Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 344
Filtrar
1.
Ren Fail ; 45(1): 2171886, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36715439

RESUMO

OBJECTIVES: Subfornical organ (SFO) is vital in chronic kidney disease (CKD) progression caused by high salt levels. The current study investigated the effects of high salt on phosphoproteomic changes in SFO in CKD rats. METHODS: 5/6 nephrectomized rats were fed a normal-salt diet (0.4%) (NC group) or a high-salt diet (4%) (HC group) for three weeks, while sham-operated rats were fed a normal-salt diet (0.4%) (NS group). For phosphoproteomic analysis of SFO in different groups, TiO2 enrichment, isobaric tags for relative and absolute quantification (iTRAQ) labeling, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used. RESULTS: There were 6808 distinct phosphopeptides found, which corresponded to 2661 phosphoproteins. NC group had 168 upregulated and 250 downregulated phosphopeptides compared to NS group. Comparison to NC group, HC group had 154 upregulated and 124 downregulated phosphopeptides. Growth associated protein 43 (GAP43) and heat shock protein 27 (Hsp27) were significantly upregulated phosphoproteins and may protect against high-salt damage. Differential phosphoproteins with tight functional connection were synapse proteins and microtubule-associated proteins, implying that high-salt diet disrupted brain's structure and function. Furthermore, differential phosphoproteins in HC/NC comparison group were annotated to participate in GABAergic synapse signaling pathway and aldosterone synthesis and secretion, which attenuated inhibitory neurotransmitter effects and increased sympathetic nerve activity (SNA). DISCUSSION: This large scale phosphoproteomic profiling of SFO sheds light on how salt aggravates CKD via the central nervous system.


Assuntos
Insuficiência Renal Crônica , Órgão Subfornical , Ratos , Animais , Ratos Sprague-Dawley , Cromatografia Líquida , Órgão Subfornical/fisiologia , Fosfopeptídeos/farmacologia , Espectrometria de Massas em Tandem , Cloreto de Sódio na Dieta/farmacologia , Fosfoproteínas/metabolismo , Fosfoproteínas/farmacologia
2.
Clin Endocrinol (Oxf) ; 97(1): 72-80, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35419873

RESUMO

OBJECTIVE: We recently reported cases of adipsic hypernatremia caused by autoantibodies against the subfornical organ in patients with hypothalamic-pituitary lesions. This study aimed to clarify the clinical features of newly identified patients with adipsic hypernatremia whose sera displayed immunoreactivity to the mouse subfornical organ. DESIGN: Observational cohort study of patients diagnosed with adipsic hypernatremia in Japan, United States, and Europe. METHODS: The study included 22 patients with adipsic hypernatremia but without overt structural changes in the hypothalamic-pituitary region and congenital disease. Antibody response to the mouse subfornical organ was determined using immunohistochemistry. The clinical characteristics were compared between the patients with positive and negative antibody responses. RESULTS: Antibody response to the mouse subfornical organ was detected in the sera of 16 patients (72.7%, female/male ratio, 1:1, 12 pediatric and 4 adult patients). The prolactin levels at the time of diagnosis were significantly higher in patients with positive subfornical organ (SFO) immunoreactivity than in those with negative SFO immunoreactivity (58.9 ± 33.5 vs. 22.9 ± 13.9 ng/ml, p < .05). Hypothalamic disorders were found in 37.5% of the patients with positive SFO immunoreactivity. Moreover, six patients were diagnosed with rapid-onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation/neural tumor syndrome after the diagnosis of adipsic hypernatremia. Plasma renin activity levels were significantly higher in patients with serum immunoreactivity to the Nax channel. CONCLUSIONS: The patients with serum immunoreactivity to the SFO had higher prolactin levels and hypothalamic disorders compared to those without the immunoreactivity. The clinical characteristics of patients with serum immunoreactivity to the subfornical organ included higher prolactin levels and hypothalamic disorders, which were frequently associated with central hypothyroidism and the presence of retroperitoneal tumors.


Assuntos
Hipernatremia , Doenças Hipotalâmicas , Órgão Subfornical , Animais , Criança , Feminino , Humanos , Hipotálamo , Imunidade , Masculino , Camundongos , Prolactina , Órgão Subfornical/fisiologia
3.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34810265

RESUMO

In the laboratory, animals' motivation to work tends to be positively correlated with reward magnitude. But in nature, rewards earned by work are essential to survival (e.g., working to find water), and the payoff of that work can vary on long timescales (e.g., seasonally). Under these constraints, the strategy of working less when rewards are small could be fatal. We found that instead, rats in a closed economy did more work for water rewards when the rewards were stably smaller, a phenomenon also observed in human labor supply curves. Like human consumers, rats showed elasticity of demand, consuming far more water per day when its price in effort was lower. The neural mechanisms underlying such "rational" market behaviors remain largely unexplored. We propose a dynamic utility maximization model that can account for the dependence of rat labor supply (trials/day) on the wage rate (milliliter/trial) and also predict the temporal dynamics of when rats work. Based on data from mice, we hypothesize that glutamatergic neurons in the subfornical organ in lamina terminalis continuously compute the instantaneous marginal utility of voluntary work for water reward and causally determine the amount and timing of work.


Assuntos
Encéfalo/fisiologia , Neurônios/fisiologia , Órgão Subfornical/fisiologia , Sede/fisiologia , Água/química , Animais , Comportamento Animal , Feminino , Modelos Neurológicos , Modelos Teóricos , Motivação , Ratos , Ratos Long-Evans , Recompensa
4.
Nat Commun ; 11(1): 5692, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33173030

RESUMO

The control of water-intake behavior is critical for life because an excessive water intake induces pathological conditions, such as hyponatremia or water intoxication. However, the brain mechanisms controlling water intake currently remain unclear. We previously reported that thirst-driving neurons (water neurons) in the subfornical organ (SFO) are cholecystokinin (CCK)-dependently suppressed by GABAergic interneurons under Na-depleted conditions. We herein show that CCK-producing excitatory neurons in the SFO stimulate the activity of GABAergic interneurons via CCK-B receptors. Fluorescence-microscopic Ca2+ imaging demonstrates two distinct subpopulations in CCK-positive neurons in the SFO, which are persistently activated under hyponatremic conditions or transiently activated in response to water drinking, respectively. Optical and chemogenetic silencings of the respective types of CCK-positive neurons both significantly increase water intake under water-repleted conditions. The present study thus reveals CCK-mediated neural mechanisms in the central nervous system for the control of water-intake behaviors.


Assuntos
Comportamento de Ingestão de Líquido/fisiologia , Neurônios/fisiologia , Órgão Subfornical/citologia , Animais , Masculino , Camundongos , Microscopia de Fluorescência/métodos , Sódio/metabolismo , Órgão Subfornical/fisiologia
6.
Nature ; 588(7836): 112-117, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33057193

RESUMO

Fluid intake is an essential innate behaviour that is mainly caused by two distinct types of thirst1-3. Increased blood osmolality induces osmotic thirst that drives animals to consume pure water. Conversely, the loss of body fluid induces hypovolaemic thirst, in which animals seek both water and minerals (salts) to recover blood volume. Circumventricular organs in the lamina terminalis are critical sites for sensing both types of thirst-inducing stimulus4-6. However, how different thirst modalities are encoded in the brain remains unknown. Here we employed stimulus-to-cell-type mapping using single-cell RNA sequencing to identify the cellular substrates that underlie distinct types of thirst. These studies revealed diverse types of excitatory and inhibitory neuron in each circumventricular organ structure. We show that unique combinations of these neuron types are activated under osmotic and hypovolaemic stresses. These results elucidate the cellular logic that underlies distinct thirst modalities. Furthermore, optogenetic gain of function in thirst-modality-specific cell types recapitulated water-specific and non-specific fluid appetite caused by the two distinct dipsogenic stimuli. Together, these results show that thirst is a multimodal physiological state, and that different thirst states are mediated by specific neuron types in the mammalian brain.


Assuntos
Neurônios/classificação , Neurônios/fisiologia , Sede/fisiologia , Animais , Sequência de Bases , Ingestão de Líquidos/fisiologia , Feminino , Hipovolemia/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Organum Vasculosum/citologia , Organum Vasculosum/fisiologia , Pressão Osmótica , Análise de Célula Única , Órgão Subfornical/citologia , Órgão Subfornical/fisiologia , Privação de Água
7.
Neuron ; 105(6): 1094-1111.e10, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-31955944

RESUMO

Interoception, the sense of internal bodily signals, is essential for physiological homeostasis, cognition, and emotions. While human insular cortex (InsCtx) is implicated in interoception, the cellular and circuit mechanisms remain unclear. We imaged mouse InsCtx neurons during two physiological deficiency states: hunger and thirst. InsCtx ongoing activity patterns reliably tracked the gradual return to homeostasis but not changes in behavior. Accordingly, while artificial induction of hunger or thirst in sated mice via activation of specific hypothalamic neurons (AgRP or SFOGLUT) restored cue-evoked food- or water-seeking, InsCtx ongoing activity continued to reflect physiological satiety. During natural hunger or thirst, food or water cues rapidly and transiently shifted InsCtx population activity to the future satiety-related pattern. During artificial hunger or thirst, food or water cues further shifted activity beyond the current satiety-related pattern. Together with circuit-mapping experiments, these findings suggest that InsCtx integrates visceral-sensory signals of current physiological state with hypothalamus-gated amygdala inputs that signal upcoming ingestion of food or water to compute a prediction of future physiological state.


Assuntos
Córtex Cerebral/fisiologia , Fome/fisiologia , Interocepção/fisiologia , Sede/fisiologia , Proteína Relacionada com Agouti/metabolismo , Animais , Clozapina/análogos & derivados , Clozapina/farmacologia , Sinais (Psicologia) , Feminino , Hipotálamo/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Vias Neurais/fisiologia , Imagem Óptica , Optogenética , Órgão Subfornical/fisiologia
8.
FASEB J ; 34(1): 974-987, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914667

RESUMO

Drinking behavior and osmotic regulatory mechanisms exhibit clear daily variation which is necessary for achieving the homeostatic osmolality. In mammals, the master clock in the brain's suprachiasmatic nuclei has long been held as the main driver of circadian (24 h) rhythms in physiology and behavior. However, rhythmic clock gene expression in other brain sites raises the possibility of local circadian control of neural activity and function. The subfornical organ (SFO) and the organum vasculosum laminae terminalis (OVLT) are two sensory circumventricular organs (sCVOs) that play key roles in the central control of thirst and water homeostasis, but the extent to which they are subject to intrinsic circadian control remains undefined. Using a combination of ex vivo bioluminescence and in vivo gene expression, we report for the first time that the SFO contains an unexpectedly robust autonomous clock with unusual spatiotemporal characteristics in core and noncore clock gene expression. Furthermore, putative single-cell oscillators in the SFO and OVLT are strongly rhythmic and require action potential-dependent communication to maintain synchrony. Our results reveal that these thirst-controlling sCVOs possess intrinsic circadian timekeeping properties and raise the possibility that these contribute to daily regulation of drinking behavior.


Assuntos
Ritmo Circadiano , Hipotálamo/fisiologia , Prosencéfalo/fisiologia , Animais , Órgãos Circunventriculares/fisiologia , Colforsina/farmacologia , Regulação da Expressão Gênica , Homeostase , Luminescência , Masculino , Camundongos , Neurônios/fisiologia , Oscilometria , Órgão Subfornical/fisiologia , Tetrodotoxina/farmacologia
9.
Brain Res ; 1718: 137-147, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31085158

RESUMO

It is known that angiotensin II (AII) is sensed by subfornical organ (SFO) to induce drinking behaviors and autonomic changes. AII at picomolar concentrations have been shown to induce Ca2+ oscillations and increase in the amplitude and frequency of spontaneous Ca2+ oscillations in SFO neurons. The present study was conducted to examine effects of nanomolar concentrations of AII using the Fura-2 Ca2+-imaging technique in acutely dissociated SFO neurons. AII at nanomolar concentrations induced an initial [Ca2+]i peak followed by a persistent [Ca2+]i increase lasting for longer than 1 hour. By contrast, [Ca2+]i responses to 50 mM K+, maximally effective concentrations of glutamate, carbachol, and vasopressin, and AII given at picomolar concentrations returned to the basal level within 20 min. The AII-induced [Ca2+]i increase was blocked by the AT1 antagonist losartan. However, losartan had no effect when added during the persistent phase. The persistent phase was suppressed by extracellular Ca2+ removal, significantly inhibited by blockers of L and P/Q type Ca2+ channels , but unaffected by inhibition of Ca2+ store Ca2+ ATPase. The persistent phase was reversibly suppressed by GABA and inhibited by CaMK and PKC inhibitors. These results suggest that the persistent [Ca2+]i increase evoked by nanomolar concentrations of AII is initiated by AT1 receptor activation and maintained by Ca2+ entry mechanisms in part through L and P/Q type Ca2+ channels, and that CaMK and PKC are involved in this process. The persistent [Ca2+]i increase induced by AII at high pathophysiological levels may have a significant role in altering SFO neuronal functions.


Assuntos
Angiotensina II/farmacologia , Órgão Subfornical/efeitos dos fármacos , Órgão Subfornical/metabolismo , Potenciais de Ação/efeitos dos fármacos , Angiotensina II/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/metabolismo , Citosol/efeitos dos fármacos , Comportamento de Ingestão de Líquido/efeitos dos fármacos , Comportamento de Ingestão de Líquido/fisiologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Sistemas Neurossecretores , Ratos , Ratos Wistar , Órgão Subfornical/fisiologia
10.
Elife ; 82019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30932814

RESUMO

The circumventricular organs (CVOs) in the central nervous system (CNS) lack a vascular blood-brain barrier (BBB), creating communication sites for sensory or secretory neurons, involved in body homeostasis. Wnt/ß-catenin signaling is essential for BBB development and maintenance in endothelial cells (ECs) in most CNS vessels. Here we show that in mouse development, as well as in adult mouse and zebrafish, CVO ECs rendered Wnt-reporter negative, suggesting low level pathway activity. Characterization of the subfornical organ (SFO) vasculature revealed heterogenous claudin-5 (Cldn5) and Plvap/Meca32 expression indicative for tight and leaky vessels, respectively. Dominant, EC-specific ß-catenin transcription in mice, converted phenotypically leaky into BBB-like vessels, by augmenting Cldn5+vessels, stabilizing junctions and by reducing Plvap/Meca32+ and fenestrated vessels, resulting in decreased tracer permeability. Endothelial tightening augmented neuronal activity in the SFO of water restricted mice. Hence, regulating the SFO vessel barrier may influence neuronal function in the context of water homeostasis.


Assuntos
Comportamento de Ingestão de Líquido , Órgão Subfornical/fisiologia , Água/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Animais , Permeabilidade Capilar , Células Endoteliais/fisiologia , Homeostase , Camundongos Endogâmicos C57BL , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
11.
Neuroscience ; 404: 459-469, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30797023

RESUMO

The subfornical organ (SFO) is forebrain sensory circumventricular organ, characterized by lack of a blood-brain barrier. Neurons of the SFO can detect circulating molecules such as peptide hormones and communicate this information to regulatory centers behind the blood-brain barrier, thus playing a critical role in homeostatic processes including regulation of energy balance, hydromineral balance and cardiovascular control. The SFO contains two subregions defined by neuronal expression of molecular markers: the dorsolateral peripheral or shell SFO (sSFO) neurons express calretinin, and the ventromedial core (cSFO) neurons express calbindin D28K. Neurons from these two subregions project to different locations to subserve different roles in homeostatic regulation. It is unknown whether neurons from these two subregions exhibit unique or identifiable electrophysiological properties. This study used a gold nanoparticle-conjugated RNA fluorescent probe on dissociated SFO neuron cultures and patch clamp electrophysiology to characterize the intrinsic electrophysiological properties of cSFO and sSFO neurons. Our studies revealed that neurons originating from the core region exhibited significantly more action potential bursting, while neurons from non-core regions exhibited more tonic firing neurons, albeit at a higher overall frequency. The difference in activity is correlated with a more depolarized resting membrane potential and a higher density of voltage gated Na+ currents.


Assuntos
Calbindina 1/biossíntese , Fenômenos Eletrofisiológicos/fisiologia , Neurônios/fisiologia , Órgão Subfornical/fisiologia , Animais , Calbindina 1/genética , Células Cultivadas , Expressão Gênica , Masculino , Ratos , Ratos Sprague-Dawley
12.
Neuropharmacology ; 154: 107-113, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30118727

RESUMO

To maintain sodium homeostasis, animals will readily seek and ingest salt when salt-depleted, even at concentrations that they typically find aversive when sodium replete. This innate behaviour is known as sodium (or salt) appetite. Salt appetite is subserved by a conserved brain network that senses sodium need and promotes the ingestion of salty substances when sodium-deficient. The subfornical organ (SFO) is a circumventricular organ that has diverse roles encompassing cardiovascular regulation, energy balance, immune responses, reproduction, and hydromineral balance. The SFO acts as a central sensor of sodium need and is essential for the generation of salt appetite. In this review, we discuss recent findings on the neurochemical and circuit-level organisation of the SFO in the context of sodium appetite. This article is part of the Special Issue entitled 'Hypothalamic Control of Homeostasis'.


Assuntos
Apetite/fisiologia , Homeostase/fisiologia , Cloreto de Sódio na Dieta/administração & dosagem , Órgão Subfornical/fisiologia , Animais , Apetite/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Humanos , Órgão Subfornical/efeitos dos fármacos
13.
J Neuroendocrinol ; 30(12): e12654, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30365188

RESUMO

The subfornical organ (SFO) lacks the normal blood-brain barrier and senses the concentrations of many different circulating signals, including glucose and angiotensin II (ANG II). ANG II has recently been implicated in the control of food intake and body weight gain. The present study assessed whether single SFO neurones sense changes in glucose and ANG II, and also whether changes in glucose concentration alter the responsiveness of these neurones to ANG II. SFO neurones dissociated from male Sprague-Dawley rats (100-175 g) were used. We first examined whether glucose concentration modulates AT1 receptor expression. Similar AT1a mRNA expression levels were found at glucose concentrations of 1, 5 and 10 mmol L-1 in dissociated SFO neurones. Glucose responsiveness of SFO neurones was assessed using perforated current-clamp recordings and switching between 5 and 10 mmol L-1 glucose artificial cerebrospinal fluid to classify single neurones as nonresponsive (nGS), glucose-excited (GE) or glucose-inhibited (GI). In total, 26.7% of the SFO neurones were GI (n = 24 of 90), 21.1% were GE (n = 19 of 90) and 52.2% were nGS (n = 47 of 90). Once classified, the effects of 10 nmol L-1 ANG II on the excitability of these neurones were tested, with 52% of GE (n = 10 of 19), 71% of GI (n = 17 of 24) and 43% of nGS (n = 20 of 47) neurones being ANG II sensitive. Finally, we tested whether acute changes in glucose concentration modified the response to ANG II and showed that some neurones (4/17) only respond to ANG II at 10 mmol L-1 glucose. Our data demonstrate that the same SFO neurone can sense glucose and ANG II and that acute changes in glucose concentration may change ANG II responsiveness.


Assuntos
Angiotensina II/farmacologia , Glucose/metabolismo , Glucose/farmacologia , Órgão Subfornical/efeitos dos fármacos , Órgão Subfornical/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Interações Medicamentosas , Masculino , Potenciais da Membrana/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ratos , Receptor Tipo 1 de Angiotensina/biossíntese , Órgão Subfornical/citologia
14.
J Neurophysiol ; 120(5): 2269-2281, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30089060

RESUMO

Subfornical organ (SFO) neurons exhibit heterogeneity in current expression and spiking behavior, where the two major spiking phenotypes appear as tonic and burst firing. Insight into the mechanisms behind this heterogeneity is critical for understanding how the SFO, a sensory circumventricular organ, integrates and selectively influences physiological function. To integrate efficient methods for studying this heterogeneity, we built a single-compartment, Hodgkin-Huxley-type model of an SFO neuron that is parameterized by SFO-specific in vitro patch-clamp data. The model accounts for the membrane potential distribution and spike train variability of both tonic and burst firing SFO neurons. Analysis of model dynamics confirms that a persistent Na+ and Ca2+ currents are required for burst initiation and maintenance and suggests that a slow-activating K+ current may be responsible for burst termination in SFO neurons. Additionally, the model suggests that heterogeneity in current expression and subsequent influence on spike afterpotential underlie the behavioral differences between tonic and burst firing SFO neurons. Future use of this model in coordination with single neuron patch-clamp electrophysiology provides a platform for explaining and predicting the response of SFO neurons to various combinations of circulating signals, thus elucidating the mechanisms underlying physiological signal integration within the SFO. NEW & NOTEWORTHY Our understanding of how the subfornical organ (SFO) selectively influences autonomic nervous system function remains incomplete but theoretically results from the electrical responses of SFO neurons to physiologically important signals. We have built a computational model of SFO neurons, derived from and supported by experimental data, which explains how SFO neurons produce different electrical patterns. The model provides an efficient system to theoretically and experimentally explore how changes in the essential features of SFO neurons affect their electrical activity.


Assuntos
Potenciais de Ação , Canais de Cálcio/metabolismo , Modelos Neurológicos , Neurônios/fisiologia , Canais de Sódio/metabolismo , Órgão Subfornical/fisiologia , Animais , Células Cultivadas , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Órgão Subfornical/citologia , Órgão Subfornical/metabolismo
15.
J Neuroendocrinol ; 30(9): e12613, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29862587

RESUMO

Prolactin (PRL) is a peptide hormone that performs over 300 biological functions, including those that require binding to prolactin receptor (PRL-R) in neurones within the central nervous system (CNS). To enter the CNS, circulating PRL must overcome the blood-brain barrier. Accordingly, areas of the brain that do not possess a blood-brain barrier, such as the subfornical organ (SFO), are optimally positioned to interact with systemic PRL. The SFO has been classically implicated in energy and fluid homeostasis but has the potential to influence oestrous cyclicity and gonadotrophin release, which are also functions of PRL. We aimed to confirm and characterise the expression of PRL-R in the SFO, as well as identify the effects of PRL application on membrane excitability of dissociated SFO neurones. Using a quantitative real-time polymerase chain reaction, we found that PRL-R mRNA in the SFO of male and female Sprague Dawley rats did not significantly differ between juvenile and sexually mature rats (P = .34), male and female rats (P = .97) or across the oestrous cycle (P = .54). Patch-clamp recordings were obtained in juvenile male rats to further investigate the actions of PRL at the SFO. Dissociated SFO neurones perfused with 1 µmol L-1 PRL resulted in 2 responsive subpopulations of neurones; 40% depolarised (n = 15/43, 11.3 ± 1.7 mV) and 14% hyperpolarised (n = 6/43, -6.7 ± 1.4 mV) to PRL application. Within the range of 10 pmol L-1 to 1 µmol L-1 , the concentrations of PRL were not significantly different in either the magnitude (P = .53) or proportion (P = .19) of response. Furthermore, PRL application significantly reduced the transient K+ current in 67% of SFO neurones in voltage-clamp configuration (n = 6/9, P = .02). The stability in response to PRL and expression of PRL-R in the SFO suggests that PRL function is conserved across physiological states and circulating PRL concentrations, prompting further investigations aiming to clarify the nature of PRL function in the SFO.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Prolactina/farmacologia , Receptores da Prolactina/metabolismo , Órgão Subfornical/efeitos dos fármacos , Animais , Ciclo Estral/genética , Ciclo Estral/metabolismo , Feminino , Masculino , Neurônios/metabolismo , Neurônios/fisiologia , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Receptores da Prolactina/genética , Órgão Subfornical/metabolismo , Órgão Subfornical/fisiologia
16.
Physiol Rep ; 6(10): e13704, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29802680

RESUMO

Brain-derived neurotrophic factor (BDNF), a neurotrophin traditionally associated with neural plasticity, has more recently been implicated in fluid balance and cardiovascular regulation. It is abundantly expressed in both the central nervous system (CNS) and peripheral tissue, and is also found in circulation. Studies suggest that circulating BDNF may influence the CNS through actions at the subfornical organ (SFO), a circumventricular organ (CVO) characterized by the lack of a normal blood-brain barrier (BBB). The SFO, well-known for its involvement in cardiovascular regulation, has been shown to express BDNF mRNA and mRNA for the TrkB receptor at which BDNF preferentially binds. This study was undertaken to determine if: (1) BDNF influences the excitability of SFO neurons in vitro; and (2) the cardiovascular consequences of direct administration of BDNF into the SFO of anesthetized rats. Electrophysiological studies revealed that bath application of BDNF (1 nmol/L) influenced the excitability of the majority of neurons (60%, n = 13/22), the majority of which exhibited a membrane depolarization (13.8 ± 2.5 mV, n = 9) with the remaining affected cells exhibiting hyperpolarizations (-11.1 ± 2.3 mV, n = 4). BDNF microinjections into the SFO of anesthetized rats caused a significant decrease in blood pressure (mean [area under the curve] AUC = -364.4 ± 89.0 mmHg × sec, n = 5) with no effects on heart rate (mean AUC = -12.2 ± 3.4, n = 5). Together these observations suggest the SFO to be a CNS site at which circulating BDNF could exert its effects on cardiovascular regulation.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Frequência Cardíaca/efeitos dos fármacos , Neurônios/fisiologia , Órgão Subfornical/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Fator Neurotrófico Derivado do Encéfalo/administração & dosagem , Masculino , Neurônios/efeitos dos fármacos , Ratos Sprague-Dawley , Órgão Subfornical/efeitos dos fármacos
17.
J Physiol ; 596(15): 3217-3232, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29645283

RESUMO

KEY POINTS: In anaesthetized rats, acute intermittent hypoxia increases sympathetic nerve activity, sympathetic peripheral chemoreflex sensitivity and central sympathetic-respiratory coupling. Renin-angiotensin system inhibition prevents the sympathetic effects of intermittent hypoxia, with intermittent injections of angiotensin II into the systemic circulation replicating these effects. Bilateral carotid body denervation reduces the sympathetic effects of acute intermittent hypoxia and eliminates the increases in chemoreflex sensitivity and sympathetic-respiratory coupling. Pharmacological inhibition of the subfornical organ also reduces the sympathetic effects of acute intermittent hypoxia, although it has no effect on the increases in chemoreflex sensitivity and central sympathetic-respiratory coupling. Combining both interventions eliminates the sympathetic effects of both intermittent hypoxia and angiotensin II. ABSTRACT: Circulating angiotensin II (Ang II) is vital for arterial pressure elevation following intermittent hypoxia in rats, although its importance in the induction of sympathetic changes is unclear. We tested the contribution of the renin-angiotensin system to the effects of acute intermittent hypoxia (AIH) in anaesthetized and ventilated rats. There was a 33.7 ± 2.9% increase in sympathetic nerve activity (SNA), while sympathetic chemoreflex sensitivity and central sympathetic-respiratory coupling increased by one-fold following AIH. The sympathetic effects of AIH were prevented by blocking angiotensin type 1 receptors with systemic losartan. Intermittent systemic injections of Ang II (Int.Ang II) elicited similar sympathetic responses to AIH. To identify the neural pathways responsible for the effects of AIH and Int.Ang II, we performed bilateral carotid body denervation, which reduced the increase in SNA by 56% and 45%, respectively. Conversely, pharmacological inhibition of the subfornical organ (SFO), an established target of circulating Ang II, reduced the increase in SNA following AIH and Int.Ang II by 65% and 59%, respectively, although it did not prevent the sensitization of the sympathetic peripheral chemoreflex, nor the increase in central sympathetic-respiratory coupling. Combined carotid body denervation and inhibition of the SFO eliminated the enhancement of SNA following AIH and Int.Ang II. Repeated systemic injections of phenylephrine caused an elevation in SNA similar to AIH, and this effect was prevented by a renin inhibitor, aliskiren. Our findings show that the sympathetic effects of AIH are the result of RAS-mediated activations of the carotid bodies and the SFO.


Assuntos
Angiotensina II/fisiologia , Corpo Carotídeo/fisiologia , Hipóxia/fisiopatologia , Órgão Subfornical/fisiologia , Sistema Nervoso Simpático/fisiologia , Animais , Denervação , Masculino , Ratos Sprague-Dawley
18.
Nature ; 555(7695): 204-209, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29489747

RESUMO

Neural circuits for appetites are regulated by both homeostatic perturbations and ingestive behaviour. However, the circuit organization that integrates these internal and external stimuli is unclear. Here we show in mice that excitatory neural populations in the lamina terminalis form a hierarchical circuit architecture to regulate thirst. Among them, nitric oxide synthase-expressing neurons in the median preoptic nucleus (MnPO) are essential for the integration of signals from the thirst-driving neurons of the subfornical organ (SFO). Conversely, a distinct inhibitory circuit, involving MnPO GABAergic neurons that express glucagon-like peptide 1 receptor (GLP1R), is activated immediately upon drinking and monosynaptically inhibits SFO thirst neurons. These responses are induced by the ingestion of fluids but not solids, and are time-locked to the onset and offset of drinking. Furthermore, loss-of-function manipulations of GLP1R-expressing MnPO neurons lead to a polydipsic, overdrinking phenotype. These neurons therefore facilitate rapid satiety of thirst by monitoring real-time fluid ingestion. Our study reveals dynamic thirst circuits that integrate the homeostatic-instinctive requirement for fluids and the consequent drinking behaviour to maintain internal water balance.


Assuntos
Ingestão de Líquidos/fisiologia , Vias Neurais , Área Pré-Óptica/citologia , Área Pré-Óptica/fisiologia , Órgão Subfornical/citologia , Órgão Subfornical/fisiologia , Sede/fisiologia , Animais , Apetite/fisiologia , Feminino , Neurônios GABAérgicos/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Homeostase , Instinto , Masculino , Camundongos , Óxido Nítrico Sintase/metabolismo , Resposta de Saciedade/fisiologia , Equilíbrio Hidroeletrolítico
19.
Neuron ; 96(6): 1272-1281.e4, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-29268095

RESUMO

The brain transforms the need for water into the desire to drink, but how this transformation is performed remains unknown. Here we describe the motivational mechanism by which the forebrain thirst circuit drives drinking. We show that thirst-promoting subfornical organ neurons are negatively reinforcing and that this negative-valence signal is transmitted along projections to the organum vasculosum of the lamina terminalis (OVLT) and median preoptic nucleus (MnPO). We then identify molecularly defined cell types within the OVLT and MnPO that are activated by fluid imbalance and show that stimulation of these neurons is sufficient to drive drinking, cardiovascular responses, and negative reinforcement. Finally, we demonstrate that the thirst signal exits these regions through at least three parallel pathways and show that these projections dissociate the cardiovascular and behavioral responses to fluid imbalance. These findings reveal a distributed thirst circuit that motivates drinking by the common mechanism of drive reduction.


Assuntos
Comportamento de Ingestão de Líquido/fisiologia , Motivação , Prosencéfalo/fisiologia , Reforço Psicológico , Sede/fisiologia , Animais , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos Transgênicos , Neurônios/fisiologia , Optogenética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Área Pré-Óptica/fisiologia , Prosencéfalo/citologia , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Órgão Subfornical/fisiologia
20.
J Neurophysiol ; 118(3): 1532-1541, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28637815

RESUMO

Tumor necrosis factor-α (TNF-α) is a proinflammatory cytokine implicated in cardiovascular and autonomic regulation via actions in the central nervous system. TNF-α-/- mice do not develop angiotensin II (ANG II)-induced hypertension, and administration of TNF-α into the bloodstream of rats increases blood pressure and sympathetic tone. Recent studies have shown that lesion of the subfornical organ (SFO) attenuates the hypertensive and autonomic effects of TNF-α, while direct administration of TNF-α into the SFO increases blood pressure, suggesting the SFO to be a key site for the actions of TNF-α. Therefore, we used patch-clamp techniques to examine both acute and long-term effects of TNF-α on the excitability of Sprague-Dawley rat SFO neurons. It was observed that acute bath application of TNF-α depolarized SFO neurons and subsequently increased action potential firing rate. Furthermore, the magnitude of depolarization and the proportion of depolarized SFO neurons were concentration dependent. Interestingly, following 24-h incubation with TNF-α, the basal firing rate of the SFO neurons was increased and the rheobase was decreased, suggesting that TNF-α elevates SFO neuron excitability. This effect was likely mediated by the transient sodium current, as TNF-α increased the magnitude of the current and lowered its threshold of activation. In contrast, TNF-α did not appear to modulate either the delayed rectifier potassium current or the transient potassium current. These data suggest that acute and long-term TNF-α exposure elevates SFO neuron activity, providing a basis for TNF-α hypertensive and sympathetic effects.NEW & NOTEWORTHY Considerable recent evidence has suggested important links between inflammation and the pathological mechanisms underlying hypertension. The present study describes cellular mechanisms through which acute and long-term exposure of tumor necrosis factor-α (TNF-α) influences the activity of subfornical organ neurons by modulating the voltage-gated transient Na+ current. This provides critical new information regarding the specific pathological mechanisms through which inflammation and TNF-α in particular may result in the development of hypertension.


Assuntos
Potenciais de Ação , Neurônios/efeitos dos fármacos , Órgão Subfornical/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Animais , Células Cultivadas , Masculino , Neurônios/metabolismo , Neurônios/fisiologia , Canais de Potássio/metabolismo , Ratos , Ratos Sprague-Dawley , Canais de Sódio/metabolismo , Órgão Subfornical/citologia , Órgão Subfornical/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...