Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.499
Filtrar
1.
Bioorg Chem ; 146: 107302, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521010

RESUMO

Leishmaniasis, a group of neglected infectious diseases, encompasses a serious health concern, particularly with visceral leishmaniasis exhibiting potentially fatal outcomes. Nucleoside hydrolase (NH) has a fundamental role in the purine salvage pathway, crucial for Leishmania donovani survival, and presents a promising target for developing new drugs for visceral leishmaniasis treatment. In this study, LdNH was immobilized into fused silica capillaries, resulting in immobilized enzyme reactors (IMERs). The LdNH-IMER activity was monitored on-flow in a multidimensional liquid chromatography system, with the IMER in the first dimension. A C18 analytical column in the second dimension furnished the rapid separation of the substrate (inosine) and product (hypoxanthine), enabling direct enzyme activity monitoring through product quantification. LdNH-IMER exhibited high stability and was characterized by determining the Michaelis-Menten constant. A known inhibitor (1-(ß-d-Ribofuranosyl)-4-quinolone derivative) was used as a model to validate the established method in inhibitor recognition. Screening of three additional derivatives of 1-(ß-d-Ribofuranosyl)-4-quinolone led to the discovery of novel inhibitors, with compound 2a exhibiting superior inhibitory activity (Ki = 23.37 ± 3.64 µmol/L) compared to the employed model inhibitor. Docking and Molecular Dynamics studies provided crucial insights into inhibitor interactions at the enzyme active site, offering valuable information for developing new LdNH inhibitors. Therefore, this study presents a novel screening assay and contributes to the development of potent LdNH inhibitors.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Humanos , N-Glicosil Hidrolases/metabolismo , Cromatografia de Afinidade , 4-Quinolonas
2.
J Org Chem ; 88(9): 6209-6217, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37071556

RESUMO

An improved method for the synthesis of a new quinolone class of antibiotics, which are exceptionally potent against gram-positive bacteria, has been developed and the structure confirmed by single-crystal X-ray analysis. In the course of synthesis, using either Chan-Lam coupling or Buchwald-Hartwig amination, we have shown that the careful choice of protecting group at the C4 position of the quinoline is required for selective amination at the C5 position and subsequent deprotection to avoid the formation of a novel pyrido[4,3,2-de]quinazoline tetracycle.


Assuntos
Quinolonas , Quinolonas/química , Relação Estrutura-Atividade , Antibacterianos/química , Bactérias Gram-Positivas , 4-Quinolonas
3.
Molecules ; 28(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36903552

RESUMO

Hydrogen-bonding catalytic reactions have gained great interest. Herein, a hydrogen-bond-assisted three-component tandem reaction for the efficient synthesis of N-alkyl-4-quinolones is described. This novel strategy features the first proof of polyphosphate ester (PPE) as a dual hydrogen-bonding catalyst and the use of readily available starting materials for the preparation of N-alkyl-4-quinolones. The method provides a diversity of N-alkyl-4-quinolones in moderate to good yields. The compound 4h demonstrated good neuroprotective activity against N-methyl-ᴅ-aspartate (NMDA)-induced excitotoxicity in PC12 cells.


Assuntos
Quinolonas , Ratos , Animais , Quinolonas/química , Ligação de Hidrogênio , Catálise , Hidrogênio , 4-Quinolonas
4.
Eur J Med Chem ; 250: 115211, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36827952

RESUMO

Amongst different forms of leishmaniasis, visceral leishmaniasis caused by L. donovani is highly mortal. Identification of new hit compounds might afford new starting points to develop novel therapeutics. In this lieu, a rationally designed small library of bestatin analogs-4-quinolone hybrids were prepared and evaluated. Analysis of SAR unveiled distinct profiles for hybrids type 1 and type 2, which might arise from their different molecular targets. Amongst type 1 bestatin analog-4-quinolone hybrids, hybrid 1e was identified as potential hit inhibiting growth of L. donovani promastigotes by 91 and 53% at 50 and 25 µM concentrations, respectively. Meanwhile, hybrid 2j was identified amongst type 2 bestatin analog-4-quinolone hybrids as potential hit compound inhibiting growth of L. donovani promastigotes by 50 and 38% at 50 and 25 µM concentrations, respectively. Preliminary safety evaluation of the promising hit compounds showed that they are 50-100 folds safer against human derived monocytic THP-1 cells relative to the drug erufosine. In silico study was conducted to predict the possible binding of hybrid 1e with methionine aminopeptidases 1 and 2 of L. donovani. Molecular dynamic simulations verified the predicted binding modes and provide more in depth understanding of the impact of hybrid 1e on LdMetAP-1 and LdMetAP-2.


Assuntos
Antiprotozoários , Leishmania donovani , Leishmaniose Visceral , Quinolonas , Humanos , Quinolonas/uso terapêutico , Reposicionamento de Medicamentos , Leishmaniose Visceral/tratamento farmacológico , Antiprotozoários/química , 4-Quinolonas
5.
Molecules ; 28(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36677621

RESUMO

Our previous study found that 2-phenyl-4-quinolone (2-PQ) derivatives are antimitotic agents, and we adopted the drug design concept of scaffold hopping to replace the 2-aromatic ring of 2-PQs with a 4-aromatic ring, representing 4-phenyl-2-quinolones (4-PQs). The 4-PQ compounds, whose structural backbones also mimic analogs of podophyllotoxin (PPT), maybe a new class of anticancer drugs with simplified PPT structures. In addition, 4-PQs are a new generation of anticancer lead compounds as apoptosis stimulators. On the other hand, previous studies showed that 4-arylcoumarin derivatives with 5-, 6-, and 7-methoxy substitutions displayed remarkable anticancer activities. Therefore, we further synthesized a series of 5-, 6-, and 7-methoxy-substituted 4-PQ derivatives (19-32) by Knorr quinoline cyclization, and examined their anticancer effectiveness. Among these 4-PQs, compound 22 demonstrated excellent antiproliferative activities against the COLO205 cell line (50% inhibitory concentration (IC50) = 0.32 µM) and H460 cell line (IC50 = 0.89 µM). Furthermore, we utilized molecular docking studies to explain the possible anticancer mechanisms of these 4-PQs by the docking mode in the colchicine-binding pocket of the tubulin receptor. Consequently, we selected the candidate compounds 19, 20, 21, 22, 25, 27, and 28 to predict their absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles. Pharmacokinetics (PKs) indicated that these 4-PQs displayed good drug-likeness and bioavailability, and had no cardiotoxic side effects or carcinogenicity, but we detected risks of drug-drug interactions and AMES toxicity (mutagenic). However, structural modifications of these 4-PQs could improve their PK properties and reduce their side effects, and their promising anticancer activities attracted our attention for further studies.


Assuntos
Antineoplásicos , Relação Estrutura-Atividade , 4-Quinolonas/farmacologia , Simulação de Acoplamento Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/farmacologia , Antineoplásicos/química , Podofilotoxina/farmacologia , Estrutura Molecular , Proliferação de Células , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga
6.
Molecules ; 29(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38202773

RESUMO

In this work, the privileged scaffold of 4-hydroxy-2quinolinone is investigated through the synthesis of carboxamides and hybrid derivatives, as well as through their bioactivity evaluation, focusing on the ability of the molecules to inhibit the soybean LOX, as an indication of their anti-inflammatory activity. Twenty-one quinolinone carboxamides, seven novel hybrid compounds consisting of the quinolinone moiety and selected cinnamic or benzoic acid derivatives, as well as three reverse amides are synthesized and classified as multi-target agents according to their LOX inhibitory and antioxidant activity. Among all the synthesized analogues, quinolinone-carboxamide compounds 3h and 3s, which are introduced for the first time in the literature, exhibited the best LOX inhibitory activity (IC50 = 10 µM). Furthermore, carboxamide 3g and quinolinone hybrid with acetylated ferulic acid 11e emerged as multi-target agents, revealing combined antioxidant and LOX inhibitory activity (3g: IC50 = 27.5 µM for LOX inhibition, 100% inhibition of lipid peroxidation, 67.7% ability to scavenge hydroxyl radicals and 72.4% in the ABTS radical cation decolorization assay; 11e: IC50 = 52 µM for LOX inhibition and 97% inhibition of lipid peroxidation). The in silico docking results revealed that the synthetic carboxamide analogues 3h and 3s and NDGA (the reference compound) bind at the same alternative binding site in a similar binding mode.


Assuntos
Quinolonas , 4-Quinolonas , Quinolonas/farmacologia , Peroxidação de Lipídeos , Amidas , Antioxidantes/farmacologia
7.
J Org Chem ; 87(24): 16873-16881, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36413958

RESUMO

An atom-economical protocol to construct densely substituted 4-acyl-2-quinolones from N-(2-alkynylphenyl)-α-ketoamides has been developed through Sc(OTf)3-catalyzed ring-closing alkyne-carbonyl metathesis. Mechanistic experimental studies support that coordinative interaction between Sc(OTf))3 and the substrate, the formation of an oxetene intermediate, and an electrocyclic ring-opening of the oxetene might be involved.


Assuntos
Alcinos , 4-Quinolonas , Catálise
8.
Microbiol Spectr ; 10(5): e0154822, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36036571

RESUMO

Pf4 is a filamentous bacteriophage integrated as a prophage into the genome of Pseudomonas aeruginosa PAO1. Pf4 virions can be produced without killing P. aeruginosa. However, cell lysis can occur during superinfection when Pf virions successfully infect a host lysogenized by a Pf superinfective variant. We have previously shown that infection of P. aeruginosa PAO1 with a superinfective Pf4 variant abolished twitching motility and altered biofilm architecture. More precisely, most of the cells embedded into the biofilm were showing a filamentous morphology, suggesting the activation of the cell envelope stress response involving both AlgU and SigX extracytoplasmic function sigma factors. Here, we show that Pf4 variant infection results in a drastic dysregulation of 3,360 genes representing about 58% of P. aeruginosa genome; of these, 70% of the virulence factors encoding genes show a dysregulation. Accordingly, Pf4 variant infection (termed Pf4*) causes in vivo reduction of P. aeruginosa virulence and decreased production of N-acyl-homoserine lactones and 2-alkyl-4-quinolones quorum-sensing molecules and related virulence factors, such as pyocyanin, elastase, and pyoverdine. In addition, the expression of genes involved in metabolism, including energy generation and iron homeostasis, was affected, suggesting further relationships between virulence and central metabolism. Altogether, these data show that Pf4 phage variant infection results in complex network dysregulation, leading to reducing acute virulence in P. aeruginosa. This study contributes to the comprehension of the bacterial response to filamentous phage infection. IMPORTANCE Filamentous bacteriophages can become superinfective and infect P. aeruginosa, even though they are inserted in the genome as lysogens. Despite this productive infection, growth of the host is only mildly affected, allowing the study of the interaction between the phage and the host, which is not possible in the case of lytic phages killing rapidly their host. Here, we demonstrate by transcriptome and phenotypic analysis that the infection by a superinfective filamentous phage variant causes a massive disruption in gene expression, including those coding for virulence factors and metabolic pathways.


Assuntos
Bacteriófagos , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Virulência , Piocianina/metabolismo , Bacteriófagos/genética , Acil-Butirolactonas/metabolismo , Percepção de Quorum , Biofilmes , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Ferro/metabolismo , Elastase Pancreática/metabolismo , 4-Quinolonas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
9.
Microbiol Spectr ; 10(4): e0107321, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35876587

RESUMO

Understanding quorum sensing (QS) and its role in the development of pathogenesis may provide new avenues for diagnosing, surveillance, and treatment of infectious diseases. For this purpose, the availability of reliable and efficient analytical diagnostic tools suitable to specifically detect and quantify these essential QS small molecules and QS regulated virulence factors is crucial. Here, we reported the development and evaluation of antibodies and an enzyme-linked immunosorbent assay (ELISA) for HQNO (2-heptyl-4-quinoline N-oxide), a QS product of the PqsR system, which has been found to act as a major virulence factor that interferes with the growth of other microorganisms. Despite the nonimmunogenic character of HQNO, the antibodies produced showed high avidity and the microplate-based ELISA developed could detect HQNO in the low nM range. Hence, a limit of detection (LOD) of 0.60 ± 0.13 nM had been reached in Müeller Hinton (MH) broth, which was below previously reported levels using sophisticated equipment based on liquid chromatography coupled to mass spectrometry. The HQNO profile of release of different Pseudomonas aeruginosa clinical isolates analyzed using this ELISA showed significant differences depending on whether the clinical isolates belonged to patients with acute or chronic infections. These data point to the possibility of using HQNO as a specific biomarker to diagnose P. aeruginosa infections and for patient surveillance. Considering the role of HQNO in inhibiting the growth of coinfecting bacteria, the present ELISA will allow the investigation of these complex bacterial interactions underlying infections. IMPORTANCE Bacteria use quorum sensing (QS) as a communication mechanism that releases small signaling molecules which allow synchronizing a series of activities involved in the pathogenesis, such as the biosynthesis of virulence factors or the regulation of growth of other bacterial species. HQNO is a metabolite of the Pseudomonas aeruginosa-specific QS signaling molecule PQS (Pseudomonas quinolone signal). In this work, the development of highly specific antibodies and an immunochemical diagnostic technology (ELISA) for the detection and quantification of HQNO was reported. The ELISA allowed profiling of the release of HQNO by clinical bacterial isolates, showing its potential value for diagnosing and surveillance of P. aeruginosa infections. Moreover, the antibodies and the ELISA reported here may contribute to the knowledge of other underlying conditions related to the pathology, such as the role of the interactions with other bacteria of a particular microbiota environment.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , 4-Quinolonas , Proteínas de Bactérias/metabolismo , Humanos , Óxidos/metabolismo , Óxidos/uso terapêutico , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/metabolismo , Percepção de Quorum/fisiologia , Virulência , Fatores de Virulência/metabolismo
10.
J Nat Prod ; 85(7): 1763-1770, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35802519

RESUMO

Chemical investigation of the culture extract of a marine obligate proteobacterium, Marinobacterium sp. C17-8, isolated from scleractinian coral Euphyllia sp., led to the discovery of three new o-dialkylbenzene-class metabolites, designated marinoquinolones A (1) and B (2) and marinobactoic acid (3). Spectroscopic analysis using MS and NMR revealed the structures of 1 and 2 to be 4-quinolones with an o-dialkylbenzene-containing side chain at C3 and 3 to be a fatty acid bearing an o-dialkylbenzene substructure. The 4-quinolone form of 1 and 2 was unequivocally determined by comparison of the 1H, 13C, and 15N chemical shifts of 1 with those predicted for 2-methyl-4-quinolone A and its tautomer 2-methyl-4-quinolinol B by quantum chemical calculation. Compound 1 was proven to be racemic by X-ray crystallographic analysis and chiral-phase HPLC analysis of its chemical degradation product. Compounds 1-3 exhibited antimicrobial activity against bacteria and filamentous fungi at MIC of 6.3-50 µg/mL. In addition, all compounds showed cytotoxicity against P388 murine leukemia cells at micromolar ranges.


Assuntos
Alteromonadaceae , Antozoários , Anti-Infecciosos , 4-Quinolonas/farmacologia , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/química , Fungos , Camundongos
11.
Curr Top Med Chem ; 22(12): 973-991, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35524665

RESUMO

BACKGROUND: Microbial resistance has become a worldwide public health problem and may lead to morbidity and mortality in affected patients. OBJECTIVES: Therefore, this work aimed to evaluate the antibacterial activity of quinone-4- oxoquinoline derivatives. METHODS: These derivatives were evaluated against Gram-positive and Gram-negative bacteria by their antibacterial activity, anti-biofilm, and hemolytic activities and in silico assays. RESULTS: The quinone-4-oxoquinoline derivatives presented broad-spectrum antibacterial activities and, in some cases, were more active than commercially available reference drugs. These compounds also inhibited bacterial adhesion, and the assays revealed seven non-hemolytic derivatives. The derivatives seem to cause damage to the bacterial cell membrane, and those containing the carboxyl group at the C-3 position of the 4-quinolonic nucleus were more active than those containing a carboxyethyl group. CONCLUSION: The isoquinoline-5,8-dione nucleus also favored antimicrobial activity. The study showed that the target of the derivatives must be a non-conventional hydrophobic allosteric binding pocket on the DNA gyrase enzyme.


Assuntos
Bactérias Gram-Negativas , Quinolonas , 4-Quinolonas , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias Gram-Positivas , Humanos , Testes de Sensibilidade Microbiana , Quinolonas/farmacologia , Quinonas/farmacologia , Relação Estrutura-Atividade
12.
Angew Chem Int Ed Engl ; 61(13): e202200352, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35085411

RESUMO

The C-N cross-coupling of (hetero)aryl (pseudo)halides with NH substrates employing nickel catalysts and organic amine bases represents an emergent strategy for the sustainable synthesis of (hetero)anilines. However, unlike protocols that rely on photoredox/electrochemical/reductant methods within NiI/III cycles, the reaction steps that comprise a putative Ni0/II C-N cross-coupling cycle for a thermally promoted catalyst system using organic amine base have not been elucidated. Here we disclose an efficient new nickel-catalyzed protocol for the C-N cross-coupling of amides and 2'-(pseudo)halide-substituted acetophenones, for the first time where the (pseudo)halide is chloride or sulfonate, which makes use of the commercial bisphosphine ligand PAd2-DalPhos (L4) in combination with an organic amine base/halide scavenger, leading to 4-quinolones. Room-temperature stoichiometric experiments involving isolated Ni0, I, and II species support a Ni0/II pathway, where the combined action of DBU/NaTFA allows for room-temperature amide cross-couplings.


Assuntos
Aminas , Níquel , 4-Quinolonas , Amidas , Aminação , Catálise
13.
J Med Microbiol ; 70(10)2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34596013

RESUMO

Introduction. Pseudomonas aeruginosa produces quorum sensing signalling molecules including 2-alkyl-4-quinolones (AQs), which regulate virulence factor production in the cystic fibrosis (CF) airways.Hypothesis/Gap statement. Culture can lead to condition-dependent artefacts which may limit the potential insights and applications of AQs as minimally-invasive biomarkers of bacterial load.Aim. We aimed to use culture-independent methods to explore the correlations between AQ levels and live P. aeruginosa load in adults with CF.Methodology. Seventy-five sputum samples at clinical stability and 48 paired sputum samples obtained at the beginning and end of IV antibiotics for a pulmonary exacerbation in adults with CF were processed using a viable cell separation technique followed by quantitative P. aeruginosa polymerase chain reaction (qPCR). Live P. aeruginosa qPCR load was compared with the concentrations of three AQs (HHQ, NHQ and HQNO) detected in sputum, plasma and urine.Results. At clinical stability and the beginning of IV antibiotics for pulmonary exacerbation, HHQ, NHQ and HQNO measured in sputum, plasma and urine were consistently positively correlated with live P. aeruginosa qPCR load in sputum, compared to culture. Following systemic antibiotics live P. aeruginosa qPCR load decreased significantly (P<0.001) and was correlated with a reduction in plasma NHQ (plasma: r=0.463, P=0.003).Conclusion. In adults with CF, AQ concentrations correlated more strongly with live P. aeruginosa bacterial load measured by qPCR compared to traditional culture. Prospective studies are required to assess the potential of systemic AQs as biomarkers of P. aeruginosa bacterial burden.


Assuntos
4-Quinolonas/isolamento & purificação , Fibrose Cística/complicações , Infecções por Pseudomonas/complicações , Pseudomonas aeruginosa/isolamento & purificação , Percepção de Quorum , 4-Quinolonas/sangue , 4-Quinolonas/urina , Adolescente , Adulto , Carga Bacteriana , Biomarcadores , Fibrose Cística/microbiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Infecções por Pseudomonas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Escarro/química , Adulto Jovem
14.
Biosci Biotechnol Biochem ; 85(7): 1720-1728, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-33960377

RESUMO

A simple and effective direct competitive chemiluminescence immunoassay for the detection of 4 kinds of quinolone antibiotics in milk was established using Nor-Biotin (biotin-modified norfloxacin [NOR]) bifunctional ligand and alkaline phosphatase-conjugated streptavidin signal amplification technology. The polyclonal antibody was obtained after the immunization of New Zealand White rabbits using norfloxacin-derived antigen. "Click chemistry" was used for the rapid and facile synthesis of the Nor-Biotin bifunctional ligand. After the optimization of the incubation time and reaction buffer, the direct competitive chemiluminescence assay method was developed and used for sensitive detection of 4 kinds of quinolone drugs (NOR, pefloxacin, ciprofloxacin, and danofloxacin). The IC50 of the 4 kinds of quinolone drugs ranged from 7.35 to 24.27 ng/mL, and the lowest detection limits ranged from 0.05 to 0.16 ng/mL, which were below their maximum residue levels, approved by the EU for treatment of food-producing animals. To demonstrate the applicability of the assay, artificially contaminated milk samples with the 4 quinolone drugs were analyzed. The mean recovery rates of the drugs ranged from 86.31% to 112.11%.


Assuntos
4-Quinolonas/análise , Fosfatase Alcalina/química , Antibacterianos/análise , Química Click , Ligantes , Limite de Detecção , Luminescência
15.
mSphere ; 6(3)2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980670

RESUMO

Interactions between phytoplankton and heterotrophic bacteria fundamentally shape marine ecosystems by controlling primary production, structuring marine food webs, mediating carbon export, and influencing global climate. Phytoplankton-bacterium interactions are facilitated by secreted compounds; however, linking these chemical signals, their mechanisms of action, and their resultant ecological consequences remains a fundamental challenge. The bacterial quorum-sensing signal 2-heptyl-4-quinolone (HHQ) induces immediate, yet reversible, cellular stasis (no cell division or mortality) in the coccolithophore Emiliania huxleyi; however, the mechanism responsible remains unknown. Using transcriptomic and proteomic approaches in combination with diagnostic biochemical and fluorescent cell-based assays, we show that HHQ exposure leads to prolonged S-phase arrest in phytoplankton coincident with the accumulation of DNA damage and a lack of repair despite the induction of the DNA damage response (DDR). While this effect is reversible, HHQ-exposed phytoplankton were also protected from viral mortality, ascribing a new role of quorum-sensing signals in regulating multitrophic interactions. Furthermore, our data demonstrate that in situ measurements of HHQ coincide with areas of enhanced micro- and nanoplankton biomass. Our results suggest bacterial communication signals as emerging players that may be one of the contributing factors that help structure complex microbial communities throughout the ocean.IMPORTANCE Bacteria and phytoplankton form close associations in the ocean that are driven by the exchange of chemical compounds. The bacterial signal 2-heptyl-4-quinolone (HHQ) slows phytoplankton growth; however, the mechanism responsible remains unknown. Here, we show that HHQ exposure leads to the accumulation of DNA damage in phytoplankton and prevents its repair. While this effect is reversible, HHQ-exposed phytoplankton are also relieved of viral mortality, elevating the ecological consequences of this complex interaction. Further results indicate that HHQ may target phytoplankton proteins involved in nucleotide biosynthesis and DNA repair, both of which are crucial targets for viral success. Our results support microbial cues as emerging players in marine ecosystems, providing a new mechanistic framework for how bacterial communication signals mediate interspecies and interkingdom behaviors.


Assuntos
Bactérias/metabolismo , Divisão Celular , Fitoplâncton/fisiologia , Percepção de Quorum , Transdução de Sinais , 4-Quinolonas/metabolismo , Proteínas de Bactérias/genética , Perfilação da Expressão Gênica , Interações Microbianas , Microbiota , Fitoplâncton/genética , Proteômica
16.
Phytochemistry ; 186: 112730, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33740577

RESUMO

Six undescribed 4-quinolone alkaloids, including four racemic mixtures, (±)-oxypenicinolines A-D, and two related ones, penicinolines F and G, together with seven known analogues, were isolated from the mangrove-derived fungus Penicillium steckii SCSIO 41025 (Trichocomaceae). The racemates were separated by HPLC using chiral columns. Their structures including absolute configurations were elucidated by extensive spectroscopic analysis, electronic circular dichroism (ECD) experiments, and single-crystal X-ray diffraction analysis. Structurally, (±)-oxypenicinolines A-D shared with an unusual 6/6/5/5 tetracyclic system incorporating a rare tetrahydro-pyrrolyl moiety. A plausible biosynthetic pathway for pyrrolyl 4-quinolone alkaloids is proposed. (±)-oxypenicinoline A and quinolactacide displayed α-glucosidase inhibitory activity with the IC50 values of 317.8 and 365.9 µΜ, respectively, which were more potent than that of acarbose (461.0 µM). Additionally, penicinoline and penicinoline E showed weak inhibitions toward acetylcholinesterase (AChE).


Assuntos
Alcaloides , Penicillium , 4-Quinolonas , Fungos , Estrutura Molecular
17.
Eur J Med Chem ; 213: 113183, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33493825

RESUMO

4-Oxoquinoline derivatives have been often used in drug discovery programs due to their pharmacological properties. Inspired on chromone and 4-oxoquinoline chemical structure similarity, a small series of quinoline-based compounds was obtained and screened, for the first time, toward human monoamine oxidases isoforms. The data showed the N-(3,4-dichlorophenyl)-1-methyl-4-oxo-1,4-dihydroquinoline-3-carboxamide 10 was the most potent and selective MAO-B inhibitor (IC50 = 5.30 ± 0.74 nM and SI: ≥1887). The data analysis showed that prototropic tautomerism markedly influences the biological activity. The unequivocal characterisation of the quinoline tautomers was performed to understand the attained data. To our knowledge, there have been no prior reports on the characterisation of quinolone tautomers by 2D NMR techniques, namely by 1H-15N HSQC and 1H-15N HMBC, which are proposed as expedite tools for medicinal chemistry campaigns. Computational studies on enzyme-ligand complexes, obtained after MM-GBSA calculations and molecular dynamics simulations, supported the experimental data.


Assuntos
4-Quinolonas/farmacologia , Antineoplásicos/farmacologia , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , 4-Quinolonas/síntese química , 4-Quinolonas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
18.
Sci Rep ; 10(1): 21630, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303891

RESUMO

Novel antimicrobials are urgently needed due to the rapid spread of antibiotic resistant bacteria. In a genome-wide analysis of Pseudoalteromonas strains, one strain (S4498) was noticed due to its potent antibiotic activity. It did not produce the yellow antimicrobial pigment bromoalterochromide, which was produced by several related type strains with which it shared less than 95% average nucleotide identity. Also, it produced a sweet-smelling volatile not observed from other strains. Mining the genome of strain S4498 using the secondary metabolite prediction tool antiSMASH led to eight biosynthetic gene clusters with no homology to known compounds, and synteny analyses revealed that the yellow pigment bromoalterochromide was likely lost during evolution. Metabolome profiling of strain S4498 using HPLC-HRMS analyses revealed marked differences to the type strains. In particular, a series of quinolones known as pseudanes were identified and verified by NMR. The characteristic odor of the strain was linked to the pseudanes. The highly halogenated compound tetrabromopyrrole was detected as the major antibacterial component by bioassay-guided fractionation. Taken together, the polyphasic analysis demonstrates that strain S4498 belongs to a novel species within the genus Pseudoalteromonas, and we propose the name Pseudoalteromonas galatheae sp. nov. (type strain S4498T = NCIMB 15250T = LMG 31599T).


Assuntos
4-Quinolonas/metabolismo , Anti-Infecciosos/metabolismo , Pseudoalteromonas/metabolismo , Pseudomonas/metabolismo , Pirróis/metabolismo , Cromatografia Líquida de Alta Pressão , DNA Bacteriano/genética , Genes Bacterianos , Biologia Marinha , Espectrometria de Massas , Hibridização de Ácido Nucleico , Filogenia , Pseudoalteromonas/classificação , Pseudoalteromonas/genética
19.
Molecules ; 25(23)2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276615

RESUMO

The alkyl-4-quinolones (AQs) are a class of metabolites produced primarily by members of the Pseudomonas and Burkholderia genera, consisting of a 4-quinolone core substituted by a range of pendant groups, most commonly at the C-2 position. The history of this class of compounds dates back to the 1940s, when a range of alkylquinolones with notable antibiotic properties were first isolated from Pseudomonas aeruginosa. More recently, it was discovered that an alkylquinolone derivative, the Pseudomonas Quinolone Signal (PQS) plays a key role in bacterial communication and quorum sensing in Pseudomonas aeruginosa. Many of the best-studied examples contain simple hydrocarbon side-chains, but more recent studies have revealed a wide range of structurally diverse examples from multiple bacterial genera, including those with aromatic, isoprenoid, or sulfur-containing side-chains. In addition to their well-known antimicrobial properties, alkylquinolones have been reported with antimalarial, antifungal, antialgal, and antioxidant properties. Here we review the structural diversity and biological activity of these intriguing metabolites.


Assuntos
4-Quinolonas/química , 4-Quinolonas/farmacologia , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Descoberta de Drogas , Percepção de Quorum , Alquilação , Transdução de Sinais
20.
ACS Infect Dis ; 6(12): 3237-3246, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33210530

RESUMO

Bacterial quorum sensing (QS) is being contemplated as a promising target for developing innovative diagnostic and therapeutic strategies. Here we report for the first time the development of antibodies against 2-heptyl-4-quinolone (HHQ), a signaling molecule from the pqs QS system of Pseudomonas aeruginosa, involved in the production of important virulent factors and biofilm formation. The antibodies produced were used to develop an immunochemical diagnostic approach to assess the potential of this molecule as a biomarker of P. aeruginosa infection. The ELISA developed is able to reach a detectability in the low nM range (IC50 = 4.59 ± 0.29 nM and LOD = 0.34 ± 0.13 nM), even in complex biological samples such as Müeller Hinton (MH) culture media. The ELISA developed is robust and reproducible and has been found to be specific to HHQ, with little interference from other related alkylquinolones from the pqs QS system. The ELISA has been used to analyze the HHQ production kinetics of P. aeruginosa clinical isolates grown in MH media, pointing to its potential as a biomarker of infection and at the possibility to use the technology developed to obtain additional information about the disease stage.


Assuntos
Infecções por Pseudomonas , Percepção de Quorum , 4-Quinolonas , Biomarcadores , Humanos , Infecções por Pseudomonas/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...