Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 663
Filtrar
1.
BMC Pulm Med ; 24(1): 473, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39334033

RESUMO

BACKGROUND: The expression of 2'-5'-oligoadenylate synthetase 1 (OAS1) in lung cancer has been validated in numerous studies. However, the prognostic value of OAS1 expression in lung adenocarcinoma (LUAD) still remains unclear. This study aimed to reveal the prognostic value and associated molecular mechanisms of OAS1 expression in LUAD. METHODS: Gene expression data of LUAD were extracted from online databases. Gene and protein expression levels of OAS1 in LUAD and normal samples were revealed, followed by prognostic analysis of OAS1. Next, we conducted a thorough bioinformatics analysis to examine the enrichment of key functional and biological signaling pathways and their correlation with the abundance of immune cells. The independent prognoses, drug responses, and PPI networks associated with OAS1 were analyzed. OAS1 expression was evaluated in LUAD tissues and cell lines. OAS1 was knocked down by siRNA transfection, followed by CCK8, colony formation, and wound-healing assays. RESULTS: Gene and protein expression levels of OAS1 in LUAD samples were significantly higher than those in normal samples (all P < 0.05). OAS1 stimulation were correlated with poor prognosis, lymph node metastasis, advanced tumor stage, immune cells, and immunomodulators. The prognostic value of OAS1 in LUAD was determined via univariate regression analysis. In total, 10 OAS1-associated genes were revealed via PPI analysis of OAS1, which were primarily enriched in functions, such as the negative regulation of viral genome replication. Transcriptional analysis revealed several OAS1-related interactions, including STAT3-miR-21-OAS1. STAT3 was overexpressed and miR-21 was expressed in LUAD cells. Upregulation of OAS1 protein was determined in LUAD tissues and cell lines. OAS1 knockdown significantly reduced proliferation and migration of LUAD cells. CONCLUSIONS: OAS1 overexpression influenced survival and immune cell infiltration in patients with LUAD, which might be a potential prognostic gene for LUAD. Moreover, OAS1 contributed to LUAD progression by participating in STAT3-miR-21-OAS1 axis.


Assuntos
2',5'-Oligoadenilato Sintetase , Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , 2',5'-Oligoadenilato Sintetase/genética , 2',5'-Oligoadenilato Sintetase/metabolismo , Prognóstico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Feminino , Masculino , Proliferação de Células/genética , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Biologia Computacional , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Pessoa de Meia-Idade
2.
Sci Rep ; 14(1): 21873, 2024 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300174

RESUMO

Following an injury, the liver embarks on a process that drives the accumulation and reformation of the extracellular matrix, leading to hepatic fibrosis. Type I interferons (IFNs), including IFN-α and IFN-ß, play a crucial role in averting chronic liver injury through the activation of IFN-stimulated genes (ISGs), which are instrumental in sculpting adaptive immunity. The role of 2'-5'-oligoadenylate synthase-like protein 1 (OASL1), an antiviral ISG, in the context of liver fibrosis remains to be elucidated. To elicit liver fibrosis, a diet containing 0.1% diethoxycarbonyl-1,4-dihydrocollidine (DDC) and carbon tetrachloride (CCl4) were employed to induce cholestatic- and hepatotoxin-mediated liver fibrosis, respectively. Histological analyses of both models revealed that OASL1-/- mice exhibited reduced liver damage and, consequently, expressed lower levels of fibrotic mediators, notably α-smooth muscle actin. OASL1-/- mice demonstrated significantly elevated IFN-α and IFN-ß mRNA levels, regulated by the IFN regulatory factor 7 (IRF7). Additionally, OASL1-/- ameliorated chronic liver fibrosis through the modulation of nuclear factor-κB (NF-κB) signaling. The effect of OASL1 on type I IFN production in acute liver damage was further explored and OASL1-/- mice consistently showed lower alanine transaminase levels and pro-inflammatory cytokines, but IFN-α and IFN-ß mRNA levels were upregulated, leading to amelioration of acute liver injury. Additionally, the study discovered that F4/80-positive cells were observed more frequently in OASL1-/- CCl4 acutely treated mice. This implies that there is a significant synergy in the function of macrophages and OASL1 deficiency. These results demonstrate that in instances of liver injury, OASL1 inhibits the production of type I IFN by modulating the NF-κB signaling pathway, thereby worsening disease.


Assuntos
2',5'-Oligoadenilato Sintetase , Tetracloreto de Carbono , Animais , Masculino , Camundongos , 2',5'-Oligoadenilato Sintetase/metabolismo , 2',5'-Oligoadenilato Sintetase/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/induzido quimicamente , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Piridinas , Transdução de Sinais
3.
Front Immunol ; 15: 1402951, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39286258

RESUMO

Background: OASL (Oligoadenylate Synthetase-Like), an interferon-induced protein in the OAS family, plays a significant role in anti-viral response. Studies have demonstrated its association with prognosis of certain tumors. However, the mechanism through which OASL affects tumors is unclear. A systemic pan-cancer study of OASL needs to be illustrated. Methods: Analysis of OASL expression across 33 tumors was conducted utilizing TCGA, GTEx and CPTAC databases. COX and Log-Rank regressions were employed to calculate the prognosis. We validated the impact of OASL on apoptosis, migration, and invasion in pancreatic cancer cell lines. Moreover, we employed seven algorithms in bulk data to investigate the association of OASL expression and immune cell infiltration within tumor immune microenvironment (TIME) and ultimately validated at single-cell transcriptome level. Results: We discovered elevated expression of OASL and its genetic heterogeneity in certain tumors, which link closely to prognosis. Validation experiments were conducted in PAAD and confirmed these findings. Additionally, OASL regulates immune checkpoint ligand such as programmed death ligand 1 (PD-L1), through IFN-γ/STAT1 and IL-6/JAK/STAT3 pathways in tumor cells. Meanwhile, OASL affects macrophages infiltration in TIME. By these mechanisms OASL could cause dysfunction of cytotoxic T lymphocytes (CTLs) in tumors. Discussion: Multi-omics analysis reveals OASL as a prognostic and immunological biomarker in pan-cancer.


Assuntos
Biomarcadores Tumorais , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Biomarcadores Tumorais/genética , Prognóstico , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Neoplasias/imunologia , Neoplasias/genética , 2',5'-Oligoadenilato Sintetase/genética , 2',5'-Oligoadenilato Sintetase/metabolismo , Interferons/metabolismo , Interferons/genética , Perfilação da Expressão Gênica , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Multiômica
4.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(8): 704-709, 2024 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-39215668

RESUMO

Objective To explore the effects of Myxovirus resistance protein A (MxA) on the Janus kinase/Signal transducer and activator of transcription (JAK/STAT) pathway in HepG2 cells. Methods HepG2 cells were transfected with the pcDNA3.1-Flag-MxA construct, and subsequent localization and expression of the MxA protein were detected through immunofluorescence cytochemistry. The presence of MxA protein was further confirmed by using Western blot analysis. Following transfection with MxA small interfering RNA (si-MxA) and subsequent treatment with alpha interferon (IFN-α), real-time fluorescent quantitative PCR was employed to measure the mRNA levels of myxovirus resistance protein A (MxA), protein kinase R (PKR), and oligoadenylate synthase (OAS). Western blot analysis was used to detect the protein expression of MxA, PKR, OAS, signal transducer and activator of transcription 1 (STAT1), phosphorylated STAT1 (pSTAT1), STAT2, phosphorylated STAT2 (p-STAT2) and interferon regulatory factor 9 (IRF9). Additionally, pcDNA3.1-Flag-MxA and pISRE-TA-luc were co-transfected into HepG2 and HepG2.2.15 cells, respectively, to assess the activity of the interferon-stimulated response element (ISRE) by using a luciferase activity assay. Results MxA protein was expressed in both the cytoplasm and nucleus of HepG2 cells, with higher expression levels in the cytoplasm than in the nucleus. Knocking down MxA expression in HepG2 cells did not affect the expression of STAT1, p-STAT1, STAT2, p-STAT2, and IRF9 proteins induced by IFN-α, but significantly reduced the expression of antiviral proteins PKR and OAS. Overexpression of MxA in HepG2 cells enhanced ISRE activity and increased the expression of PKR and OAS proteins, but this effect was inhibited in HepG2.2.15 cells. Conclusion MxA induces the expression of antiviral proteins by enhancing the activity of the JAK/STAT signaling pathway ISRE.


Assuntos
2',5'-Oligoadenilato Sintetase , Proteínas de Resistência a Myxovirus , Fator de Transcrição STAT1 , eIF-2 Quinase , Humanos , Células Hep G2 , Proteínas de Resistência a Myxovirus/genética , Proteínas de Resistência a Myxovirus/metabolismo , 2',5'-Oligoadenilato Sintetase/genética , 2',5'-Oligoadenilato Sintetase/metabolismo , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Interferon-alfa/farmacologia , Interferon-alfa/genética , Interferon-alfa/metabolismo , Elementos de Resposta/genética , Transdução de Sinais , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo , Interferons/genética , Interferons/metabolismo , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Regulação da Expressão Gênica
5.
EMBO J ; 43(18): 3876-3894, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39112803

RESUMO

The OAS-RNase L pathway is one of the oldest innate RNA sensing pathways that leads to interferon (IFN) signaling and cell death. OAS recognizes viral RNA and then activates RNase L, which subsequently cleaves both cellular and viral RNA, creating "processed RNA" as an endogenous ligand that further triggers RIG-I-like receptor signaling. However, the IFN response and antiviral activity of the OAS-RNase L pathway are weak compared to other RNA-sensing pathways. Here, we discover that the SKIV2L RNA exosome limits the antiviral capacity of the OAS-RNase L pathway. SKIV2L-deficient cells exhibit remarkably increased interferon responses to RNase L-processed RNA, resulting in heightened antiviral activity. The helicase activity of SKIV2L is indispensable for this function, acting downstream of RNase L. SKIV2L depletion increases the antiviral capacity of OAS-RNase L against RNA virus infection. Furthermore, SKIV2L loss exacerbates autoinflammation caused by human OAS1 gain-of-function mutations. Taken together, our results identify SKIV2L as a critical barrier to OAS-RNase L-mediated antiviral immunity that could be therapeutically targeted to enhance the activity of a basic antiviral pathway.


Assuntos
2',5'-Oligoadenilato Sintetase , Endorribonucleases , 2',5'-Oligoadenilato Sintetase/metabolismo , 2',5'-Oligoadenilato Sintetase/genética , Humanos , Endorribonucleases/metabolismo , Endorribonucleases/genética , RNA Helicases/metabolismo , RNA Helicases/genética , Animais , Imunidade Inata , Transdução de Sinais , Camundongos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/genética , RNA Viral/metabolismo , RNA Viral/genética , RNA Viral/imunologia , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/metabolismo , Células HEK293
6.
Immunity ; 57(8): 1721-1723, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39142270

RESUMO

The interferon-stimulated gene OAS1 has well-defined antiviral properties. In two recent issues of Immunity, Harioudh et al. describe a non-canonical function of OAS1 that selectively protects the translation of proteins involved in defense against viral or bacterial infections.


Assuntos
2',5'-Oligoadenilato Sintetase , Infecções Bacterianas , Viroses , 2',5'-Oligoadenilato Sintetase/metabolismo , 2',5'-Oligoadenilato Sintetase/genética , Infecções Bacterianas/imunologia , Humanos , Viroses/imunologia , Animais , Camundongos
7.
Viruses ; 16(8)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39205220

RESUMO

The first line of defense against invading pathogens usually relies on innate immune systems. In this context, the recognition of exogenous RNA structures is primordial to fight, notably, against RNA viruses. One of the most efficient immune response pathways is based on the sensing of RNA double helical motifs by the oligoadenylate synthase (OAS) proteins, which in turn triggers the activity of RNase L and, thus, cleaves cellular and viral RNA. In this contribution, by using long-range molecular dynamics simulations, complemented with enhanced sampling techniques, we elucidate the structural features leading to the activation of OAS by interaction with a model double-strand RNA oligomer mimicking a viral RNA. We characterize the allosteric regulation induced by the nucleic acid leading to the population of the active form of the protein. Furthermore, we also identify the free energy profile connected to the active vs. inactive conformational transitions in the presence and absence of RNA. Finally, the role of two RNA mutations, identified as able to downregulate OAS activation, in shaping the protein/nucleic acid interface and the conformational landscape of OAS is also analyzed.


Assuntos
2',5'-Oligoadenilato Sintetase , Endorribonucleases , Simulação de Dinâmica Molecular , RNA Viral , RNA Viral/metabolismo , RNA Viral/genética , 2',5'-Oligoadenilato Sintetase/metabolismo , 2',5'-Oligoadenilato Sintetase/genética , 2',5'-Oligoadenilato Sintetase/química , Endorribonucleases/metabolismo , Endorribonucleases/genética , Endorribonucleases/química , Imunidade Inata , Humanos , RNA de Cadeia Dupla/metabolismo , Regulação Alostérica , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Vírus de RNA/imunologia , Vírus de RNA/genética , Mutação
8.
J Med Virol ; 96(7): e29805, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39011773

RESUMO

Heterogeneous nuclear protein U (HNRNPU) plays a pivotal role in innate immunity by facilitating chromatin opening to activate immune genes during host defense against viral infection. However, the mechanism by which HNRNPU is involved in Hepatitis B virus (HBV) transcription regulation through mediating antiviral immunity remains unknown. Our study revealed a significant decrease in HNRNPU levels during HBV transcription, which depends on HBx-DDB1-mediated degradation. Overexpression of HNRNPU suppressed HBV transcription, while its knockdown effectively promoted viral transcription, indicating HNRNPU as a novel host restriction factor for HBV transcription. Mechanistically, HNRNPU inhibits HBV transcription by activating innate immunity through primarily the positive regulation of the interferon-stimulating factor 2'-5'-oligoadenylate synthetase 3, which mediates an ribonuclease L-dependent mechanism to enhance innate immune responses. This study offers new insights into the host immune regulation of HBV transcription and proposes potential targets for therapeutic intervention against HBV infection.


Assuntos
2',5'-Oligoadenilato Sintetase , Vírus da Hepatite B , Imunidade Inata , Transcrição Gênica , Humanos , Vírus da Hepatite B/imunologia , Vírus da Hepatite B/genética , 2',5'-Oligoadenilato Sintetase/genética , 2',5'-Oligoadenilato Sintetase/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/genética , Células Hep G2 , Hepatite B/imunologia , Hepatite B/virologia , Hepatite B/genética , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Virais Reguladoras e Acessórias/imunologia , Transativadores
9.
Immunity ; 57(8): 1812-1827.e7, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38955184

RESUMO

An important property of the host innate immune response during microbial infection is its ability to control the expression of antimicrobial effector proteins, but how this occurs post-transcriptionally is not well defined. Here, we describe a critical antibacterial role for the classic antiviral gene 2'-5'-oligoadenylate synthetase 1 (OAS1). Human OAS1 and its mouse ortholog, Oas1b, are induced by interferon-γ and protect against cytosolic bacterial pathogens such as Francisella novicida and Listeria monocytogenes in vitro and in vivo. Proteomic and transcriptomic analysis showed reduced IRF1 protein expression in OAS1-deficient cells. Mechanistically, OAS1 binds and localizes IRF1 mRNA to the rough endoplasmic reticulum (ER)-Golgi endomembranes, licensing effective translation of IRF1 mRNA without affecting its transcription or decay. OAS1-dependent translation of IRF1 leads to the enhanced expression of antibacterial effectors, such as GBPs, which restrict intracellular bacteria. These findings uncover a noncanonical function of OAS1 in antibacterial innate immunity.


Assuntos
2',5'-Oligoadenilato Sintetase , Imunidade Inata , Fator Regulador 1 de Interferon , 2',5'-Oligoadenilato Sintetase/metabolismo , 2',5'-Oligoadenilato Sintetase/genética , Fator Regulador 1 de Interferon/metabolismo , Fator Regulador 1 de Interferon/genética , Animais , Humanos , Camundongos , Biossíntese de Proteínas/imunologia , Listeria monocytogenes/imunologia , Camundongos Knockout , Camundongos Endogâmicos C57BL , Listeriose/imunologia , Interferon gama/metabolismo , Interferon gama/imunologia
10.
Vet Immunol Immunopathol ; 272: 110770, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735115

RESUMO

Interferon lambda (IFN-λ) is an important type III interferon triggered mainly by viral infection. IFN-λ binds to their heterodimeric receptors and signals through JAK-STAT pathways similar to type I IFN. In this study, we deduced the buffalo IFN-λ sequences through the polymerase chain reaction, and then studied IFN-λ's expression patterns in different tissues, and post induction with poly I:C and live MRSA using RT-qPCR. The full-length sequences of buffalo IFN-λ3, IFN-λ receptors, and a transcript variant of IFN-λ4 were determined. IFN-λ1 is identified as a pseudogene. Virus response elements and a recombination hotspot factor was observed in the regulatory region of IFN-λ. The IFN-λ3 expressed highest in lungs and monocytes but IFN-λ4 did not. The expression of Interferon Lambda Receptor 1 was tissue specific, while Interleukin 10 Receptor subunit beta was ubiquitous. Following poly I:C induction, IFN-λ3 expression was primarily observed in epithelial cells as opposed to fibroblasts, displaying cell type-dependent expression. The cytosolic RNA sensors were expressed highest in endometrial epithelial cells, whereas the endosomal receptor was higher in fibroblasts. 2',5'-oligoadenylate synthetase expressed higher in fibroblasts, myxoma resistance protein 1 and IFN-stimulated gene 56 in epithelial cells, displaying cell-specific antiviral response of the interferon stimulated genes (ISGs). The endometrial epithelial cells expressed IFN-λ3 after live S. aureus infection indicating its importance in bacterial infection. The induction of IFN-λ3 was S. aureus isolate specific at the same multiplicity of infection (MOI). This study elucidates the IFN-λ sequences, diverse expression patterns revealing tissue specificity, and specificity in response to poly I:C and bacterial stimuli, emphasising its crucial role in innate immune response modulation.


Assuntos
Búfalos , Interferons , Animais , Búfalos/imunologia , Búfalos/genética , Interferons/genética , Interferons/imunologia , Poli I-C/farmacologia , Perfilação da Expressão Gênica/veterinária , Filogenia , Interferon lambda , Sequência de Aminoácidos , Receptores de Interferon/genética , Receptores de Interferon/imunologia , Feminino , 2',5'-Oligoadenilato Sintetase/genética , 2',5'-Oligoadenilato Sintetase/metabolismo , Staphylococcus aureus/imunologia
11.
Sci Signal ; 17(837): eadi9844, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771918

RESUMO

Oligoadenylate synthetase 3 (OAS3) and ribonuclease L (RNase L) are components of a pathway that combats viral infection in mammals. Upon detection of viral double-stranded RNA (dsRNA), OAS3 synthesizes 2'-5'-oligo(A), which activates the RNase domain of RNase L by promoting the homodimerization and oligomerization of RNase L monomers. Activated RNase L rapidly degrades all cellular mRNAs, shutting off several cellular processes. We sought to understand the molecular mechanisms underlying the rapid activation of RNase L in response to viral infection. Through superresolution microscopy and live-cell imaging, we showed that OAS3 and RNase L concentrated into higher-order cytoplasmic complexes known as dsRNA-induced foci (dRIF) in response to dsRNA or infection with dengue virus, Zika virus, or West Nile virus. The concentration of OAS3 and RNase L at dRIF corresponded with the activation of RNase L-mediated RNA decay. We showed that dimerized/oligomerized RNase L concentrated in a liquid-like shell surrounding a core OAS3-dRIF structure and dynamically exchanged with the cytosol. These data establish that the condensation of dsRNA, OAS3, and RNase L into dRIF is a molecular switch that promotes the rapid activation of RNase L upon detection of dsRNA in mammalian cells.


Assuntos
2',5'-Oligoadenilato Sintetase , Endorribonucleases , RNA de Cadeia Dupla , Zika virus , Endorribonucleases/metabolismo , Endorribonucleases/genética , Endorribonucleases/química , Humanos , 2',5'-Oligoadenilato Sintetase/metabolismo , 2',5'-Oligoadenilato Sintetase/genética , 2',5'-Oligoadenilato Sintetase/química , RNA de Cadeia Dupla/metabolismo , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/genética , Zika virus/metabolismo , Animais , Vírus da Dengue/metabolismo , RNA Viral/metabolismo , RNA Viral/genética , Estabilidade de RNA , Vírus do Nilo Ocidental/metabolismo , Vírus do Nilo Ocidental/genética , Infecção por Zika virus/metabolismo , Infecção por Zika virus/virologia , Ativação Enzimática , Células HeLa , Células HEK293
12.
Biochem Cell Biol ; 102(4): 305-318, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38603810

RESUMO

The 2'-5'-oligoadenylate synthetases (OAS) are important components of the innate immune system that recognize viral double-stranded RNA (dsRNA). Upon dsRNA binding, OAS generate 2'-5'-linked oligoadenylates (2-5A) that activate ribonuclease L (RNase L), halting viral replication. The OAS/RNase L pathway is thus an important antiviral pathway and viruses have devised strategies to circumvent OAS activation. OAS enzymes are divided into four classes according to size: small (OAS1), medium (OAS2), and large (OAS3) that consist of one, two, and three OAS domains, respectively, and the OAS-like protein (OASL) that consists of one OAS domain and tandem domains similar to ubiquitin. Early investigation of the OAS enzymes hinted at the recognition of dsRNA by OAS, but due to size differences amongst OAS family members combined with the lack of structural information on full-length OAS2 and OAS3, the regulation of OAS catalytic activity by dsRNA was not well understood. However, the recent biophysical studies of OAS have highlighted overall structure and domain organization. In this review, we present a detailed examination of the OAS literature and summarized the investigation on 2'-5'-oligoadenylate synthetases.


Assuntos
2',5'-Oligoadenilato Sintetase , Domínios Proteicos , 2',5'-Oligoadenilato Sintetase/metabolismo , 2',5'-Oligoadenilato Sintetase/química , Humanos , RNA de Cadeia Dupla/metabolismo , RNA de Cadeia Dupla/química , Animais
13.
J Virol ; 98(5): e0018124, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38639485

RESUMO

Infectious bursal disease (IBD) is an acute and fatal immunosuppressive disease caused by infectious bursal disease virus (IBDV). As an obligate intracellular parasite, IBDV infection is strictly regulated by host factors. Knowledge on the antiviral activity and possible mechanism of host factors might provide the theoretical basis for the prevention and control of IBD. In this study, RNA-sequencing results indicated that many host factors were induced by IBDV infection, among which the expression levels of OASL (2´,5´-oligadenylate synthetase-like protein) was significantly upregulated. OASL overexpression significantly inhibited IBDV replication, whereas OASL knockdown promoted IBDV replication. Interestingly, the antiviral ability of OASL was independent of its canonical enzymatic activity, i.e., OASL targeted viral protein VP2 for degradation, depending on the autophagy receptor p62/SQSTM1 in the autophagy pathway. Additionally, the 316 lysine (K) of VP2 was the key site for autophagy degradation, and its replacement with arginine disrupted VP2 degradation induced by OASL and enhanced IBDV replication. Importantly, our results for the first time indicate a unique and potent defense mechanism of OASL against double-stranded RNA virus by interaction with viral proteins, which leads to their degradation. IMPORTANCE: OASL (2´,5´-oligadenylate synthetase-like protein) exhibits broad-spectrum antiviral effects against single-stranded RNA viruses in mammals, potentially serving as a promising target for novel antiviral strategies. However, its role in inhibiting the replication of double-stranded RNA viruses (dsRNA viruses), such as infectious bursal disease virus (IBDV), in avian species remains unclear. Our findings indicated a unique and potent defense mechanism of OASL against dsRNA viruses. It has been previously shown in mammals that OASL inhibits virus replication through increasing interferon production. The groundbreaking aspect of our study is the finding that OASL has the ability to interact with IBDV viral protein VP2 and target it for degradation and thus exerts its antiviral effect. Our results reveal the interaction between avian natural antiviral immune response and IBDV infection. Our study not only enhances our understanding of bird defenses against viral infections but can also inform strategies for poultry disease management.


Assuntos
2',5'-Oligoadenilato Sintetase , Autofagia , Infecções por Birnaviridae , Galinhas , Vírus da Doença Infecciosa da Bursa , Proteínas Estruturais Virais , Replicação Viral , Vírus da Doença Infecciosa da Bursa/fisiologia , Animais , Infecções por Birnaviridae/virologia , Infecções por Birnaviridae/metabolismo , Proteínas Estruturais Virais/metabolismo , Proteínas Estruturais Virais/genética , 2',5'-Oligoadenilato Sintetase/metabolismo , 2',5'-Oligoadenilato Sintetase/genética , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/metabolismo , Interações Hospedeiro-Patógeno , Células HEK293 , Humanos , Linhagem Celular
14.
Immunity ; 57(3): 446-461.e7, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38423012

RESUMO

In response to viral infection, how cells balance translational shutdown to limit viral replication and the induction of antiviral components like interferons (IFNs) is not well understood. Moreover, how distinct isoforms of IFN-induced oligoadenylate synthetase 1 (OAS1) contribute to this antiviral response also requires further elucidation. Here, we show that human, but not mouse, OAS1 inhibits SARS-CoV-2 replication through its canonical enzyme activity via RNase L. In contrast, both mouse and human OAS1 protect against West Nile virus infection by a mechanism distinct from canonical RNase L activation. OAS1 binds AU-rich elements (AREs) of specific mRNAs, including IFNß. This binding leads to the sequestration of IFNß mRNA to the endomembrane regions, resulting in prolonged half-life and continued translation. Thus, OAS1 is an ARE-binding protein with two mechanisms of antiviral activity: driving inhibition of translation but also a broader, non-canonical function of protecting IFN expression from translational shutdown.


Assuntos
2',5'-Oligoadenilato Sintetase , Interferons , Oligorribonucleotídeos , Viroses , Febre do Nilo Ocidental , Animais , Humanos , Camundongos , 2',5'-Oligoadenilato Sintetase/genética , 2',5'-Oligoadenilato Sintetase/metabolismo , Nucleotídeos de Adenina , Antivirais/farmacologia , Febre do Nilo Ocidental/genética , Febre do Nilo Ocidental/metabolismo , Vírus do Nilo Ocidental/metabolismo , Vírus do Nilo Ocidental/patogenicidade
15.
Mol Carcinog ; 63(5): 938-950, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38353288

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly invasive cancer with a poor prognosis and a 5-year survival rate of less than 11%. As a member of the CAP superfamily of proteins, the role of peptidase inhibitor 16 (Pi16) in tumor progression is still unclear. Immunohistochemistry and quantitative RT-PCR methods were used to detect the expression levels of Pi16 protein and mRNA in PDAC patients. CRISPR/Cas9 technology was used to knock out the expression of Pi16 in PDAC cell lines. In vivo and in vitro experiments were used to verify the effect of Pi16 on PDAC proliferation ability. By RNA sequencing, we found that oligoadenylate synthetase L (OASL) can serve as a potential downstream target of Pi16. The expression of Pi16 was higher in PDAC tissues than in matched adjacent tissues. High expression of Pi16 was associated with PDAC progression and poor prognosis. Overexpression of Pi16 could promote the proliferation of PDAC cells in vitro and in vivo. Bioinformatics analysis and coimmunoprecipitation assays showed that Pi16 could bind to OASL. Moreover, the functional recovery test confirmed that Pi16 could promote the proliferation of PDAC via OASL. Our present study demonstrates that Pi16 might participate in the occurrence and development of PDAC by regulating cell proliferation by binding to OASL, indicating that Pi16 might be a promising novel therapeutic target for PDAC.


Assuntos
2',5'-Oligoadenilato Sintetase , Nucleotídeos de Adenina , Carcinoma Ductal Pancreático , Glicoproteínas , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Glicoproteínas/metabolismo , Proteínas de Transporte/metabolismo , 2',5'-Oligoadenilato Sintetase/metabolismo
16.
Biochem Pharmacol ; 219: 115977, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38092283

RESUMO

Phenotypic transition of vascular smooth muscle cells (VSMCs) is an early event in the onset and progression of several cardiovascular diseases. As an important mediator of the renin-angiotensin system (RAS), activation of the angiotensin II type 1 receptor (AT1R) induces phenotypic transition of VSMCs. AT1R autoantibodies (AT1-AAs), which are agonistic autoantibodies of AT1R, have been detected in the sera of patients with a variety of cardiovascular diseases associated with phenotypic transition. However, the effect of AT1-AA on phenotypic transition is currently unknown. In this study, AT1-AA-positive rat model was established by active immunization to detect markers of VSMCs phenotypic transition. The results showed that AT1-AA-positive rats showed phenotypic transition of VSMCs, which was evidenced by the decrease of contractile markers, while the increase of synthetic markers in the thoracic aorta. However, in AT1-AA-positive AT1R knockout rats, the phenotypic transition-related proteins were not altered. In vitro, after stimulating human aortic smooth muscle cells with AT1-AA for 48 h, 2'-5' oligoadenylate synthase 2 (OAS2) was identified as the key differentially expressed gene by RNA sequencing and bioinformatics analysis. Furthermore, high expression of OAS2 was found in aorta of AT1-AA-positive rats; knockdown of OAS2 by siRNA can reverse the phenotypic transition of VSMCs induced by AT1-AA. In summary, this study suggests that AT1-AA can promote phenotypic transition of VSMCs through AT1R-OAS2 pathway, and OAS2 might serve as a potential therapeutic target to prevent pathological phenotypic transition of smooth muscle cells.


Assuntos
2',5'-Oligoadenilato Sintetase , Autoanticorpos , Doenças Cardiovasculares , Receptor Tipo 1 de Angiotensina , Animais , Humanos , Ratos , Autoanticorpos/metabolismo , Miócitos de Músculo Liso/metabolismo , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , 2',5'-Oligoadenilato Sintetase/genética , 2',5'-Oligoadenilato Sintetase/metabolismo
17.
Am J Physiol Cell Physiol ; 326(1): C60-C73, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38009194

RESUMO

Radiotherapy has long been a main treatment option for nasopharyngeal carcinoma (NPC). However, during clinical treatment, NPC is prone to developing radioresistance, resulting in treatment failure. This study aims to examine the role of histone methylation in the induction of radioresistance. It was found that the radioresistance of NPC cells was related to the increase of the level of histone H3 lysine 27 trimethylation (H3K27me3). Treatment of cells with histone methyltransferase inhibitor GSK126 increased the radiosensitivity of NPC cells by triggering Bcl2 apoptosis regulator/BCL2-associated X, apoptosis regulator (Bcl2/BAX) signaling pathway. Bioinformatics analysis indicated that the expression of 2'-5'-oligoadenylate synthetase 1 (OAS1) was reduced in the radioresistant cells but increased in the GSK126-treated cells. Chromatin immunoprecipitation assay confirmed that the decrease of OAS1 expression in radioresistant cells was mainly due to the enrichment of H3K27me3 in its promoter region. Furthermore, downregulation of OAS1 reduced apoptosis due to the inhibition of Bcl2/BAX pathway after irradiation, while OAS1 overexpression increased radiosensitivity. Our findings revealed for the first time that the increase of H3K27me3 level was associated with the decrease of OAS1 expression, leading to the inhibition of apoptosis and ultimately contributing to the radioresistance of NPC cells. Moreover, the histone methyltransferase inhibitor GSK126 could overcome the radioresistance and thus might be a potential therapeutic strategy for NPC.NEW & NOTEWORTHY Our findings revealed for the first time that the increase of H3K27me3 level was associated with the decrease of OAS1 expression, leading to the inhibition of apoptosis and ultimately contributing to the radioresistance of NPC cells. Moreover, we demonstrated that the histone methyltransferase inhibitor GSK126 could be a promising therapeutic strategy for NPC by overcoming radioresistance, providing valuable insights into the clinical treatment of NPC.


Assuntos
Carcinoma , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/radioterapia , Histonas/genética , Histonas/metabolismo , Carcinoma/metabolismo , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/radioterapia , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Histona Metiltransferases/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , 2',5'-Oligoadenilato Sintetase/metabolismo
18.
Nature ; 623(7989): 1001-1008, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37968393

RESUMO

Cyclic oligonucleotide-based antiphage signalling systems (CBASS) protect prokaryotes from viral (phage) attack through the production of cyclic oligonucleotides, which activate effector proteins that trigger the death of the infected host1,2. How bacterial cyclases recognize phage infection is not known. Here we show that staphylococcal phages produce a structured RNA transcribed from the terminase subunit genes, termed CBASS-activating bacteriophage RNA (cabRNA), which binds to a positively charged surface of the CdnE03 cyclase and promotes the synthesis of the cyclic dinucleotide cGAMP to activate the CBASS immune response. Phages that escape the CBASS defence harbour mutations that lead to the generation of a longer form of the cabRNA that cannot activate CdnE03. As the mammalian cyclase OAS1 also binds viral double-stranded RNA during the interferon response, our results reveal a conserved mechanism for the activation of innate antiviral defence pathways.


Assuntos
Bactérias , Nucleotidiltransferases , RNA Viral , Fagos de Staphylococcus , Animais , 2',5'-Oligoadenilato Sintetase/metabolismo , Bactérias/enzimologia , Bactérias/imunologia , Evolução Molecular , Imunidade Inata , Nucleotidiltransferases/metabolismo , Oligonucleotídeos/imunologia , Oligonucleotídeos/metabolismo , RNA Viral/imunologia , RNA Viral/metabolismo , Transdução de Sinais/imunologia , Fagos de Staphylococcus/genética , Fagos de Staphylococcus/imunologia
19.
J Virol ; 97(10): e0121723, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37815352

RESUMO

IMPORTANCE: African swine fever virus (ASFV) completes the replication process by resisting host antiviral response via inhibiting interferon (IFN) secretion and interferon-stimulated genes (ISGs) function. 2', 5'-Oligoadenylate synthetase gene 1 (OAS1) has been reported to inhibit the replication of various RNA and some DNA viruses. However, the regulatory mechanisms involved in the ASFV-induced IFN-related pathway still need to be fully elucidated. Here, we found that OAS1, as a critical host factor, inhibits ASFV replication in an RNaseL-dependent manner. Furthermore, overexpression of OAS1 can promote the activation of the JAK-STAT pathway promoting innate immune responses. In addition, OAS1 plays a new function, which could interact with ASFV P72 protein to suppress ASFV infection. Mechanistically, OAS1 enhances the proteasomal degradation of P72 by promoting TRIM21-mediated ubiquitination. Meanwhile, P72 inhibits the production of avSG and affects the interaction between OAS1 and DDX6. Our findings demonstrated OAS1 as an important target against ASFV replication and revealed the mechanisms and intrinsic regulatory relationships during ASFV infection.


Assuntos
2',5'-Oligoadenilato Sintetase , Vírus da Febre Suína Africana , Febre Suína Africana , Proteínas com Motivo Tripartido , Replicação Viral , Animais , Vírus da Febre Suína Africana/fisiologia , Proteínas do Capsídeo/metabolismo , Interferons/metabolismo , Janus Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição STAT/metabolismo , Suínos , Proteínas com Motivo Tripartido/metabolismo , 2',5'-Oligoadenilato Sintetase/metabolismo
20.
J Interferon Cytokine Res ; 43(11): 487-494, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37751211

RESUMO

2'-5' Oligoadenylate synthetases (OAS) are interferon-stimulated genes that are most well-known to protect hosts from viral infections. They are evolutionarily related to an ancient family of Nucleotidyltransferases, which are primarily involved in pathogen-sensing and innate immune response. Classical function of OAS proteins involves double-stranded RNA-stimulated polymerization of adenosine triphosphate in 2'-5' oligoadenylates (2-5A), which can activate the latent RNase (RNase L) to degrade RNA. However, accumulated evidence over the years have suggested alternative mode of antiviral function of several OAS family proteins. Furthermore, recent studies have connected some OAS proteins with wider function beyond viral infection. Here, we review some of the canonical and noncanonical functions of OAS proteins and their mechanisms.


Assuntos
RNA de Cadeia Dupla , Viroses , Humanos , Interferons/genética , Nucleotídeos de Adenina , Oligorribonucleotídeos , Endorribonucleases/genética , Endorribonucleases/metabolismo , 2',5'-Oligoadenilato Sintetase/genética , 2',5'-Oligoadenilato Sintetase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA