Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zool Res ; 45(1): 108-124, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38114437

RESUMO

Parkinson's disease (PD) is a neurodegenerative condition that results in dyskinesia, with oxidative stress playing a pivotal role in its progression. Antioxidant peptides may thus present therapeutic potential for PD. In this study, a novel cathelicidin peptide (Cath-KP; GCSGRFCNLFNNRRPGRLTLIHRPGGDKRTSTGLIYV) was identified from the skin of the Asiatic painted frog ( Kaloula pulchra). Structural analysis using circular dichroism and homology modeling revealed a unique αßß conformation for Cath-KP. In vitro experiments, including free radical scavenging and ferric-reducing antioxidant analyses, confirmed its antioxidant properties. Using the 1-methyl-4-phenylpyridinium ion (MPP +)-induced dopamine cell line and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice, Cath-KP was found to penetrate cells and reach deep brain tissues, resulting in improved MPP +-induced cell viability and reduced oxidative stress-induced damage by promoting antioxidant enzyme expression and alleviating mitochondrial and intracellular reactive oxygen species accumulation through Sirtuin-1 (Sirt1)/Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway activation. Both focal adhesion kinase (FAK) and p38 were also identified as regulatory elements. In the MPTP-induced PD mice, Cath-KP administration increased the number of tyrosine hydroxylase (TH)-positive neurons, restored TH content, and ameliorated dyskinesia. To the best of our knowledge, this study is the first to report on a cathelicidin peptide demonstrating potent antioxidant and neuroprotective properties in a PD model by targeting oxidative stress. These findings expand the known functions of cathelicidins, and hold promise for the development of therapeutic agents for PD.


Assuntos
Discinesias , Fármacos Neuroprotetores , Doença de Parkinson , Animais , Camundongos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/uso terapêutico , 1-Metil-4-fenilpiridínio/farmacologia , 1-Metil-4-fenilpiridínio/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Catelicidinas/metabolismo , Discinesias/tratamento farmacológico , Discinesias/veterinária , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo , Doença de Parkinson/veterinária
2.
Naunyn Schmiedebergs Arch Pharmacol ; 396(8): 1787-1796, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36843128

RESUMO

Doxycycline (DOX) is a widely used antibiotic that is able to cross the blood-brain barrier. Several studies have shown its neuroprotective effect against neurodegeneration and have associated it with antioxidant, anti-apoptotic, and anti-inflammatory mechanisms. We have recently demonstrated that DOX mimics nerve growth factor (NGF) signaling in PC12 cells. However, the involvement of this mechanism in the neuroprotective effect of DOX is unknown. Axonal degeneration and synaptic loss are key events at the early stages of neurodegeneration, and precede the neuronal death in neurodegenerative diseases, including Parkinson's disease (PD). Therefore, the regeneration of the axonal and synaptic network might be beneficial in PD. The effect of DOX in PC12 cells treated with the Parkinsonian neurotoxin 1-methyl-4-phenylpyridinium (MPP+) was addressed. Doxycycline reduced the inhibition of neuritogenesis induced by MPP+, even in cells deprived of NGF. The mechanism involved the upregulation of GAP-43, synapsin I, ß-III-tubulin, F-actin, and neurofilament-200, proteins that are associated with axonal and synaptic plasticity. Considering the role of axonal degeneration and synaptic loss at the initial stages of PD, the recent advances in early diagnosis of neurodegeneration, and the advantages of drug repurposing, doxycycline is a promising candidate to treat PD.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Ratos , Animais , Humanos , Regulação para Cima , Doxiciclina/farmacologia , Doxiciclina/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/uso terapêutico , Proteínas/metabolismo , Doença de Parkinson/tratamento farmacológico , Células PC12 , Tubulina (Proteína)/metabolismo , 1-Metil-4-fenilpiridínio/toxicidade , 1-Metil-4-fenilpiridínio/uso terapêutico
3.
PLoS One ; 10(5): e0127953, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26010745

RESUMO

INTRODUCTION: Complete and specific ablation of a single dopaminergic (DA) pathway is a critical step to distinguish the roles of DA pathways in vivo. However, this kind of technique has not been reported in non-human primates. This study aimed to establish a lesioning method with a complete and specific ablation. METHOD: A carefully designed infusion route based on a MRI stereotactic technique was developed to deliver the highly selective dopaminergic toxin 1-methyl-4-phenylpyridinium (MPP+) unilaterally into multiple sites of compact part of substantia nigra (SNc) and striatum in monkeys. The nigrostriatal DA pathway was selected because lesioning of this pathway may induce symptoms that are suitable for evaluation. The pathological, behavioral, neuropharmacological, and clinical laboratorial data were collected to evaluate the lesioning effects. RESULT: Pathological examination revealed a complete ablation of tyrosine hydroxylase positive (TH+) neurons in the SNc, while preserving intact TH+ neurons in the ventral tegmental area (VTA) nearby. TH+ projections in the striatum were also unilaterally lost. The monkeys displayed stable (>28 weeks) rotations and symptoms which were expected with loss of DA neurons in the SNc, with rest tremor being an exception. No item implied the presence of a severe side effect caused by the operation or the intracerebral MPP+ infusion. The results suggested that rest tremor may not directly rely on the nigrostriatal pathway. CONCLUSION: Taken together, in addition to providing a specific nigrostriatal DA lesioned model, this method, combined with brain stimulation or other techniques, can be applied as a powerful tool for the complete lesion of any desired DA pathway in order to study its specific functions in the brain.


Assuntos
1-Metil-4-fenilpiridínio/administração & dosagem , 1-Metil-4-fenilpiridínio/uso terapêutico , Neurônios Dopaminérgicos/patologia , Vias Neurais/patologia , Técnicas Estereotáxicas , Substância Negra/patologia , 1-Metil-4-fenilpiridínio/farmacologia , Animais , Comportamento Animal , Peso Corporal/efeitos dos fármacos , Contagem de Células , Corpo Estriado/patologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Testes Hematológicos , Macaca mulatta , Masculino , Vias Neurais/efeitos dos fármacos , Doença de Parkinson/sangue , Doença de Parkinson/tratamento farmacológico , Respiração/efeitos dos fármacos , Rotação , Substância Negra/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo
4.
IUBMB Life ; 66(11): 786-92, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25469469

RESUMO

Growth arrest and DNA-damage-inducible protein 45α (GADD45α) is an important member of the family of growth arrest and DNA damage-inducible (GADD) proteins. The expression patterns and possible roles of GADD45α in Parkinson's disease (PD) are so far less understood. In this study, we found that 1-methyl-4-phenylpyridinium (MPP+) treatment up-regulates the expression of GADD45α in both a time-dependent manner and a dose-dependent manner in human dopamine neuroblastoma M17 cells. The up-regulation of GADD45α was abolished by pretreatment with the c-Jun N-terminal kinases (JNK) inhibitor SP600125 but not the p38 specific inhibitor SB203580. Further study revealed that c-Jun silencing abolished the effects of MPP+ on the expression of GADD45α. Important, ChIP studies verified the ability of c-Jun to bind to the GADD45 promoter. In addition, we found that inhibition of GADD45α by small RNA interference exacerbates the impaired cell viability, LDH release, and apoptosis induced by MPP+. Correspondingly, silence of GADD45 exacerbated Caspase-3 activation induced by MPP+. These data suggested a neuroprotective effect of GADD45α against MPP+ neurotoxicity.


Assuntos
1-Metil-4-fenilpiridínio/farmacologia , Proteínas de Ciclo Celular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Doença de Parkinson/tratamento farmacológico , 1-Metil-4-fenilpiridínio/uso terapêutico , Análise de Variância , Antracenos/farmacologia , Western Blotting , Caspase 3/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular Tumoral , Sobrevivência Celular , Imunoprecipitação da Cromatina , Relação Dose-Resposta a Droga , Humanos , Imidazóis , Marcação In Situ das Extremidades Cortadas , Proteínas Nucleares/antagonistas & inibidores , Doença de Parkinson/metabolismo , Piridinas , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Sais de Tetrazólio , Tiazóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA