Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 497
Filtrar
1.
J Intern Med ; 295(1): 20-37, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37941106

RESUMO

11-beta-hydroxysteroid dehydrogenases (11ß-HSDs) catalyse the conversion of active 11-hydroxy glucocorticoids (cortisol, corticosterone) and their inert 11-keto forms (cortisone, 11-dehydrocorticosterone). They were first reported in the body and brain 70 years ago, but only recently have they become of interest. 11ß-HSD2 is a dehydrogenase, potently inactivating glucocorticoids. In the kidney, 11ß-HSD2 generates the aldosterone-specificity of intrinsically non-selective mineralocorticoid receptors. 11ß-HSD2 also protects the developing foetal brain and body from premature glucocorticoid exposure, which otherwise engenders the programming of neuropsychiatric and cardio-metabolic disease risks. In the adult CNS, 11ß-HSD2 is confined to a part of the brain stem where it generates aldosterone-specific central control of salt appetite and perhaps blood pressure. 11ß-HSD1 is a reductase, amplifying active glucocorticoid levels within brain cells, notably in the cortex, hippocampus and amygdala, paralleling its metabolic functions in peripheral tissues. 11ß-HSD1 is elevated in the ageing rodent and, less certainly, human forebrain. Transgenic models show this rise contributes to age-related cognitive decline, at least in mice. 11ß-HSD1 inhibition robustly improves memory in healthy and pathological ageing rodent models and is showing initial promising results in phase II studies of healthy elderly people. Larger trials are needed to confirm and clarify the magnitude of effect and define target populations. The next decade will be crucial in determining how this tale ends - in new treatments or disappointment.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1 , Glucocorticoides , Humanos , Camundongos , Animais , Idoso , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Aldosterona , Encéfalo/metabolismo
2.
Int J Gynaecol Obstet ; 164(1): 40-46, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37318113

RESUMO

The relationship between events occurring during intrauterine development and later-life predisposition to long-term disease, has been described. The fetus responds to excess intrauterine exposure to high levels of corticosteroids, modifying their physiological development and stopping their growth. Fetal exposure to elevated levels of either endogenous (alterations in fetal hypothalamic-pituitary-adrenal axis) or synthetic corticosteroids, is one model of early-life adversity; to developing adult disease. At the molecular level, there are transcriptional changes in metabolic and growth pathways. Epigenetic mechanisms participate in transgenerational inheritance, not genomic. Exposures that change 11ß-hydroxysteroid dehydrogenase type 2 enzyme methylation status in the placenta can result in transcriptional repression of the gene, causing the fetus to be exposed to higher levels of cortisol. More precise diagnosis and management of antenatal corticosteroids for preterm birth, would potentially decrease the risk of long-term adverse outcomes. More studies are needed to understand the potential roles of factors to alter fetal corticosteroid exposure. Long-term infant follow-up is required to determine whether methylation changes in placenta may represent useful biomarkers of later disease risk. This review, summarize recent advances in the programming of fetal effects of corticosteroid exposure, the role of corticosteroids in epigenetic gene regulation of placental 11ß-hydroxysteroid dehydrogenase type 2 enzyme expression and transgenerational effects.


Assuntos
Placenta , Nascimento Prematuro , Adulto , Gravidez , Feminino , Recém-Nascido , Humanos , Placenta/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/farmacologia , Sistema Hipotálamo-Hipofisário/fisiologia , Sistema Hipófise-Suprarrenal/fisiologia , Nascimento Prematuro/induzido quimicamente , Feto , Glucocorticoides/efeitos adversos , Epigênese Genética , Desenvolvimento Fetal/fisiologia
3.
Food Chem Toxicol ; 184: 114415, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141941

RESUMO

Chalcones from licorice and its related plants have many pharmacological effects. However, the effects of chalcones on the activity of human and rat 11ß-hydroxysteroid dehydrogenase 2 (11ß-HSD2), and associated side effects remain unclear. The inhibition of 11 chalcones on human and rat 11ß-HSD2 were evaluated in microsomes and a 3D-quantitative structure-activity relationship (3D-QSAR) was analyzed. Screening revealed that bavachalcone, echinatin, isobavachalcone, isobavachromene, isoliquiritigenin, licochalcone A, and licochalcone B significantly inhibited human 11ß-HSD2 with IC50 values ranging from 15.62 (licochalcone A) to 38.33 (echinatin) µM. Screening showed that the above chemicals and 4-hydroxychalcone significantly inhibited rat 11ß-HSD2 with IC50 values ranging from 6.82 (isobavachalcone) to 72.26 (4-hydroxychalcone) µM. These chalcones acted as noncompetitive/mixed inhibitors for both enzymes. Comparative analysis revealed that inhibition of 11ß-HSD2 depended on the species. Most chemicals bind to the NAD+ binding site or both the NAD+ and substrate binding sites. Bivariate correlation analysis showed that lipophilicity and molecular weight determine inhibitory strength. Through our 3D-QSAR models, we identified that the hydrophobic region, hydrophobic aliphatic groups, and hydrogen bond acceptors are pivotal factors in inhibiting 11ß-HSD2. In conclusion, many chalcones inhibit human and rat 11ß-HSD2, possibly causing side effects and there is structure-dependent and species-dependent inhibition on 11ß-HSD2.


Assuntos
Chalconas , Ratos , Humanos , Animais , Chalconas/farmacologia , 11-beta-Hidroxiesteroide Desidrogenases/metabolismo , Relação Quantitativa Estrutura-Atividade , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , NAD/metabolismo
4.
Pathol Res Pract ; 251: 154873, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37820440

RESUMO

Glucocorticoids bind to glucocorticoid receptors (GR). In the peripheral tissues, active cortisol is produced from inactive cortisone by 11ß-hydroxysteroid dehydrogenase (HSD)1. 11ß-HSD2 is responsible for this reverse catalysis. Although GR and 11ß-HSDs have been reported to be involved in the malignant behavior of various cancer types, the concentration of glucocorticoids in cancer tissues has not been investigated. In this study, we measured glucocorticoids in serum and cancer tissues using liquid chromatography-tandem mass spectrometry and clarified, for the first time, the intratumoral "intracrine" production of cortisol by 11ß-HSD1/2 in endometrial cancer. Intratumoral cortisol levels were high in the high-malignancy type and the cancer proliferation marker Ki-67-high group, suggesting that cortisol greatly contributes to the malignant behavior of endometrial cancer. A low expression level of the metabolizing enzyme 11ß-HSD2 is more important than a high expression level of the synthase 11ß-HSD1 for intratumoral cortisol action. Intratumoral cortisol was positively related to the expression/activity of estrogen synthase aromatase, which involved GR expressed in fibroblastic stromal cells but not in cancer cells. Blockade of GR signaling by hormone therapy is expected to benefit patients with endometrial cancer.


Assuntos
Neoplasias do Endométrio , Hidrocortisona , Feminino , Humanos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Aromatase , Glucocorticoides , Hidrocortisona/metabolismo , Receptores de Glucocorticoides/metabolismo , Microambiente Tumoral
5.
J Clin Endocrinol Metab ; 108(12): 3178-3189, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37339332

RESUMO

BACKGROUND: Patients with adrenal insufficiency (AI) require life-long glucocorticoid (GC) replacement therapy. Within tissues, cortisol (F) availability is under the control of the isozymes of 11ß-hydroxysteroid dehydrogenase (11ß-HSD). We hypothesize that corticosteroid metabolism is altered in patients with AI because of the nonphysiological pattern of current immediate release hydrocortisone (IR-HC) replacement therapy. The use of a once-daily dual-release hydrocortisone (DR-HC) preparation, (Plenadren®), offers a more physiological cortisol profile and may alter corticosteroid metabolism in vivo. STUDY DESIGN AND METHODS: Prospective crossover study assessing the impact of 12 weeks of DR-HC on systemic GC metabolism (urinary steroid metabolome profiling), cortisol activation in the liver (cortisone acetate challenge test), and subcutaneous adipose tissue (microdialysis, biopsy for gene expression analysis) in 51 patients with AI (primary and secondary) in comparison to IR-HC treatment and age- and BMI-matched controls. RESULTS: Patients with AI receiving IR-HC had a higher median 24-hour urinary excretion of cortisol compared with healthy controls (72.1 µg/24 hours [IQR 43.6-124.2] vs 51.9 µg/24 hours [35.5-72.3], P = .02), with lower global activity of 11ß-HSD2 and higher 5-alpha reductase activity. Following the switch from IR-HC to DR-HC therapy, there was a significant reduction in urinary cortisol and total GC metabolite excretion, which was most significant in the evening. There was an increase in 11ß-HSD2 activity. Hepatic 11ß-HSD1 activity was not significantly altered after switching to DR-HC, but there was a significant reduction in the expression and activity of 11ß-HSD1 in subcutaneous adipose tissue. CONCLUSION: Using comprehensive in vivo techniques, we have demonstrated abnormalities in corticosteroid metabolism in patients with primary and secondary AI receiving IR-HC. This dysregulation of pre-receptor glucocorticoid metabolism results in enhanced glucocorticoid activation in adipose tissue, which was ameliorated by treatment with DR-HC.


Assuntos
Insuficiência Adrenal , Glucocorticoides , Humanos , Glucocorticoides/uso terapêutico , Glucocorticoides/metabolismo , Hidrocortisona/metabolismo , Estudos Prospectivos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Estudos Cross-Over , Corticosteroides , Insuficiência Adrenal/tratamento farmacológico
6.
Clin Med Res ; 21(1): 6-13, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37130784

RESUMO

Objective: The mineralocorticoid receptor (MR) has two ligands, aldosterone and cortisol. Hydroxysteroid 11-beta dehydrogenase (HSD11B) isoenzymes regulate which ligand will bind to MR. In this study we aimed to evaluate the expression of the MR and the HSD11B isozymes in peripheral polymorphonuclear cells (PMNs) in critical illness for a 13-day period.Design: Prospective studySetting: One multi-disciplinary intensive care unit (ICU)Participants: Forty-two critically ill patientsMethods: Messenger RNA (mRNA) expression of MR, HSD11B1, and HSD11B2, aldosterone levels, and plasma renin activity (PRA) were measured in 42 patients on ICU admission and on days 4, 8, and 13. Twenty-five age and sex-matched healthy subjects were used as controls.Results: Compared to healthy controls, MR expression in critically ill patients was lower during the entire study period. HSD11B1 expression was also lower, while HSD11B2 expression was higher. In patients, PRA, aldosterone, the aldosterone:renin ratio, and cortisol remained unaltered during the study period.Conclusion: Our results suggest that, in our cohort of critically ill patients, local endogenous cortisol availability is diminished, pointing towards glucocorticoid resistance. Aldosterone probably occupies the MR, raising the possibility that PMNs might be useful to study to gain insights into MR functionality during pathological states.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2 , Aldosterona , Receptores de Mineralocorticoides , Humanos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Estado Terminal , Regulação para Baixo , Hidrocortisona/metabolismo , Hidroxiesteroides , Isoenzimas/genética , Isoenzimas/metabolismo , Estudos Prospectivos , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Renina/genética , Renina/metabolismo , Regulação para Cima
7.
Toxicology ; 488: 153484, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36878351

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are persistent in the environment and may disrupt the endocrine system. Our previous study showed that perfluorooctanoic acid (PFOA, C8) and perfluorooctanesulfonic acid (PFOS, C8S) can inhibit 11ß-hydroxysteroid dehydrogenase 2 (11ß-HSD2) activity leading to an active glucocorticoid accumulation. In this study, we extended investigation for 17 PFAS, including carboxylic and sulfonic acids, with different carbon-chain lengths, to determine their inhibitory potency and structure-activity relationship in human placental and rat renal 11ß-HSD2. C8-C14 PFAS at 100 µM significantly inhibited human 11ß-HSD2 with a potency as C10 (half-maximal inhibitory concentration, IC50, 9.19 µM) > C11 (15.09 µM) > C12 (18.43 µM) > C9 (20.93 µM) > C13 (124 µM) > C14 (147.3 µM) > other C4-C7 carboxylic acids, and C8S > C7S = C10S > other sulfonic acids. For rat 11ß-HSD2, only C9 and C10 and C7S and C8S PFAS exhibited significant inhibitory effects. PFAS are primarily mixed/competitive inhibitors of human 11ß-HSD2. Preincubation and simultaneous incubation with the reducing agent dithiothreitol significantly increased human 11ß-HSD2 but not rat 11ß-HSD2, and preincubation but not simultaneous incubation with dithiothreitol partially reversed C10-mediated inhibition on human 11ß-HSD2. Docking analysis showed that all PFAS bound to the steroid-binding site and carbon-chain length determined the potency of inhibition, with the optimal molecular length (12.6 Å) for potent inhibitors PFDA and PFOS, which is comparable to the molecular length (12.7 Å) of the substrate cortisol. The length between 8.9 and 17.2 Å is the probable threshold molecular length to inhibit human 11ß-HSD2. In conclusion, the carbon-chain length determines the inhibitory effect of PFAS on human and rat 11ß-HSD2, and the inhibitory potency of long-chain PFAS on human and rat 11ß-HSD2 showed V-shaped pattern. Long-chain PFAS may partially act on the cysteine residues of human 11ß-HSD2.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2 , Fluorocarbonos , Animais , Feminino , Humanos , Gravidez , Ratos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , 11-beta-Hidroxiesteroide Desidrogenases/metabolismo , Ditiotreitol , Fluorocarbonos/toxicidade , Placenta/metabolismo , Relação Estrutura-Atividade
8.
Ecotoxicol Environ Saf ; 254: 114715, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36871355

RESUMO

Bisphenols (BPs) as endocrine-disrupting compounds have drawn attention to their health hazards. Whether a BP interferes with glucocorticoid metabolism remains unclear. 11ß-Hydroxysteroid dehydrogenase 2 (11ß-HSD2) is a key glucocorticoid-metabolizing enzyme that controls fetal glucocorticoid levels across the placental barrier and mineralocorticoid receptor specificity in the kidney. In this study, 11 BPs were tested to inhibit human placental and rat renal 11ß-HSD2 and were analyzed for inhibitory potency, mode action, and docking parameters. BPs had inhibitory potency against human 11ß-HSD2: BPFL>BPAP>BPZ>BPB>BPC>BPAF>BPA>TDP and the IC10 values were 0.21, 0.55, 1.04, 2.04, 2.43, 2.57, 14.43, and 22.18 µM, respectively. All BPs are mixed inhibitors except BPAP, which is a competitive inhibitor for human 11ß-HSD2. Some BPs also inhibited rat renal 11ß-HSD2, with BPB (IC50, 27.74 ± 0.95) > BPZ (42.14 ± 0.59) > BPAF (54.87 ± 1.73) > BPA (77.32 ± 1.20) > other BPs (about 100 µM). Docking analysis showed that all BPs bound to the steroid-binding site, interacting with the catalytic residue Tyr232 of both enzymes and the most potent human 11ß-HSD2 inhibitor BPFL acts possibly due to its large fluorene ring that has hydrophobic interaction with residues Glu172 and Val270 and π-stacking interaction with catalytic residue Tyr232. The increase in the size of substituted alkanes and halogenated groups in the methane moiety of the bridge of BPs increases its inhibitory potency. Regressions of the lowest binding energy with inhibition constant indicated that there was an inverse regression. These results indicated that BPs significantly inhibited human and rat 11ß-HSD2 activity and that there were species-dependent differences.


Assuntos
Glucocorticoides , Placenta , Ratos , Humanos , Gravidez , Feminino , Animais , Glucocorticoides/metabolismo , 11-beta-Hidroxiesteroide Desidrogenases/metabolismo , Placenta/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/química , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Relação Estrutura-Atividade
9.
Food Chem Toxicol ; 175: 113739, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36958388

RESUMO

Some halogenated bisphenol A (BPA) derivatives (tetrabromobisphenol A, TBBPA, and tetrachlorobisphenol A, TCBPA) are produced in a high volume and exist in PM2.5 after waste burning. 11ß-Hydroxysteroid dehydrogenase 2 (11ß-HSD2) is a critical enzyme for placental function. However, whether halogenated bisphenols inhibit 11ß-HSD2 and the mode of action remains unclear. The objective of this study was to investigate BPA derivatives on human and rat placental 11ß-HSD2. The inhibitory strength on human 11ß-HSD2 was TBBPA (IC50, 0.665 µM)>TCBPA (2.22 µM)>trichloro BPA (TrCBPA, 19.87 µM)>tetrabromobisphenol S (TBBPS, 36.76 µM)>monochloro BPA (MCBPA, 104.0 µM)>BPA (144.9 µM)>bisphenol S. All chemicals are mixed and competitive inhibitors. Rat 11ß-HSD2 was less sensitive to BPA derivatives, with TBBPA (IC50, 96.63 µM)>TCBPA (99.69 µM)>TrCBPA (104.1 µM)>BPA (117.1 µM)>others. Docking analysis showed that BPA derivatives bind steroid active sites. Structure-activity relationship revealed that halogen atoms and LogP were inversely correlated with inhibitory strength on human 11ß-HSD2, while LogS and polar desolvation energy were positively correlated with the inhibitory strength. In conclusion, halogenated BPA derivatives are mostly potent inhibitors on human 11ß-HSD2 and there is structure-dependent inhibition.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2 , Placenta , Humanos , Ratos , Feminino , Gravidez , Animais , 11-beta-Hidroxiesteroide Desidrogenases , Placenta/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Compostos Benzidrílicos/toxicidade
10.
Artigo em Inglês | MEDLINE | ID: mdl-36754112

RESUMO

Glucocorticoids (GCs) are an essential mediator hormone that can regulate animal growth, behavior, the phenotype of offspring, and so on, while GCs in poultry are predominantly corticosterones. The biological activity of GCs is mainly regulated by the intracellular metabolic enzymes, including 11ß-hydroxysteroid dehydrogenases 1 (11ß-HSD1), 11ß-hydroxysteroid dehydrogenases 2 (11ß-HSD2), and 20-hydroxysteroid dehydrogenase (20-HSD). To investigate the embryonic mechanisms of phenotypic differences between breeds, we compared the expression of corticosterone metabolic enzyme genes in the yolk-sac membrane and chorioallantoic membrane (CAM). We described the tissue distribution and ontogenic patterns of corticosterone metabolic enzymes during embryonic incubation between Tibetan and broiler chickens. Forty fertilized eggs from Tibetan and broiler chickens were incubated under hypoxic and normoxic conditions, respectively. Real-time fluorescence quantitative PCR was used to examine the expression of 11ß-HSD1/2, and 20-HSD mRNA in embryonic tissues. The results showed that the expression levels of yolk-sac membrane mRNA of 11ß-HSD2 and 20-HSD in Tibetan chickens on E14 (embryonic day of 14) were significantly lower than those of broiler chickens (P < 0.05), and these genes expression of CAM in Tibetan chickens were higher than those of broiler chickens (P < 0.05). In addition, the three genes in the yolk-sac membrane and CAM were followed by a down-regulation on E18 (embryonic day of 18). The 11ß-HSD1 and 11ß-HSD2 genes followed a similar tissue-specific pattern: the expression level was more abundantly in the liver, kidney, and intestine, with relatively lower abundance in the hypothalamus and muscle, and the expression level of 20-HSD genes in all tissues tested was higher. In the liver, 20-HSD of both Tibetan and broiler chickens showed different ontogeny development patterns, and hepatic mRNA expression of 20-HSD in broiler chickens was significantly higher than that of Tibetan chickens of the same age from E14 to E18 (P < 0.05). This study preliminarily revealed the expression levels of cortisol metabolic genes in different tissues during the development process of Tibetan and broiler chicken embryos. It provided essential information for in-depth research of the internal mechanism of maternal GCs programming on offspring.


Assuntos
Galinhas , Corticosterona , Animais , Embrião de Galinha , Corticosterona/metabolismo , Galinhas/genética , Galinhas/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Tibet , Glucocorticoides/metabolismo , Hidroxiesteroide Desidrogenases/genética , Hidroxiesteroide Desidrogenases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Expressão Gênica
11.
Pediatr Nephrol ; 38(6): 1717-1724, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36322257

RESUMO

Since the 1970s, when the initial reports of neonatal hypertension related to renal artery thromboembolism were published, other secondary causes of neonatal hypertension have been reported. Those infants with no identifiable cause of hypertension were labeled with a variety of terms. Herein, we describe such infants as having idiopathic neonatal hypertension (INH). Most, but not all, of these hypertensive infants were noted to have bronchopulmonary dysplasia (BPD). More recently, reports described common clinical characteristics seen in INH patients, whether or not they had BPD. This phenotype includes low plasma renin activity, presentation near 40 weeks postmenstrual age, and a favorable response to treatment with spironolactone. A small prospective study in INH patents showed evidence of mineralocorticoid receptor activation due to inhibition of 11ß-HSD2, the enzyme that converts cortisol to the less potent mineralocorticoid-cortisone. Meanwhile, phthalate metabolites have been shown to inhibit 11ß-HSD2 in human microsomes. Premature infants can come in contact with exceptionally large phthalate exposures, especially those infants with BPD. This work describes a common low-renin phenotype, commonly seen in patients categorized as having INH. Further, we review the evidence that hypertension in INH patients with the low-renin phenotype may be mediated by phthalate-associated inhibition of 11ß-HSD2. Lastly, we review the implications of these findings regarding identification, treatment, and prevention of the low-renin hypertension phenotype seen in premature infants categorized as having INH.


Assuntos
Hipertensão , Renina , Recém-Nascido , Lactente , Humanos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Estudos Prospectivos , Hipertensão/etiologia , Hipertensão Essencial , Recém-Nascido Prematuro , Fenótipo
12.
J Nat Med ; 77(1): 87-95, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36064835

RESUMO

Jujuboside B (JB) found in the seeds of Zizyphi Spinosi Semen possesses pharmacological functions, such as anti-inflammatory, antiplatelet aggregation, and antianxiety potentials. This study evaluated the effect of JB on liver failure in cecal ligation and puncture (CLP)-induced sepsis. First, we observed histopathological changes in the liver by optical microscopy and the activity of enzymes in serum such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST). We further measured the levels of interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, nitric oxide (NO), and antioxidative parameters in liver homogenate. The expression of 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1), 11ß-hydroxysteroid dehydrogenase type 2 (11ß-HSD2), and glucocorticoid receptor (GR) in the liver was observed by Western blotting. CLP enhanced the migration of inflammatory cells, ALT and AST concentrations, and necrosis, which were reduced by JB. In addition, JB reduced 11ß-HSD2 expression and levels of inflammatory mediators (TNF-α, IL-1ß, and NO) in the liver, increased GR expression, enhanced endogenous antioxidative capacity. These results further suggest that JB may protect the liver against CLP-induced damage by regulating anti-inflammatory responses, downregulating 11ß-HSD2 expression and antioxidation, and up-regulating GR expression.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2 , Saponinas , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Glucocorticoides , Saponinas/farmacologia , Fator de Necrose Tumoral alfa , Antioxidantes/farmacologia
13.
Eur Rev Med Pharmacol Sci ; 27(24): 11961-11974, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38164859

RESUMO

OBJECTIVE: Cold exposure (CE) before birth is one of the initial stressors that may impact mammalian pregnancy, changing placental and fetal development and affecting the health of the offspring. While glucocorticoids (GCs) participate in the body's response to the stress of CE, the specific mechanisms of their action are unclear. This study aims to determine the effect of CE stress on the placenta and to test whether stress, caused by cold exposure in pregnancy impairs fetal development by changing placental angiogenesis via excessive GC expression. MATERIALS AND METHODS: CE rat model was created by exposing 30 SD rats to cold preconception, or during the first, second, and third weeks of pregnancy. Serum cortisol and soluble fms-like tyrosine kinase-1 (sFlt-1) expression levels, physiological index changes (food intake, body weight change and blood pressure), and pregnancy outcomes (fetal rat weight, number of live fetal rats, and placental weight) were collected at baseline and at different time points after the conception. Protein expression levels of 11 ß-hydroxysteroid dehydrogenase 2 (11ß-HSD2), glucocorticoid receptor, vascular endothelial growth factor A (VEGF-A), placental growth factor (PIGF), and sFlt-1 in placental tissues were measured by western blotting. Cytokeratin (CK) and laminin (LN) in trophoblasts, and α-actin in vascular smooth muscle of the spiral arteries of pregnant rats after the systemic cold treatment were assessed by immunofluorescence and visualized by fluorescent microscopy. To test the effect of 11ß-HSD2 levels on the placental recasting, human first-trimester extravillous trophoblast cells (HTR8/SVneo) underwent knockdown using specific 11ß-HSD2 siRNA constructs.  Expression levels of 11ß-HSD2 were analyzed by quantitative real-time PCR (qPCR) and into HTR8 cells, and the expression levels of the 11ß-HSD2 gene in each group were measured using qPCR. Cell migration and invasion was assessed by Transwell migration assay, and sFlt-1 levels in HTR8 cells were measured by ELISA. RESULTS: CE pre-conception led to consistently increasing serum corticosterone and sFlt-1 levels throughout pregnancy, and persistently increased diastolic blood pressure (DBP) in rat CE model compared to control animals. CE during the second week of gestation (Gp.3) was associated with significantly lower placental weight (p=0.0003). Cold exposure in the third week (Gp.4) was associated with significantly (p=0.001) lower fetal weight. CE pre-conception was associated with significantly decreased placental levels of 11ß-HSD2, glucocorticoid receptor, VEGF-A, PIGF, and sFlt-1 proteins and α-actin compared to the control group. Silencing 11ß-HSD2 by siRNA led to reduced cell migrations and invasion, and markedly increased expression levels of sFlt-1 in HTR8/SVneo cells (p<0.05). CONCLUSIONS: Pre-conception cold exposure and during early pregnancy leads to increased GCs levels and impaired placental 11ß-HSD2 activity. We suggest that the subsequent 11ß-HSD2-induced increase in the sFlt-1expression during early pregnancy may affect placental vascular remodeling and change placental morphological structure and function.


Assuntos
Glucocorticoides , Placenta , Feminino , Ratos , Gravidez , Humanos , Animais , Placenta/metabolismo , Glucocorticoides/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , 11-beta-Hidroxiesteroide Desidrogenases/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/farmacologia , Receptores de Glucocorticoides/metabolismo , Actinas/metabolismo , Ratos Sprague-Dawley , Fator de Crescimento Placentário , RNA Interferente Pequeno/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
14.
J Endocrinol ; 255(3): 143-158, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36256689

RESUMO

Stress during pregnancy negatively affects the fetus and increases the risk for affective disorders in adulthood. Excess maternal glucocorticoids are thought to mediate fetal programming; however, whether they exert their effects directly or indirectly remains unclear. During pregnancy, protective mechanisms including maternal hypothalamic-pituitary-adrenal (HPA) axis hyporesponsiveness and placental 11ß-hydroxysteroid dehydrogenase (11ßHSD) type 2, which inactivates glucocorticoids, limit mother-to-fetus glucocorticoid transfer. However, whether repeated stress negatively impacts these mechanisms is not known. Pregnant rats were exposed to repeated social stress on gestational days (GD) 16-20 and several aspects of HPA axis and glucocorticoid regulation, including concentrations of glucocorticoids, gene expression for their receptors (Nr3c1, Nr3c2), receptor chaperones (Fkbp51, Fkbp52) and enzymes that control local glucocorticoid availability (Hsd11b1, Hsd11b2), were investigated in the maternal, placental and fetal compartments on GD20. The maternal HPA axis was activated following stress, though the primary driver was vasopressin, rather than corticotropin-releasing hormone. Despite the stress-induced increase in circulating corticosterone in the dams, only a modest increase was detected in the circulation of female fetuses, with no change in the fetal brain of either sex. Moreover, there was no change in the expression of genes that mediate glucocorticoid actions or modulate local concentrations in the fetal brain. In the placenta labyrinth zone, stress increased Hsd11b2 expression only in males and Fkbp51 expression only in females. Our results indicate that any role glucocorticoids play in fetal programming is likely indirect, perhaps through sex-dependent alterations in placental gene expression, rather than exerting effects via direct crossover into the fetal brain.


Assuntos
Glucocorticoides , Sistema Hipotálamo-Hipofisário , Masculino , Feminino , Gravidez , Animais , Ratos , Glucocorticoides/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Placenta/metabolismo , Feto/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo
15.
Mol Reprod Dev ; 89(7): 271-280, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35735229

RESUMO

Long noncoding RNA plasmacytoma variant translocation 1 (PVT1) is essential for the maintenance of normal functions of trophoblasts in preeclampsia (PE). This study aims to decipher the concrete mechanism of PVT1 with the microRNA-24-3p/Type-2 11ß-hydroxysteroid dehydrogenase (miR-24-3p/HSD11B2) axis in PE. PVT1, miR-24-3p, and HSD11B2 expression levels in normal placental tissues and PE placental tissues were defined. HTR-8/SVneo cells were transfected to determine the effects of PVT1, miR-24-3p, and HSD11B2 on the growth of HTR-8/SVneo cells. The relationships among PVT1/miR-24-3p/HSD11B2 in HTR-8/SVneo cells were identified. PVT1 and HSD11B2 were downregulated, while miR-24-3p was upregulated in the placenta of PE. Upregulated/downregulated PVT1 promoted/impeded the growth of human placental trophoblast (HTR-8/SVneo) cells in PE. Restored/knocked down miR-24-3p impeded/enhanced the growth of HTR-8/SVneo cells in PE. PVT1 inhibited miR-24-3p to mediate HSD11B2. PVT1 sponges miR-24-3p to regulate HSD11B2; thereby, the growth of placental trophoblasts is promoted in PE.


Assuntos
MicroRNAs , Pré-Eclâmpsia , RNA Longo não Codificante , Trofoblastos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Gravidez , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Trofoblastos/metabolismo
16.
Ecotoxicol Environ Saf ; 239: 113624, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35588619

RESUMO

Our previous study reported that prenatal caffeine exposure (PCE) could induce chondrodysplasia and increase the susceptibility to osteoarthritis in offspring rats. However, the potential mechanisms and initiating factors remain unknown. This study aims to investigate whether 11ß-HSD2, a glucocorticoid-metabolizing enzyme, is involved in the susceptibility of osteoarthritis induced by PCE and to further explore its potential mechanisms and initiating factors. Firstly, we found that PCE reduced cartilage matrix synthesis (aggrecan/Col2a1 expression) in male adult offspring rats and exhibited an osteoarthritis phenotype following chronic stress, which was associated with persistently reduced H3K9ac and H3K27ac levels at the promoter of 11ß-HSD2 as well as its expression in the cartilage from fetus to adulthood. The expression of 11ß-HSD2, aggrecan and Col2a1 were all decreased by corticosterone in the fetal chondrocytes, while overexpression of 11ß-HSD2 could partially alleviate the decrease of matrix synthesis induced by corticosterone in vitro. Furthermore, the glucocorticoid receptor (GR) activated by glucocorticoids directly bonded to the promoter region of 11ß-HSD2 to inhibit its expression. Meanwhile, the activated GR reduced the H3K9ac and H3K27ac levels of 11ß-HSD2 by recruiting HDAC4 and promoting GR-HDAC4 protein interaction to inhibit the 11ß-HSD2 expression. Moreover, caffeine could reduce the expression of 11ß-HSD2 by inhibiting the cAMP/PKA signaling pathway but without reducing the H3K9ac and H3K27ac levels of 11ß-HSD2, thereby synergistically enhancing the corticosterone effect. In conclusion, the persistently reduced H3K9ac and H3K27ac levels of 11ß-HSD2 from fetus to adulthood mediated the inhibition of cartilage matrix synthesis and the increased susceptibility to osteoarthritis. This epigenetic programming change in utero was induced by glucocorticoids with synergistic effect of caffeine.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2 , Osteoartrite , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Agrecanas , Animais , Cafeína/toxicidade , Cartilagem , Corticosterona , Feminino , Glucocorticoides/metabolismo , Masculino , Osteoartrite/induzido quimicamente , Osteoartrite/genética , Gravidez , Ratos
17.
Psychoneuroendocrinology ; 141: 105764, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35462201

RESUMO

In examining maternal depression, placental 11ß-HSD2 mRNA expression and offspring cortisol regulation as a potential fetal programming pathway in relation to later child emotional disorders, it has become clear that sex differences may be important to consider. This study reports on data obtained from 209 participants in the Mercy Pregnancy and Emotional Wellbeing Study (MPEWS) recruited before 20 weeks of pregnancy. Maternal depressive disorders were diagnosed using the SCID-IV and maternal childhood trauma using the Childhood Trauma Questionnaire. Placental 11ß-HSD2 mRNA was measured using qRT-PCR. For assessment of stress-induced cortisol reactivity, salivary cortisol samples were taken at 12 months of age. At 4 years of age, measurement of Childhood Emotional Disorders (depression and anxiety) was based on maternal report using the Preschool Age Psychiatric Assessment (PAPA) and internalizing symptoms using the Child Behavior Checklist (CBCL). Maternal depression in pregnancy and postpartum, and infant cortisol reactivity, was associated with internalizing symptoms for females only. For female offspring only, increased 12-month cortisol reactivity was also associated with increased emotional disorders at 4 years of age; however, there was no association with placental 11ß-HSD2 mRNA expression. In females only, the combination of lower placental 11ß-HSD2 mRNA expression and higher cortisol reactivity at 12 months of age predicted increased internalising problems. These findings suggest there may be sex differences in prenatal predictors and pathways for early childhood depression and anxiety symptoms and disorder.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2 , Hidrocortisona , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Criança , Pré-Escolar , Feminino , Desenvolvimento Fetal/fisiologia , Humanos , Hidrocortisona/metabolismo , Lactente , Masculino , Placenta/metabolismo , Gravidez , RNA Mensageiro/metabolismo , Caracteres Sexuais
18.
J Biochem Mol Toxicol ; 36(7): e23056, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35384129

RESUMO

Cadmium (Cd) is an environmental pollutant and pregnant women are especially susceptible to the effects of exposure to Cd. Our previous study found Cd can be accumulated in the placenta and causes fetal growth restriction (FGR) through damage the placental glucocorticoid barrier. Selenium (Se), as an essential micronutrient, can allivate Cd-induced toxicity. In this study, we aim to explore the protective mechanism of Se against Cd-induced the placental glucocorticoid barrier damage and FGR. Pregnant Sprague Dawley (SD) rats were exposed to CdCl2 (1 mg/kg/day) and Na2 SeO3 (0.1-0.2-0.3 mg/kg/day) by gavage from gestational day (GD) 0 to GD 19. The results showed that reduced fetal weight, increased corticosterone concentrations in the maternal and fetal serum, and impaired placental labyrinth layer blood vessel development, appeared in pregnant rats after Cd exposure and improved after treated with Se. In cell experiments, we confirmed that Se reduces Cd-induced apoptosis. Moreover, Se can abolish Cd-induced 11ß-HSD2 and specificity protein 1 (Sp1) decreasing in vivo and vitro. In human JEG-3 cells, the knockdown of Sp1 expression by small interfering RNA can suppressed the protective effect of Se on Cd-induced 11ß-HSD2 decreasing. In general, our results demonstrated that Se is resistant to Cd-induced FGR through upregulating the placenta barrier via activation of the transcription factor Sp1.


Assuntos
Intoxicação por Cádmio , Selênio , Fator de Transcrição Sp1 , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/farmacologia , Animais , Cádmio/toxicidade , Intoxicação por Cádmio/metabolismo , Linhagem Celular Tumoral , Feminino , Retardo do Crescimento Fetal/induzido quimicamente , Retardo do Crescimento Fetal/metabolismo , Glucocorticoides/farmacologia , Humanos , Placenta/metabolismo , Gravidez , Ratos , Ratos Sprague-Dawley , Selênio/efeitos adversos , Fator de Transcrição Sp1/biossíntese
19.
Reprod Toxicol ; 110: 78-84, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35378222

RESUMO

Prenatal hypoxia is the most common stress in mid-late gestation that usually arise from maternal, placental and/or fetal factors. As a multifunctional organ enabling optimal fetal growth, placenta must adapt to diverse environmental stressors. Excessive glucocorticoids exposure is known to have adverse effects on fetal growth. The fetus is shielded by a placental glucocorticoid barrier by 11ß-hydroxysteroid dehydrogenase 2 (11ß-HSD2). However, the effects and underlying mechanisms of intrauterine hypoxia on placental glucocorticoid barrier are largely unknown. This study was the first to determine the effects and its mechanisms. Pregnant rats were exposed to hypoxia (10.5% O2) from gestational day (GD)10-20. At GD20, expression of 11-ßHSD2 were determined in placenta, and corticosterone levels were measured in maternal and fetal plasma. Prenatal hypoxia disrupted the placental glucocorticoid barrier by suppressing 11-ßHSD2 expression. Meanwhile, the decreased 11-ßHSD2 was correlated with an increased DNA methylation within its gene promoter. Together, these results indicated that prenatal hypoxia impair placental glucocorticoid barrier, was strongly associated with reprogrammed 11-ßHSD2 expression via a DNA methylation-mediated epigenetic mechanism.


Assuntos
Glucocorticoides , Placenta , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Animais , Metilação de DNA , Feminino , Glucocorticoides/toxicidade , Hipóxia/metabolismo , Placenta/metabolismo , Gravidez , Ratos
20.
J Clin Endocrinol Metab ; 107(7): 2026-2035, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35275196

RESUMO

CONTEXT: The causative link between circulating glucocorticoid excess and osteoporosis is well-established. The enzyme 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1), which increases local cortisol production, is expressed in human osteoblasts and its activity increases with age. OBJECTIVE: We hypothesized that local 11ß-HSD1 might mediate an age-related decrease in bone formation and that selective 11ß-HSD1 inhibition may enhance bone formation. METHODS: A dual-center, phase II, randomized, double-blind, placebo-controlled trial of 90 days' treatment with AZD4017 (a selective 11ß-HSD1 inhibitor) was conducted in 55 postmenopausal women with osteopenia. Participants received 400 mg oral AZD4017 twice daily vs matched placebo over 90 days. The primary outcome measure was the impact on the bone formation marker osteocalcin. Secondary objectives included correlation with 11ß-HSD1 activity. RESULTS: At 90 days, osteocalcin levels did not differ between treatment groups: active (mean 22.3 [SD 8.6] ng/mL, n = 22) and placebo (21.7 [SD 9.2] ng/mL, n = 24), with a baseline-adjusted treatment effect of 0.95 (95% CI: -2.69, 4.60). The results from the urinary [THF + alloTHF]/THE ratio (index of 11ß-HSD1 activity) and the urinary cortisol/cortisone ratio (index of 11ß-HSD2 activity) confirmed a > 90% inhibition of 11ß-HSD1 but no change in activity of 11ß-HSD2. CONCLUSION: This trial demonstrates that AZD4017 selectively inhibits 11ß-HSD1 activity in vivo in a safe and reversible manner. Following 90 days of treatment, there is no effect on bone formation, indicating that the relative impairment of bone mineral density in postmenopausal women is not mediated by local intracellular production of cortisol under normal physiological concentrations.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1 , Doenças Ósseas Metabólicas , Niacinamida , Piperidinas , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Doenças Ósseas Metabólicas/tratamento farmacológico , Remodelação Óssea , Feminino , Glucocorticoides , Humanos , Hidrocortisona , Niacinamida/análogos & derivados , Niacinamida/uso terapêutico , Osteocalcina , Piperidinas/uso terapêutico , Pós-Menopausa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...