Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Mol Hum Reprod ; 27(7)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34057472

RESUMO

During follicular development, a few dominant follicles develop to large antral dominant follicles, whereas the remaining follicles undergo atretic degeneration. Because vascularization on the follicular surface is a morphological feature of dominant follicles, we previously classified these follicles as vascularized follicles (VFs) and non-VFs (NVFs). In NVFs, progesterone producing genes were expressed similarly to that in VFs; however, the progesterone concentration in follicular fluid was low in large NVFs. Therefore, we estimated that progesterone is converted to cortisol, which induces the loss of follicular functions. In this study, we comparative analyzed the expression of genes for progesterone converting enzymes (Cytochrome (CYP)11B1, CYP21A2, Hydroxysteroid (HSD)11B2) and cortisol receptor (NR3C1) in VF and NVF granulosa cells. In NVFs, expression of cortisol producing genes (CYP11B1 and CYP21A2) was higher than in VFs. Expression of the gene for the cortisol metabolizing enzyme HSD11B2 in NVFs was significantly lower than in VFs. In NVFs, accompanied by increasing cortisol concentration in follicular fluid, apoptosis of granulosa and cumulus cells was observed. Cultivation with FSH and metyrapone (a CYP11B1 inhibitor) of NVF cumulus-oocyte complexes inhibited apoptosis of cumulus cells and induced cumulus cell proliferation and oocyte maturation. Cortisol-induced CYP11B1 and CYP21A2 expression, whereas FSH-induced HSD11B2 mRNA expression in VF granulosa cells in the presence of cortisol. Furthermore, an addition of 18ß-glycyrrhetinic acid (18-GA; a HSD17B2 inhibitor) to cortisol and FSH-containing medium increased apoptosis of VF granulosa cells. These results suggested that cortisol is a stimulatory factor that induces follicular atresia; furthermore, inhibition of cortisol production by FSH might increase the number of healthy preovulatory follicles in pigs.


Assuntos
Hormônio Foliculoestimulante/farmacologia , Atresia Folicular/efeitos dos fármacos , Hidrocortisona/farmacologia , 11-beta-Hidroxiesteroide Desidrogenases/biossíntese , 11-beta-Hidroxiesteroide Desidrogenases/genética , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Células do Cúmulo/efeitos dos fármacos , Células do Cúmulo/metabolismo , Indução Enzimática , Feminino , Hormônio Foliculoestimulante/fisiologia , Líquido Folicular/química , Regulação da Expressão Gênica , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Hidrocortisona/análise , Hidrocortisona/fisiologia , Metirapona/farmacologia , Modelos Biológicos , Progesterona/metabolismo , Receptores de Glucocorticoides/biossíntese , Receptores de Glucocorticoides/genética , Esteroide 11-beta-Hidroxilase/biossíntese , Esteroide 11-beta-Hidroxilase/genética , Esteroide 21-Hidroxilase/biossíntese , Esteroide 21-Hidroxilase/genética , Suínos
2.
Int J Mol Sci ; 22(8)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921780

RESUMO

Glucocorticoids (GCs) are hormones that are released in response to stressors and exhibit many activities, including immunomodulatory and anti-inflammatory activities. They are primarily synthesized in the adrenal gland but are also produced in peripheral tissues via regeneration of adrenal 11-oxo metabolites or by de novo synthesis from cholesterol. The present study investigated the influence of the microbiota on de novo steroidogenesis and regeneration of corticosterone in the intestine of germ-free (GF) and specific pathogen-free mice challenged with a physical stressor (anti-CD3 antibody i.p. injection). In the small intestine, acute immune stress resulted in increased mRNA levels of the proinflammatory cytokines IL1ß, IL6 and Tnfα and genes involved in de novo steroidogenesis (Stard3 and Cyp11a1), as well as in regeneration of active GCs from their 11-oxo metabolites (Hsd11b1). GF mice showed a generally reduced transcriptional response to immune stress, which was accompanied by decreased intestinal corticosterone production and reduced expression of the GC-sensitive marker Fkbp5. In contrast, the interaction between stress and the microbiota was not detected at the level of plasma corticosterone or the transcriptional response of adrenal steroidogenic enzymes. The results indicate a differential immune stress-induced intestinal response to proinflammatory stimuli and local corticosterone production driven by the gut microbiota.


Assuntos
Corticosterona/metabolismo , Microbioma Gastrointestinal/fisiologia , Intestino Delgado/metabolismo , 11-beta-Hidroxiesteroide Desidrogenases/genética , 11-beta-Hidroxiesteroide Desidrogenases/metabolismo , Animais , Masculino , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Esteroides/metabolismo , Espectrometria de Massas em Tandem
3.
Mol Cell Endocrinol ; 526: 111210, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33607268

RESUMO

This review briefly addresses the history of the discovery and elucidation of the three cloned 11ß-hydroxysteroid dehydrogenase (11ßHSD) enzymes in the human, 11ßHSD1, 11ßHSD2 and 11ßHSD3, an NADP+-dependent dehydrogenase also called the 11ßHSD1-like dehydrogenase (11ßHSD1L), as well as evidence for yet identified 11ßHSDs. Attention is devoted to more recently described aspects of this multi-functional family. The importance of 11ßHSD substrates other than glucocorticoids including bile acids, 7-keto sterols, neurosteroids, and xenobiotics is discussed, along with examples of pathology when functions of these multi-tasking enzymes are disrupted. 11ßHSDs modulate the intracellular concentration of glucocorticoids, thereby regulating the activation of the glucocorticoid and mineralocorticoid receptors, and 7ß-27-hydroxycholesterol, an agonist of the retinoid-related orphan receptor gamma (RORγ). Key functions of this nuclear transcription factor include regulation of immune cell differentiation, cytokine production and inflammation at the cell level. 11ßHSD1 expression and/or glucocorticoid reductase activity are inappropriately increased with age and in obesity and metabolic syndrome (MetS). Potential causes for disappointing results of the clinical trials of selective inhibitors of 11ßHSD1 in the treatment of these disorders are discussed, as well as the potential for more targeted use of inhibitors of 11ßHSD1 and 11ßHSD2.


Assuntos
11-beta-Hidroxiesteroide Desidrogenases/metabolismo , 11-beta-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , 11-beta-Hidroxiesteroide Desidrogenases/química , 11-beta-Hidroxiesteroide Desidrogenases/genética , Animais , Citocinas/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Reprodução/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
4.
BMC Genomics ; 21(1): 668, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32993516

RESUMO

BACKGROUND: The clupeoid fishes are ecologically and commercially important fish species worldwide that exhibit a high level of population fluctuation, accompanied by alteration of reproductive traits. However, knowledge about their reproductive physiology in order to understand mechanisms underlying such population dynamics is limited. The endocrine system along with the brain-pituitary-gonadal (BPG) axis is critical for regulating reproduction. The aims of this study were to provide transcript data and genes related to the BPG axis, and to characterize the expression profiles of ovarian steroidogenesis-related genes in the Japanese sardine (Sardinops melanostictus, Clupeidae). RESULTS: RNA sequencing was performed using the sardine brain, pituitary, and gonad in both sexes. A total of 290,119 contigs were obtained and 115,173 non-redundant ORFs were annotated. The genes differentially expressed between ovary and testis were strongly associated with GO terms related to gamete production. The tissue-specific profile of the abundance of transcripts was characterized for the major regulators in the BPG axis, such as gonadotropin-releasing hormone, gonadotropin, and steroidogenic enzyme. By comparing between ovary and testis, out of eight different 17ß-hydroxysteroid dehydrogenase (Hsd17b) genes identified, higher hsd17b7 expression was found in testis, whereas higher expression of hsd17b8, hsd17b10, hsd17b12a, and hsd17b12b was found in ovary. The cDNAs encoding key endocrine factors in the ovarian steroidogenic pathway were cloned, sequenced, and quantitatively assayed. In the pituitary, follicle-stimulating hormone beta peaked during vitellogenesis, while luteinizing hormone beta peaked at the completion of vitellogenesis. In the ovary, follicle-stimulating hormone receptor and luteinizing hormone receptor were upregulated from mid- to late phase of vitellogenesis. Furthermore, three steroidogenic enzyme genes (cyp11a1, cyp17a1, and cyp19a1a) gradually increased their expression during ovarian development, accompanying a rise in serum estradiol-17ß, while 3ß-hydroxysteroid dehydrogenase and steroidogenic acute regulatory protein did not change significantly. CONCLUSIONS: This is the first report of deep RNA sequencing analysis of Japanese sardine, in which many key genes involved in the BPG axis were identified. Expression profiles of ovarian steroidogenesis-related genes provide a molecular basis of the physiological processes underlying ovarian development in the sardine. Our study will be a valuable resource for clarifying the molecular biology of clupeoid fishes.


Assuntos
Encéfalo/metabolismo , Peixes/genética , Hormônios Esteroides Gonadais/genética , Ovário/metabolismo , Hipófise/metabolismo , Transcriptoma , 11-beta-Hidroxiesteroide Desidrogenases/genética , 11-beta-Hidroxiesteroide Desidrogenases/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Hormônio Foliculoestimulante/genética , Hormônio Foliculoestimulante/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Hormônio Luteinizante/genética , Hormônio Luteinizante/metabolismo
5.
J Clin Endocrinol Metab ; 105(2)2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31608377

RESUMO

CONTEXT: Inter-individual differences in cortisol production and metabolism emerge with age and may be explained by genetic factors. OBJECTIVE: To estimate the relative contributions of genetic and environmental factors to inter-individual differences in cortisol production and metabolism throughout adolescence. DESIGN: Prospective follow-up study of twins. SETTING: Nationwide register. PARTICIPANTS: 218 mono- and dizygotic twins (N = 109 pairs) born between 1995 amd 1996, recruited from the Netherlands Twin Register. Cortisol metabolites were determined in 213, 169, and 160 urine samples at the ages of 9, 12, and 17, respectively. MAIN OUTCOME MEASURES: The total contribution of genetic factors (broad-sense heritability) and shared and unshared environmental influences to inter-individual differences in cortisol production and activities of 5α-reductase, 5ß-reductase, and 11ß-hydroxysteroid dehydrogenases and cytochrome P450 3A4. RESULTS: For cortisol production rate at the ages of 9, 12, and 17, broad-sense heritability was estimated as 42%, 30%, and 0%, respectively, and the remainder of the variance was explained by unshared environmental factors. For cortisol metabolism indices, the following heritability was observed: for the A-ring reductases (5α-and 5ß-reductases), broad-sense heritability increased with age (to >50%), while for the other indices (renal 11ß-HSD2, global 11ß-HSD, and CYP3A4), the contribution of genetic factors was highest (68%, 18%, and 67%, respectively) at age 12. CONCLUSIONS: The contribution of genetic factors to inter-individual differences in cortisol production decreased between 12 and 17y, indicative of a predominant role of individual circumstances. For cortisol metabolism, distinct patterns of genetic and environmental influences were observed, with heritability that either increased with age or peaked at age 12y.


Assuntos
Vias Biossintéticas/genética , Hidrocortisona/genética , Gêmeos Dizigóticos/genética , 11-beta-Hidroxiesteroide Desidrogenases/genética , 11-beta-Hidroxiesteroide Desidrogenases/urina , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/urina , Adolescente , Criança , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/urina , Feminino , Seguimentos , Humanos , Hidrocortisona/urina , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Países Baixos , Oxirredutases/genética , Oxirredutases/urina , Estudos Prospectivos , Característica Quantitativa Herdável , Sistema de Registros
6.
J Immunol ; 203(5): 1198-1207, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31315888

RESUMO

It is increasingly recognized that excessive glucocorticoids induce fetal intrauterine growth restriction (IUGR). Placental 11ß-hydroxysteroid dehydrogenase 2 (11ß-HSD2), a glucocorticoid-catalyzing enzyme, prevents active glucocorticoids from maternal circulation into the fetus, thus protecting against IUGR. Previous studies demonstrated gestational LPS exposure caused fetal IUGR. The aim of the current study was to investigate the effects of LPS on 11ß-HSD2 in mice placentas and human placental trophoblasts. Pregnant ICR(CD-1) mice were i.p. injected with LPS (200 µg/kg) on gestational day 16. As expected, gestational LPS exposure downregulated 11ß-HSD2 in mice placentas. In vitro, LPS downregulated 11ß-HSD2 in human placental trophoblasts. Additional experiment showed that LPS, which activated NF-κB, suppressed rosiglitazone-induced activation of peroxisome proliferator-activated receptor-γ (PPARγ) in mice placentas and human placental trophoblasts. Moreover, NF-κB p65 knockdown and specific NF-κB inhibitor attenuated LPS-induced suppression of PPARγ nuclear translocation in human placental trophoblasts. In addition, NF-κB p65 knockdown attenuated LPS-induced downregulation of 11ß-HSD2 in human placental trophoblasts. Mechanically, LPS promoted physical interaction between NF-κB p65 and PPARγ in the cytoplasm and nucleus of placental trophoblasts. Finally, pretreatment with rosiglitazone, a PPARγ agonist, partially alleviated LPS-induced reduction of fetal weight and crown-rump length. Taken together, these results suggest that LPS downregulates 11ß-HSD2 through suppressing PPARγ in placental trophoblasts. Placental 11ß-HSD2 downregulation may contribute partially to LPS-induced fetal IUGR.


Assuntos
11-beta-Hidroxiesteroide Desidrogenases/genética , Lipopolissacarídeos/toxicidade , PPAR gama/antagonistas & inibidores , Placenta/efeitos dos fármacos , Trofoblastos/efeitos dos fármacos , Transporte Ativo do Núcleo Celular , Animais , Células Cultivadas , Regulação para Baixo , Feminino , Retardo do Crescimento Fetal/induzido quimicamente , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , PPAR gama/fisiologia , Placenta/enzimologia , Gravidez , Rosiglitazona/farmacologia , Fator de Transcrição RelA/antagonistas & inibidores , Fator de Transcrição RelA/fisiologia , Trofoblastos/enzimologia
7.
J Lipid Res ; 60(9): 1535-1546, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31273032

RESUMO

Oxysterols previously were considered intermediates of bile acid and steroid hormone biosynthetic pathways. However, recent research has emphasized the roles of oxysterols in essential physiologic processes and in various diseases. Despite these discoveries, the metabolic pathways leading to the different oxysterols are still largely unknown and the biosynthetic origin of several oxysterols remains unidentified. Earlier studies demonstrated that the glucocorticoid metabolizing enzymes, 11ß-hydroxysteroid dehydrogenase (11ß-HSD) types 1 and 2, interconvert 7-ketocholesterol (7kC) and 7ß-hydroxycholesterol (7ßOHC). We examined the role of 11ß-HSDs in the enzymatic control of the intracellular availability of 7ß,27-dihydroxycholesterol (7ß27OHC), a retinoid-related orphan receptor γ (RORγ) ligand. We used microsomal preparations of cells expressing recombinant 11ß-HSD1 and 11ß-HSD2 to assess whether 7ß27OHC and 7-keto,27-hydroxycholesterol (7k27OHC) are substrates of these enzymes. Binding of 7ß27OHC and 7k27OHC to 11ß-HSDs was studied by molecular modeling. To our knowledge, the stereospecific oxoreduction of 7k27OHC to 7ß27OHC by human 11ß-HSD1 and the reverse oxidation reaction of 7ß27OHC to 7k27OHC by human 11ß-HSD2 were demonstrated for the first time. Apparent enzyme affinities of 11ß-HSDs for these novel substrates were equal to or higher than those of the glucocorticoids. This is supported by the fact that 7k27OHC and 7ß27OHC are potent inhibitors of the 11ß-HSD1-dependent oxoreduction of cortisone and the 11ß-HSD2-dependent oxidation of cortisol, respectively. Furthermore, molecular docking calculations explained stereospecific enzyme activities. Finally, using an inducible RORγ reporter system, we showed that 11ß-HSD1 and 11ß-HSD2 controlled RORγ activity. These findings revealed a novel glucocorticoid-independent prereceptor regulation mechanism by 11ß-HSDs that warrants further investigation.


Assuntos
11-beta-Hidroxiesteroide Desidrogenases/metabolismo , Receptores Nucleares Órfãos/metabolismo , Receptores de Mineralocorticoides/metabolismo , 11-beta-Hidroxiesteroide Desidrogenases/genética , Linhagem Celular , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Glucocorticoides/metabolismo , Humanos , Cinética , Simulação de Acoplamento Molecular , Oxisteróis/metabolismo , Espectrometria de Massas em Tandem
8.
Microbes Infect ; 21(7): 287-295, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30735720

RESUMO

Osteoarticular brucellosis is the most frequent complication of active disease. A large amount of cells in bone are osteocytes. Since bone remodeling process is regulated by hormones we sought to study the effect of cortisol and DHEA in Brucella abortus-infected osteocytes. Cortisol treatment inhibited the expression of IL-6, TNF-α, MMP-2 and RANKL in B. abortus-infected osteocytes. DHEA could reverse the inhibitory effect of cortisol on MMP-2 production. B. abortus infection inhibited connexin 43 (Cx43) expression in osteocytes. This expression was increased when cortisol was incorporated during the infection and DHEA treatment partially reversed the effect of cortisol. Osteocytes-infected with B. abortus induced osteoclast's differentiation. Yet, the presence of cortisol, but not DHEA, during osteocyte infection inhibited osteoclastogenesis. Glucocorticoid receptor (GR) is implicated in the signaling of cortisol. Infection with B. abortus was able to increase GRα/ß ratio. Levels of intracellular cortisol are not only dependent on GR expression but also a result of the activity of the isoenzymes 11ß-hydroxysteroid dehydrogenase (11ß-HSD)-1 (cortisone to cortisol conversion), 11ß-HSD2 (cortisol to cortisone conversion). B. abortus infection increased 11ß-HSD 1/2 ratio and cortisone mimicked the effect of cortisol. Our results indicated that cortisol and DHEA could modulate osteocyte responses during B. abortus infection.


Assuntos
Brucella abortus/fisiologia , Brucelose/patologia , Osteócitos/microbiologia , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo , 11-beta-Hidroxiesteroide Desidrogenases/genética , Animais , Brucella abortus/crescimento & desenvolvimento , Brucella abortus/metabolismo , Brucelose/metabolismo , Células Cultivadas , Conexina 43/metabolismo , Cortisona/farmacologia , Meios de Cultivo Condicionados/farmacologia , Citocinas/metabolismo , Desidroepiandrosterona/farmacologia , Hidrocortisona/metabolismo , Hidrocortisona/farmacologia , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Viabilidade Microbiana , Osteócitos/citologia , Osteócitos/efeitos dos fármacos , Osteócitos/metabolismo , Osteogênese/efeitos dos fármacos , Osteoprotegerina/antagonistas & inibidores , Receptores de Glucocorticoides/genética , Transdução de Sinais
9.
FEBS J ; 285(21): 3993-4004, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30153376

RESUMO

Hexose-6-phosphate dehydrogenase (H6PD) is thought to be the major source of NADPH within the endoplasmic reticulum (ER), determining 11ß-hydroxysteroid dehydrogenase 1 (11ß-HSD1) reaction direction to convert inert 11-oxo- to potent 11ß-hydroxyglucocorticoids. Here, we tested the hypothesis whether H6pd knock-out (KO) in primary murine bone marrow-derived macrophages results in a switch from 11ß-HSD1 oxoreduction to dehydrogenation, thereby inactivating glucocorticoids (GC) and affecting macrophage phenotypic activation as well as causing a more aggressive M1 macrophage phenotype. H6pdKO did not lead to major disturbances of macrophage activation state, although a slightly more pronounced M1 phenotype was observed with enhanced proinflammatory cytokine release, an effect explained by the decreased 11ß-HSD1-dependent GC activation. Unexpectedly, ablation of H6pd did not switch 11ß-HSD1 reaction direction. A moderately decreased 11ß-HSD1 oxoreduction activity by 40-50% was observed in H6pdKO M1 macrophages but dehydrogenation activity was undetectable, providing strong evidence for the existence of an alternative source of NADPH in the ER. H6pdKO M1 activated macrophages showed decreased phagocytic activity, most likely a result of the reduced 11ß-HSD1-dependent GC activation. Other general macrophage functions reported to be influenced by GC, such as nitrite production and cholesterol efflux, were altered negligibly or not at all. Importantly, assessment of energy metabolism using an extracellular flux analyzer and lactate measurements revealed reduced overall glucose consumption in H6pdKO M1 activated macrophages, an effect that was GC independent. The GC-independent influence of H6PD on energy metabolism and the characterization of the alternative source of NADPH in the ER warrant further investigations. ENZYMES: 11ß-HSD1, EC 1.1.1.146; H6PD, EC 1.1.1.47.


Assuntos
11-beta-Hidroxiesteroide Desidrogenases/metabolismo , Desidrogenases de Carboidrato/fisiologia , Glucocorticoides/metabolismo , Glucose/metabolismo , Ativação de Macrófagos , 11-beta-Hidroxiesteroide Desidrogenases/genética , Animais , Células Cultivadas , Retículo Endoplasmático/metabolismo , Metabolismo Energético , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADP/metabolismo , Oxirredução
10.
Int J Mol Sci ; 18(10)2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-29064428

RESUMO

Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and inflammatory systems is a consistent finding in patients with Major Depressive Disorder (MDD). Cortisol is often assessed by measurement of the cortisol awakening response (CAR) and/or diurnal cortisol levels. Some methods of cortisol measurement overestimate cortisol concentration due to detection of other glucocorticoids including the relatively inert cortisone, therefore this study aimed to assess the presence of both cortisol and cortisone, and the cortisol-cortisone catalyzing enzyme 11ß-hydroxysteroiddehydrogenase type 1 (11ß-HSD1), in depressed patients and controls. Because the HPA axis is known to regulate the body's immune system, relationships between measures of cytokines and cortisol were also assessed. Saliva samples were collected from 57 MDD patients and 40 healthy controls at five post-wakening time points (0, +30, +60, +720 and +750 min). Glucocorticoid concentrations were measured by liquid chromatography mass spectrometry. Whole blood mRNA expression of several inflammatory markers was measured by quantitative polymerase chain reaction. This study replicated the common finding of elevated morning cortisol and reduced CAR reactivity in MDD and found no differences in cortisone or 11ß-HSD1 mRNA measures. There was a negative association between interleukin 1-ß (IL-1ß) mRNA and morning cortisol reactivity within the depressed group, indicating that dysregulation of the HPA axis and immune system may be interconnected.


Assuntos
Biomarcadores/metabolismo , Transtorno Depressivo Maior/patologia , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , 11-beta-Hidroxiesteroide Desidrogenases/genética , 11-beta-Hidroxiesteroide Desidrogenases/metabolismo , Adulto , Área Sob a Curva , Estudos de Casos e Controles , Cromatografia Líquida de Alta Pressão , Citocinas/genética , Citocinas/metabolismo , Transtorno Depressivo Maior/metabolismo , Feminino , Expressão Gênica , Humanos , Hidrocortisona/análise , Hidrocortisona/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Masculino , Espectrometria de Massas , RNA Mensageiro/metabolismo , Curva ROC , Saliva/metabolismo , Adulto Jovem
11.
Artigo em Inglês | MEDLINE | ID: mdl-29073307

RESUMO

INTRODUCTION: Inactivating mutations in the enzyme hexose-6-phosphate dehydrogenase (H6PDH), the enzyme responsible for NADPH generation playing critical role in 11-hydroxysteroid dehydrogenase type 1 (11b-HSD1) activity, cause apparent cortisone reductase deficiency (ACRD). It leads to increased metabolic clearance rate of cortisol due to a defect in cortisone to cortisol conversion by 11b-HSD1. We want to analyse the process of the disease, efficacy of long-lasting treatment with glucocorticoids throughout childhood and adolescence in only male patient with ACRD. CASE PRESENTATION: A 23 year-old male patient was diagnosed with ACRD at the age of 7 years. The clinical manifestation of ACRD was presented by precocious pubarche. His bone age was assessed as 11.5 years old. Blood tests indicated increased the plasma androgen, with elevated 17-hydroxyprogesterone concentration. A steroid profile analysis of a 24-h urine collection showed extremely reduced THF + allo-THF/THE ratio - 0.021 (normal range: 0.7-1.2). Two months of hydrocortisone therapy was ineffective and dexamethasone was administered in initial dose of 0.375 mg/24 h. Next dosage beetwen 0.125 mg/24h and 0.375 mg/24h has been changed depending on the patient's results of laboratory tests and condition. Control laboratory studies indicated suppression of excess adrenal androgen synthesis, but we never got the THF + allo-THF/THE ratio in normal values. He did not develop any serious side effects, although dexamethasone is the most potent adrenal suppression drug. CONCLUSIONS: Hydrocortisone treatment is ineffective in ACRD patients because it was rapidly metabolized to cortisone. We have found the balance between the dexamethasone treatment effects of adrenal suppression and the achievement of full height potential considering the condition of our patient.


Assuntos
11-beta-Hidroxiesteroide Desidrogenases/deficiência , Transtornos 46, XX do Desenvolvimento Sexual/dietoterapia , Transtornos 46, XX do Desenvolvimento Sexual/genética , Corticosteroides/uso terapêutico , Desidrogenases de Carboidrato/genética , Dexametasona/uso terapêutico , Hirsutismo/congênito , Receptores de Glucocorticoides/uso terapêutico , Erros Inatos do Metabolismo de Esteroides/dietoterapia , Erros Inatos do Metabolismo de Esteroides/genética , 11-beta-Hidroxiesteroide Desidrogenases/genética , Criança , Seguimentos , Hirsutismo/dietoterapia , Hirsutismo/genética , Humanos , Masculino , Mutação , Adulto Jovem
12.
PLoS One ; 12(9): e0181185, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28949968

RESUMO

Intrauterine growth restriction (IUGR) induced by placental restriction (PR) in the sheep negatively impacts lung and pulmonary surfactant development during fetal life. Using a sheep model of low birth weight (LBW), we found that there was an increase in mRNA expression of surfactant protein (SP)-A, -B and -C in the lung of LBW lambs but no difference in the protein expression of SP-A or -B. LBW also resulted in increased lysosome-associated membrane glycoprotein (LAMP)-3 mRNA expression, which may indicate an increase in either the density of type II Alveolar epithelial cells (AEC) or maturity of type II AECs. Although there was an increase in glucocorticoid receptor (GR) and 11ß-hydroxysteroid dehydrogenase (11ßHSD)-1 mRNA expression in the lung of LBW lambs, we found no change in the protein expression of these factors, suggesting that the increase in SP mRNA expression is not mediated by increased GC signalling in the lung. The increase in SP mRNA expression may, in part, be mediated by persistent alterations in hypoxia signalling as there was an increase in lung HIF-2α mRNA expression in the LBW lamb. The changes in the hypoxia signalling pathway that persist within the lung after birth may be involved in maintaining SP production in the LBW lamb.


Assuntos
Recém-Nascido de Baixo Peso , Pulmão/metabolismo , Proteína A Associada a Surfactante Pulmonar/metabolismo , Proteína B Associada a Surfactante Pulmonar/metabolismo , 11-beta-Hidroxiesteroide Desidrogenases/genética , 11-beta-Hidroxiesteroide Desidrogenases/metabolismo , Animais , Peso Corporal , Ensaio de Imunoadsorção Enzimática , Feminino , Proteínas de Membrana Lisossomal/genética , Proteínas de Membrana Lisossomal/metabolismo , Tamanho do Órgão , Proteína A Associada a Surfactante Pulmonar/genética , Proteína B Associada a Surfactante Pulmonar/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Ovinos
13.
Biochem Biophys Res Commun ; 490(4): 1399-1406, 2017 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-28698139

RESUMO

The aim of the present study was to confirm the role of 11ß-hydroxysteroid dehydrogenases type 2(11ß-HSD-2) in steroid induced osteonecrosis of the femoral head(SANFH). We cultured mouse bone-like cells (MLO-Y4) and mouse osteoblast-like cells (MC3T3-E1). After overexpressed 11ß-HSD-2 successfully, we induced cell apoptosis by dexamethasone (DXM). The level of cell apoptosis, the expression of Bcl-2 in MLO-Y4 cells and the expression of Fas and caspase8 in MC3T3-E1 cells were detected. Then, we constructed 11ß-HSD-2 siRNA plasmid and represented it on MLO-Y4/MC3T3-E1 Cells, to down-regulate the 11ß-HSD-2 expression. After that, we used dexamethasone to induce cell apoptosis. The level of cell apoptosis, the expression of Bcl-2 in MLO-Y4 cells and the expression of Fas and caspase8 in MC3T3-E1 cells were detected again. In the overexpression model of cells, we found that the amount of cell apoptosis, the expression of Fas and caspase8 in MC3T3-E1 cells are lower than that of control groups. The amount of cell apoptosis, the expression of Fas and caspase8 in MC3T3-E1 cells were more than before when we reduced the expression of 11ß-HSD-2. In our study, we concluded that 11ß-HSD-2 plays an important role in the development of bone or osteoblast cell apoptosis, and the decreased expression of 11ß-HSD-2 may aggravate steroid induced bone/osteoblast cell apoptosis.


Assuntos
11-beta-Hidroxiesteroide Desidrogenases/genética , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Osteoblastos/efeitos dos fármacos , Osteócitos/efeitos dos fármacos , 11-beta-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , 11-beta-Hidroxiesteroide Desidrogenases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Caspase 8/genética , Caspase 8/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Regulação da Expressão Gênica , Camundongos , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteócitos/citologia , Osteócitos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Receptor fas/genética , Receptor fas/metabolismo
14.
Steroids ; 124: 60-66, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28502862

RESUMO

Small for gestational age infants have greater risk of developing metabolic diseases in adult life. It has been suggested that low birth weight may result from glucocorticoid excess in utero, a key mechanism in fetal programming. The placental enzyme 11-beta hydroxysteroid dehydrogenase type 2 (11ß-HSD2, HSD11B2 gene) acts as a barrier protecting the fetus from maternal corticosteroid deleterious effects. Low placental 11ß-HSD2 transcription and activity have been associated with low birth weight, yet the mechanism regulating its protein expression is not fully understood. In the present study we aimed to analyze 11ß-HSD2 protein expression in placentas of adequate and small for gestational age (AGA and SGA, respectively) newborns from healthy mothers, and to explore whether 11ß-HSD2 protein expression could be modulated by DNA methylation. 11ß-HSD2 protein levels were measured by western blot in placental biopsies from term AGA and SGA infants (n=10 per group). DNA methylation was profiled both globally and in the HSD11B2 promoter by liquid chromatography with UV detection and methylation-specific melting curve analysis, respectively. We found lower placental 11ß-HSD2 protein expression and higher HSD11B2 promoter methylation in SGA compared to AGA. Promoter methylation was inversely correlated with both protein expression and, importantly, birth weight. No changes in global placental methylation were found. In conclusion, lower 11ß-HSD2 protein expression is associated with higher HSD11B2 promoter methylation, correlating with birth weight in healthy pregnancy. Our data support the role of 11ß-HSD2 in determining birth weight, providing evidence of its regulation by epigenetic mechanisms, which may affect postnatal metabolic disease risk.


Assuntos
11-beta-Hidroxiesteroide Desidrogenases/genética , Metilação de DNA , Regulação da Expressão Gênica/genética , Recém-Nascido Pequeno para a Idade Gestacional/metabolismo , Placenta/metabolismo , Regiões Promotoras Genéticas/genética , Adulto , Feminino , Humanos , Recém-Nascido , Gravidez , Adulto Jovem
15.
J Physiol ; 595(13): 4329-4350, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28318025

RESUMO

KEY POINTS: Chronic fetal hypoxaemia is a common pregnancy complication associated with intrauterine growth restriction that may influence respiratory outcome at birth. We investigated the effect of maternal chronic hypoxia for a month in late gestation on signalling pathways regulating fetal lung maturation and the transition to air-breathing at birth using isobaric hypoxic chambers without alterations to maternal food intake. Maternal chronic hypoxia in late gestation increases fetal lung expression of genes regulating hypoxia signalling, lung liquid reabsorption and surfactant maturation, which may be an adaptive response in preparation for the successful transition to air-breathing at birth. In contrast to other models of chronic fetal hypoxaemia, late gestation onset fetal hypoxaemia promotes molecular regulation of fetal lung maturation. This suggests a differential effect of timing and duration of fetal chronic hypoxaemia on fetal lung maturation, which supports the heterogeneity observed in respiratory outcomes in newborns following exposure to chronic hypoxaemia in utero. ABSTRACT: Chronic fetal hypoxaemia is a common pregnancy complication that may arise from maternal, placental and/or fetal factors. Respiratory outcome of the infant at birth likely depends on the duration, timing and severity of the hypoxaemic insult. We have isolated the effect of maternal chronic hypoxia (MCH) for a month in late gestation on fetal lung development. Pregnant ewes were exposed to normoxia (21% O2 ) or hypoxia (10% O2 ) from 105 to 138 days of gestation (term ∼145 days). At 138 days, gene expression in fetal lung tissue was determined by quantitative RT-PCR. Cortisol concentrations were determined in fetal plasma and lung tissue. Numerical density of surfactant protein positive cells was determined by immunohistochemistry. MCH reduced maternal PaO2 (106 ± 2.9 vs. 47 ± 2.8 mmHg) and fetal body weight (4.0 ± 0.4 vs. 3.2 ± 0.9 kg). MCH increased fetal lung expression of the anti-oxidant marker CAT and decreased expression of the pro-oxidant marker NOX-4. MCH increased expression of genes regulating hypoxia signalling and feedback (HIF-3α, KDM3A, SLC2A1, EGLN-3). There was no effect of MCH on fetal plasma/lung tissue cortisol concentrations, nor genes regulating glucocorticoid signalling (HSD11B-1, HSD11B-2, NR3C1, NR3C2). MCH increased expression of genes regulating sodium (SCNN1-B, ATP1-A1, ATP1-B1) and water (AQP-4) movement in the fetal lung. MCH promoted surfactant maturation (SFTP-B, SFTP-D, ABCA3) at the molecular level, but did not alter the numerical density of surfactant positive cells in lung tissue. MCH in late gestation promotes molecular maturation of the fetal lung, which may be an adaptive response in preparation for the successful transition to air-breathing at birth.


Assuntos
Hipóxia Fetal/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Pulmão/metabolismo , Proteínas Associadas a Surfactantes Pulmonares/genética , 11-beta-Hidroxiesteroide Desidrogenases/genética , 11-beta-Hidroxiesteroide Desidrogenases/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Feminino , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Pulmão/embriologia , Pulmão/fisiologia , Masculino , Gravidez , Proteínas Associadas a Surfactantes Pulmonares/metabolismo , Ovinos
16.
J Steroid Biochem Mol Biol ; 165(Pt A): 145-150, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26892095

RESUMO

Apparent mineralocorticoid excess (AME) is a genetic disorder causing severe hypertension, hypokalemia, and hyporeninemic hypoaldosteronism owing to deficient 11 beta-hydroxysteroid dehydrogenase type-2 (11ßHSD2) enzyme activity. The 11ßHSD2 enzyme confers mineralocorticoid receptor specificity for aldosterone by converting cortisol to its inactive metabolite, cortisone and inactivating the cortisol-mineralocorticoid receptor complex. The 20year follow-up of a consanguineous Iranian family with three sibs affected with AME shows the successes and pitfalls of medical therapy with spironolactone. The three sibs, (female, male, female) were diagnosed at the ages of 14, 11, and 4 years, respectively. At diagnosis, hypertensive retinopathy and left ventricular hypertrophy were present in the eldest female and retinopathy was noted in the male sib. Spironolactone treatment resulted in decreased blood pressure and rise in serum potassium levels. The older female, age 36, developed reduced left ventricular function with mitral and tricuspid regurgitation and renal failure after her second pregnancy. She was treated with renal transplantation resulting in cure of AME with decreased blood pressure and weaning from antihypertensives. Her younger sibs, age 34 and 26, do not have end organ damage. Early and vigilant treatment improves morbidity in patients with AME. Mineralocorticoid receptor antagonists normalize blood pressure, correct hypokalemia and reduce hypertensive end-organ damage in patients with AME. Low dose dexamethasone can be considered, though the response may be variable. Future directions of therapy include selective mineralocorticoid antagonists.


Assuntos
11-beta-Hidroxiesteroide Desidrogenases/deficiência , 11-beta-Hidroxiesteroide Desidrogenases/genética , Hipertensão/genética , Hipertensão/terapia , Síndrome de Excesso Aparente de Minerolocorticoides/genética , Síndrome de Excesso Aparente de Minerolocorticoides/terapia , Adolescente , Adulto , Pressão Sanguínea , Criança , Pré-Escolar , Análise Mutacional de DNA , Éxons , Saúde da Família , Feminino , Humanos , Hipertensão/metabolismo , Irã (Geográfico) , Transplante de Rim , Masculino , Síndrome de Excesso Aparente de Minerolocorticoides/metabolismo , Mineralocorticoides/metabolismo , Mutação , Linhagem , Polimorfismo Genético , Gravidez , Insuficiência Renal/genética , Insuficiência Renal/terapia , Renina/metabolismo , Espironolactona/química , Espironolactona/uso terapêutico , Síndrome de Excesso Aparente de Minerolocorticoides
17.
Semin Immunopathol ; 38(6): 739-763, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27465226

RESUMO

Endogenous levels of glucocorticoids rise during pregnancy to warrant development and maturation of the fetal organs close to birth. However, during most of the gestation, the fetus is protected from excessive biologically active endogenous glucocorticoids by placental and fetal expression of 11ß-hydroxysteroid dehydrogenase 2 (11ß-HSD2). Maternal stress, which may overwhelm placental 11ß-HSD2 activity with high glucocorticoid levels, or administration of synthetic glucocorticoids to improve the survival chances of the premature newborn, are associated to postnatal increased risk for immune diseases. Fetal exposure to excessive glucocorticoids may underlie this altered postnatal immunity. Here, we revise the role that placental and fetal 11ß-HSD2, fetal glucocorticoid exposure, and programming of the offspring's the hypothalamic-pituitary-adrenal (HPA) axis play on concerted steps in immune fetal development. We could identify gaps in knowledge about glucocorticoid-induced programming of immune diseases. Finally, based on current evidence about glucocorticoid and HPA axis-mediated immune regulation, we hypothesize on mechanisms that could drive the enhanced risk for atopies, infections, and type I diabetes in offspring that were prenatally exposed to glucocorticoids.


Assuntos
Glucocorticoides/administração & dosagem , Glucocorticoides/metabolismo , Imunidade/efeitos dos fármacos , 11-beta-Hidroxiesteroide Desidrogenases/genética , 11-beta-Hidroxiesteroide Desidrogenases/metabolismo , Feminino , Feto/efeitos dos fármacos , Feto/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glucocorticoides/efeitos adversos , Humanos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Imunitário/efeitos dos fármacos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/metabolismo , Placenta/metabolismo , Gravidez , Cuidado Pré-Natal , Efeitos Tardios da Exposição Pré-Natal , Fenômenos Reprodutivos Fisiológicos
18.
J Steroid Biochem Mol Biol ; 158: 90-103, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26772480

RESUMO

In fishes, the expression of steroidogenic enzyme genes and their related transcription factors (TFs) are critical for the regulation of steroidogenesis and gonadal development. 11-KT is the potent androgen and hence, 11ß-hsd, enzyme involved in 11-KT production is important. Regulation of 11ß-hsd gene was never studied in any fishes. At first 11ß-hsd was cloned and recombinant protein was tested for enzyme activity prior to expression and promoter motif analysis. Expression changes revealed stage- and sex-dependent increase in the ontogenic studies. Further, 11ß-hsd expression was higher during spawning phase of reproductive cycle and was found to be gonadotropin inducible both in vivo and in vitro. ∼2kb of 5' upstream region of 11ß-hsd, was cloned from catfish genomic DNA library and in silico promoter analysis revealed putative TF binding sites such as Sox3, Wt1, Pax2, Dmrt1 and Ad4BP/SF-1. Luciferase reporter assay using the sequential deletion constructs in human embryonic kidney and Chinese hamster ovary cells revealed considerable promoter activity of the constructs containing Sox3, but not with other motifs largely. Site-directed mutagenesis, Sox3 over expression, electrophoretic mobility shift and chromatin immunoprecipitation assays further substantiated the binding of Sox3 to its corresponding cis-acting element in the upstream promoter motif of 11ß-hsd. This is the first report to show that Sox3 binds to the 11ß-hsd gene promoter and transactivates to regulate male reproduction in a teleost.


Assuntos
11-beta-Hidroxiesteroide Desidrogenases/metabolismo , Peixes-Gato/metabolismo , Proteínas de Peixes/metabolismo , Regiões Promotoras Genéticas , Reprodução/fisiologia , Fatores de Transcrição SOXB1/metabolismo , 11-beta-Hidroxiesteroide Desidrogenases/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Células CHO , Peixes-Gato/genética , Cricetulus , DNA Complementar/genética , Feminino , Proteínas de Peixes/genética , Células HEK293 , Humanos , Masculino , Dados de Sequência Molecular , Ovário/metabolismo , Filogenia , Desenvolvimento Sexual/fisiologia , Testículo/metabolismo , Transcrição Gênica
19.
Int J Mol Sci ; 16(11): 27482-96, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26593902

RESUMO

High intrauterine cortisol exposure can inhibit fetal growth and have programming effects for the child's subsequent stress reactivity. Placental 11beta-hydroxysteroid dehydrogenase (11ß-HSD2) limits the amount of maternal cortisol transferred to the fetus. However, the relationship between maternal psychopathology and 11ß-HSD2 remains poorly defined. This study examined the effect of maternal depressive disorder, antidepressant use and symptoms of depression and anxiety in pregnancy on placental 11ß-HSD2 gene (HSD11B2) expression. Drawing on data from the Mercy Pregnancy and Emotional Wellbeing Study, placental HSD11B2 expression was compared among 33 pregnant women, who were selected based on membership of three groups; depressed (untreated), taking antidepressants and controls. Furthermore, associations between placental HSD11B2 and scores on the State-Trait Anxiety Inventory (STAI) and Edinburgh Postnatal Depression Scale (EPDS) during 12-18 and 28-34 weeks gestation were examined. Findings revealed negative correlations between HSD11B2 and both the EPDS and STAI (r = -0.11 to -0.28), with associations being particularly prominent during late gestation. Depressed and antidepressant exposed groups also displayed markedly lower placental HSD11B2 expression levels than controls. These findings suggest that maternal depression and anxiety may impact on fetal programming by down-regulating HSD11B2, and antidepressant treatment alone is unlikely to protect against this effect.


Assuntos
11-beta-Hidroxiesteroide Desidrogenases/metabolismo , Exposição Materna , Saúde Mental , Placenta/metabolismo , 11-beta-Hidroxiesteroide Desidrogenases/genética , Adulto , Ansiedade/diagnóstico , Ansiedade/genética , Ansiedade/metabolismo , Depressão/diagnóstico , Depressão/genética , Depressão/metabolismo , Feminino , Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Humanos , Gravidez , Fatores de Risco
20.
Neuroimmunomodulation ; 22(1-2): 40-5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25227721

RESUMO

The tissue availability of active glucocorticoids (cortisol in humans) depends on their rate of synthesis from cholesterol, downstream metabolism, excretion and interconversion. The latter is mediated by the 11ß-hydroxysteroid dehydrogenases (11ßHSDs). In this review, we summarize the features of the two isoenzymes, 11ßHSD1 and 11ßHSD2, and current available experimental data related to 11ßHSDs, which are relevant in the context of synovial cells in rheumatoid arthritis (RA). We conclude that due to complex feedback mechanisms inherent to the hypothalamic-pituitary-adrenal axis, currently available transgenic animal models cannot display the full potential otherwise inherent to the techniques. Studies with tissue explants, mixed synovial cell preparations, cell lines derived from synovial cells, and related primary cells or established cell lines indicate that there are relatively clear differences between the two isoenzymes. 11ßHSD1 is expressed primarily in fibroblasts and osteoblasts, and may be responsible for fibroblast survival and aid in the resolution of inflammation, but it is also involved in bone damage. 11ßHSD2 is expressed primarily in macrophages and lymphocytes, and may be responsible for their survival, suggesting that it is critical in chronic inflammation. The situation in synovial tissue would allow 11ßHSD2-expressing cells to tap the energy resources of 11ßHSD1-expressing cells. The overall properties of this local glucocorticoid interconversion system might limit therapeutic use of glucocorticoids in RA. © 2014 S. Karger AG, Basel.


Assuntos
11-beta-Hidroxiesteroide Desidrogenases/metabolismo , Artrite Reumatoide/patologia , Bolsa Sinovial/efeitos dos fármacos , Glucocorticoides/farmacologia , 11-beta-Hidroxiesteroide Desidrogenases/genética , Animais , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/enzimologia , Artrite Reumatoide/genética , Modelos Animais de Doenças , Glucocorticoides/uso terapêutico , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...