. © 2019 International Parkinson and Movement Disorder Society.


Assuntos
Epilepsias Mioclônicas/genética , Proteínas do Tecido Nervoso/genética , Tremor/genética , Adulto , Povo Asiático , Epilepsias Mioclônicas/complicações , Humanos , Íntrons/fisiologia , Masculino , Linhagem , Tremor/complicações
13.
Plant Cell Physiol ; 60(8): 1734-1746, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31076755

RESUMO

Pentatricopeptide repeat (PPR) proteins play crucial roles in intron splicing, which is important for RNA maturation. Identification of novel PPR protein with the function of intron splicing would help to understand the RNA splicing mechanism. In this study, we identified the maize empty pericarp602 (emp602) mutants, the mature kernels of which showed empty pericarp phenotype. We cloned the Emp602 gene from emp602 mutants and revealed that Emp602 encodes a mitochondrial-localized P-type PPR protein. We further revealed that Emp602 is specific for the cis-splicing of mitochondrial Nad4 intron 1 and intron 3, and mutation of Emp602 led to the loss of mature Nad4 transcripts. The loss of function of Emp602 nearly damaged the assembly and accumulation of complex I and arrested mitochondria formation, which arrested the seed development. The failed assembly of complex I triggers significant upregulation of Aox expression in emp602 mutants. Transcriptome analysis showed that the expression of mitochondrial-related genes, e.g. the genes associated with mitochondrial inner membrane presequence translocase complex and electron carrier activity, were extensively upregulated in emp602 mutant. These results demonstrate that EMP602 functions in the splicing of Nad4 intron 1 and intron 3, and the loss of function of Emp602 arrested maize seed development by disrupting the mitochondria complex I assembly.


Assuntos
Sementes/metabolismo , Zea mays/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Íntrons/genética , Íntrons/fisiologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Splicing de RNA/genética , Splicing de RNA/fisiologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Zea mays/genética , Zea mays/crescimento & desenvolvimento
14.
PLoS One ; 14(5): e0216370, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31048899

RESUMO

Actinotrichia are the first exoskeletal elements formed during zebrafish fin development. These rigid fibrils serve as skeletal support for the fin fold and as substrates for mesenchymal cell migration. In the adult intact fins, actinotrichia are restricted to the distal domain of the fin. Following fin amputation, actinotrichia also reform during regeneration. The actinodin gene family codes for structural proteins of actinotrichia. We have previously identified cis-acting regulatory elements in a 2kb genomic region upstream of the first exon of actinodin1, termed 2P, required for tissue-specific expression in the fin fold ectoderm and mesenchyme during embryonic development. Indeed, 2P contains an ectodermal enhancer in a 150bp region named epi. Deletion of epi from 2P results in loss of ectodermal-specific activity. In the present study, we sought to further characterize the activity of these regulatory sequences throughout fin development and during adult fin regeneration. Using a reporter transgenic approach, we show that a site within the epi region, termed epi3, contains an early mesenchymal-specific repressor. We also show that the larval fin fold ectodermal enhancer within epi3 remains functional in the basal epithelial layer during fin regeneration. We show that the first non-coding exon and first intron of actinodin1 contains a transcriptional enhancer and an alternative promoter that are necessary for the persistence of reporter expression reminiscent of actinodin1 expression during adulthood. Altogether, we have identified cis-acting regulatory elements that are required for tissue-specific expression as well as full recapitulation of actinodin1 expression during adulthood. Furthermore, the characterization of these elements provides us with useful molecular tools for the enhancement of transgene expression in adulthood.


Assuntos
Nadadeiras de Animais/fisiologia , Embrião não Mamífero/embriologia , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regeneração/fisiologia , Proteínas de Peixe-Zebra/biossíntese , Peixe-Zebra/embriologia , Animais , Embrião não Mamífero/citologia , Elementos Facilitadores Genéticos/fisiologia , Éxons/fisiologia , Íntrons/fisiologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
15.
Biol Rev Camb Philos Soc ; 94(5): 1701-1721, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31095885

RESUMO

Parasitic trypanosomatids and phototrophic euglenids are among the most extensively studied euglenozoans. The phototrophic euglenid lineage arose relatively recently through secondary endosymbiosis between a phagotrophic euglenid and a prasinophyte green alga that evolved into the euglenid secondary chloroplast. The parasitic trypanosomatids (i.e. Trypanosoma spp. and Leishmania spp.) and the freshwater phototrophic euglenids (i.e. Euglena gracilis) are the most evolutionary distant lineages in the Euglenozoa phylogenetic tree. The molecular and cell biological traits they share can thus be considered as ancestral traits originating in the common euglenozoan ancestor. These euglenozoan ancestral traits include common mitochondrial presequence motifs, respiratory chain complexes containing various unique subunits, a unique ATP synthase structure, the absence of mitochondria-encoded transfer RNAs (tRNAs), a nucleus with a centrally positioned nucleolus, closed mitosis without dissolution of the nuclear membrane and nucleoli, a nuclear genome containing the unusual 'J' base (ß-D-glucosyl-hydroxymethyluracil), processing of nucleus-encoded precursor messenger RNAs (pre-mRNAs) via spliced-leader RNA (SL-RNA) trans-splicing, post-transcriptional gene silencing by the RNA interference (RNAi) pathway and the absence of transcriptional regulation of nuclear gene expression. Mitochondrial uridine insertion/deletion RNA editing directed by guide RNAs (gRNAs) evolved in the ancestor of the kinetoplastid lineage. The evolutionary origin of other molecular features known to be present only in either kinetoplastids (i.e. polycistronic transcripts, compaction of nuclear genomes) or euglenids (i.e. monocistronic transcripts, huge genomes, many nuclear cis-spliced introns, polyproteins) is unclear.


Assuntos
Evolução Biológica , Euglenozoários/classificação , Biologia Molecular , Trypanosomatina/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Euglênidos/classificação , Euglênidos/genética , Euglenozoários/genética , Genoma/fisiologia , Íntrons/fisiologia , Mitocôndrias/genética , Processos Fototróficos , Filogenia , Interferência de RNA , RNA Ribossômico 28S/genética , Trypanosomatina/classificação , Trypanosomatina/enzimologia
16.
Planta ; 249(3): 891-912, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30465114

RESUMO

MAIN CONCLUSION: Expression of the Galactinol synthase genes in rice is regulated through post-transcriptional intron retention in response to abiotic stress and may be linked to Raffinose Family Oligosaccharide synthesis in osmotic perturbation. Galactinol synthase (GolS) is the first committed enzyme in raffinose family oligosaccharide (RFO) synthesis pathway and synthesizes galactinol from UDP-galactose and inositol. Expression of GolS genes has long been implicated in abiotic stress, especially drought and salinity. A non-canonical regulation mechanism controlling the splicing and maturation of rice GolS genes was identified in rice photosynthetic tissue. We found that the two isoforms of Oryza sativa GolS (OsGolS) gene, located in chromosomes 3(OsGolS1) and 7(OsGolS2) are interspersed by conserved introns harboring characteristic premature termination codons (PTC). During abiotic stress, the premature and mature transcripts of both isoforms were found to accumulate in a rhythmic manner for very small time-windows interrupted by phases of complete absence. Reporter gene assay using GolS promoters under abiotic stress does not reflect this accumulation profile, suggesting that this regulation occurs post-transcriptionally. We suggest that this may be due to a surveillance mechanism triggering the degradation of the premature transcript preventing its accumulation in the cell. The suggested mechanism fits the paradigm of PTC-induced Nonsense-Mediated Decay (NMD). In support of our hypothesis, when we pharmacologically blocked NMD, the full-length pre-mRNAs were increasingly accumulated in cell. To this end, our work suggests that a combined transcriptional and post transcriptional control exists in rice to regulate GolS expression under stress. Concurrent detection and processing of prematurely terminating transcripts coupled to repressed splicing can be described as a form of Regulated Unproductive Splicing and Translation (RUST) and may be linked to the stress adaptation of the plant, which is an interesting future research possibility.


Assuntos
Galactosiltransferases/metabolismo , Genes de Plantas/fisiologia , Oryza/genética , Arabidopsis , Galactosiltransferases/genética , Galactosiltransferases/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Íntrons/genética , Íntrons/fisiologia , Oryza/enzimologia , Oryza/fisiologia , Plantas Geneticamente Modificadas , Processamento Pós-Transcricional do RNA/genética , Processamento Pós-Transcricional do RNA/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência , Estresse Fisiológico
18.
Biochem Soc Trans ; 46(6): 1407-1422, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30420411

RESUMO

The spliceosome is a multi-subunit RNA-protein complex involved in the removal of non-coding segments (introns) from between the coding regions (exons) in precursors of messenger RNAs (pre-mRNAs). Intron removal proceeds via two transesterification reactions, occurring between conserved sequences at intron-exon junctions. A tightly regulated, hierarchical assembly with a multitude of structural and compositional rearrangements posed a great challenge for structural studies of the spliceosome. Over the years, X-ray crystallography dominated the field, providing valuable high-resolution structural information that was mostly limited to individual proteins and smaller sub-complexes. Recent developments in the field of cryo-electron microscopy allowed the visualisation of fully assembled yeast and human spliceosomes, providing unprecedented insights into substrate recognition, catalysis, and active site formation. This has advanced our mechanistic understanding of pre-mRNA splicing enormously.


Assuntos
Precursores de RNA/metabolismo , Spliceossomos/metabolismo , Catálise , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Íntrons/genética , Íntrons/fisiologia , Precursores de RNA/genética , Spliceossomos/genética , Spliceossomos/ultraestrutura
20.
Plant Cell ; 30(11): 2838-2854, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30309899

RESUMO

Introns are removed by the spliceosome, a large macromolecular complex composed of five ribonucleoprotein subcomplexes (U snRNPs). The U1 snRNP, which binds to 5' splice sites, plays an essential role in early steps of the splicing reaction. Here, we show that Arabidopsis thaliana LETHAL UNLESS CBC7 (LUC7) proteins, which are encoded by a three-member gene family in Arabidopsis, are important for plant development and stress resistance. We show that LUC7 is a U1 snRNP accessory protein by RNA immunoprecipitation experiments and LUC7 protein complex purifications. Transcriptome analyses revealed that LUC7 proteins are not only important for constitutive splicing, but also affect hundreds of alternative splicing events. Interestingly, LUC7 proteins specifically promote splicing of a subset of terminal introns. Splicing of LUC7-dependent introns is a prerequisite for nuclear export, and some splicing events are modulated by stress in a LUC7-dependent manner. Taken together, our results highlight the importance of the U1 snRNP component LUC7 in splicing regulation and suggest a previously unrecognized role of a U1 snRNP accessory factor in terminal intron splicing.


Assuntos
Ribonucleoproteína Nuclear Pequena U1/metabolismo , Spliceossomos/metabolismo , Processamento Alternativo/genética , Processamento Alternativo/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Íntrons/genética , Íntrons/fisiologia , Ligação Proteica/genética , Ligação Proteica/fisiologia , Splicing de RNA/genética , Splicing de RNA/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...